提交 b536799a 编写于 作者: Y Yu Yang

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into feature/recordio_file_reader

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
......@@ -138,13 +138,14 @@ def main():
avg_cost = fluid.layers.mean(x=cost)
# Evaluator
accuracy = fluid.evaluator.Accuracy(input=predict, label=label)
batch_size = fluid.layers.create_tensor(dtype='int64')
batch_acc = fluid.layers.accuracy(
input=predict, label=label, total=batch_size)
# inference program
inference_program = fluid.default_main_program().clone()
with fluid.program_guard(inference_program):
test_target = accuracy.metrics + accuracy.states
inference_program = fluid.io.get_inference_program(test_target)
inference_program = fluid.io.get_inference_program(batch_acc)
# Optimization
optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
......@@ -157,27 +158,30 @@ def main():
# test
def test(exe):
accuracy.reset(exe)
test_pass_acc = fluid.average.WeightedAverage()
for batch_id, data in enumerate(test_reader()):
img_data = np.array(map(lambda x: x[0].reshape(data_shape),
data)).astype("float32")
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = y_data.reshape([-1, 1])
exe.run(inference_program,
feed={"pixel": img_data,
"label": y_data})
outs = exe.run(inference_program,
feed={"pixel": img_data,
"label": y_data},
fetch_list=[batch_acc, batch_size])
test_pass_acc.add(value=np.array(outs[0]), weight=np.array(outs[1]))
return accuracy.eval(exe)
return test_pass_acc.eval()
def train_loop(exe, trainer_prog):
iters = 0
ts = time.time()
train_pass_acc = fluid.average.WeightedAverage()
for pass_id in range(args.num_passes):
# train
start_time = time.time()
num_samples = 0
accuracy.reset(exe)
train_pass_acc.reset()
with profiler.profiler("CPU", 'total') as prof:
for batch_id, data in enumerate(train_reader()):
ts = time.time()
......@@ -187,13 +191,14 @@ def main():
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = y_data.reshape([-1, 1])
loss, acc = exe.run(
loss, acc, b_size = exe.run(
trainer_prog,
feed={"pixel": img_data,
"label": y_data},
fetch_list=[avg_cost] + accuracy.metrics)
fetch_list=[avg_cost, batch_acc, batch_size])
iters += 1
num_samples += len(data)
train_pass_acc.add(value=acc, weight=b_size)
print(
"Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, Speed = %.2f img/s"
% (pass_id, iters, loss, acc,
......@@ -201,7 +206,7 @@ def main():
) # The accuracy is the accumulation of batches, but not the current batch.
pass_elapsed = time.time() - start_time
pass_train_acc = accuracy.eval(exe)
pass_train_acc = train_pass_acc.eval()
pass_test_acc = test(exe)
print(
"Pass = %d, Training performance = %f imgs/s, Train accuracy = %f, Test accuracy = %f\n"
......
......@@ -77,7 +77,8 @@ IF(NOT ${CBLAS_FOUND})
INSTALL_DIR ${CBLAS_INSTALL_DIR}
BUILD_IN_SOURCE 1
BUILD_COMMAND ${CMAKE_MAKE_PROGRAM} ${COMMON_ARGS} ${OPTIONAL_ARGS}
INSTALL_COMMAND ${CMAKE_MAKE_PROGRAM} install NO_SHARED=1 NO_LAPACK=1 PREFIX=<INSTALL_DIR>
INSTALL_COMMAND ${CMAKE_MAKE_PROGRAM} install NO_SHARED=1 NO_LAPACK=1 PREFIX=<INSTALL_DIR>
&& rm -r ${CBLAS_INSTALL_DIR}/lib/cmake ${CBLAS_INSTALL_DIR}/lib/pkgconfig
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
)
......@@ -100,11 +101,6 @@ IF(NOT ${CBLAS_FOUND})
\"${CBLAS_INSTALL_DIR}/lib -> ${CMAKE_INSTALL_PREFIX}/${TMP_INSTALL_DIR}\"
)"
)
INSTALL(CODE "execute_process(
COMMAND rm -r ${CMAKE_INSTALL_PREFIX}/${TMP_INSTALL_DIR}/cmake
${CMAKE_INSTALL_PREFIX}/${TMP_INSTALL_DIR}/pkgconfig
)"
)
ENDIF()
ENDIF(NOT ${CBLAS_FOUND})
......
......@@ -186,7 +186,9 @@ function(cc_library TARGET_NAME)
add_library(${TARGET_NAME} SHARED ${cc_library_SRCS})
else()
add_library(${TARGET_NAME} STATIC ${cc_library_SRCS})
find_fluid_modules(${TARGET_NAME})
endif()
if(cc_library_DEPS)
# Don't need link libwarpctc.so
if("${cc_library_DEPS};" MATCHES "warpctc;")
......@@ -263,7 +265,8 @@ function(nv_library TARGET_NAME)
if (nv_library_SHARED OR nv_library_shared) # build *.so
cuda_add_library(${TARGET_NAME} SHARED ${nv_library_SRCS})
else()
cuda_add_library(${TARGET_NAME} STATIC ${nv_library_SRCS})
cuda_add_library(${TARGET_NAME} STATIC ${nv_library_SRCS})
find_fluid_modules(${TARGET_NAME})
endif()
if (nv_library_DEPS)
add_dependencies(${TARGET_NAME} ${nv_library_DEPS})
......
set_property(GLOBAL PROPERTY FLUID_MODULES "")
# find all fluid modules is used for paddle fluid static library
function(find_fluid_modules TARGET_NAME)
get_filename_component(__target_path ${TARGET_NAME} ABSOLUTE)
string(FIND "${__target_path}" "fluid" pos)
if(pos GREATER 1)
get_property(fluid_modules GLOBAL PROPERTY FLUID_MODULES)
set(fluid_modules ${fluid_modules} ${TARGET_NAME})
set_property(GLOBAL PROPERTY FLUID_MODULES "${fluid_modules}")
endif()
endfunction(find_fluid_modules)
# make package for paddle fluid shared and static library
function(copy TARGET)
set(options "")
set(oneValueArgs "")
set(multiValueArgs SRCS DSTS DEPS)
cmake_parse_arguments(copy_lib "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
set(inference_lib_dist_dep ${TARGET} ${inference_lib_dist_dep} PARENT_SCOPE)
list(LENGTH copy_lib_SRCS copy_lib_SRCS_len)
list(LENGTH copy_lib_DSTS copy_lib_DSTS_len)
......@@ -42,13 +55,21 @@ copy(glog_lib
DSTS ${dst_dir} ${dst_dir}/lib
)
IF(NOT PROTOBUF_FOUND)
if(NOT PROTOBUF_FOUND)
set(dst_dir "${CMAKE_INSTALL_PREFIX}/third_party/install/protobuf")
copy(protobuf_lib
SRCS ${PROTOBUF_INCLUDE_DIR} ${PROTOBUF_LITE_LIBRARY}
SRCS ${PROTOBUF_INCLUDE_DIR} ${PROTOBUF_LIBRARY}
DSTS ${dst_dir} ${dst_dir}/lib
)
ENDIF(NOT PROTOBUF_FOUND)
endif()
if(NOT CBLAS_FOUND)
set(dst_dir "${CMAKE_INSTALL_PREFIX}/third_party/install/openblas")
copy(openblas_lib
SRCS ${CBLAS_INSTALL_DIR}/lib ${CBLAS_INSTALL_DIR}/include
DSTS ${dst_dir} ${dst_dir}
)
endif()
# paddle fluid module
set(src_dir "${PADDLE_SOURCE_DIR}/paddle/fluid")
......@@ -66,8 +87,8 @@ copy(memory_lib
)
set(module "inference")
copy(inference_lib DEPENDS paddle_fluid_shared
SRCS ${src_dir}/${module}/*.h ${PADDLE_BINARY_DIR}/paddle/fluid/inference/libpaddle_fluid.so
copy(inference_lib DEPS paddle_fluid_shared paddle_fluid
SRCS ${src_dir}/${module}/*.h ${PADDLE_BINARY_DIR}/paddle/fluid/inference/libpaddle_fluid.*
DSTS ${dst_dir}/${module} ${dst_dir}/${module}
)
......@@ -83,6 +104,4 @@ copy(string_lib
DSTS ${dst_dir}/${module} ${dst_dir}/${module}/tinyformat
)
add_custom_target(inference_lib_dist DEPENDS
inference_lib framework_lib memory_lib platform_lib string_lib
gflags_lib glog_lib protobuf_lib eigen3_lib)
add_custom_target(inference_lib_dist DEPENDS ${inference_lib_dist_dep})
## how to use timeline tool to do profile
1. Add `with profiler.profiler(...)` to the main training loop. After run, the code will generate a profile record file `/tmp/profile`. **Warning**: Please do not run too many batches when use profiler to record timeline information, for the profile record will grow with the batch number.
```python
with profiler.profiler('All', 'total', '/tmp/profile') as prof:
for pass_id in range(pass_num):
for batch_id, data in enumerate(train_reader()):
exe.run(fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[],
use_program_cache=True)
...
```
1. Run `python paddle/tools/timeline.py` to process `/tmp/profile`, it will generate another
file `/tmp/timeline` by default. You can change the path by cmd parameter, please take a look at
[timeline.py](https://github.com/PaddlePaddle/Paddle/blob/develop/tools/timeline.py) for details.
1. Open chrome and visit <chrome://tracing/>, use `load` button to load the generated `timeline` file.
![chrome tracing](./tracing.jpeg)
1. The resulting timeline should be like:
![chrome timeline](./timeline.jpeg)
......@@ -39,7 +39,7 @@ PaddlePaddle可以使用常用的Python包管理工具
"cpu_avx_mkl", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddle.tgz>`_"
"cpu_avx_openblas", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxOpenblas/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxOpenblas/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl>`_", "暂无"
"cpu_noavx_openblas", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl>`_", "暂无"
"cpu_noavx_openblas", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddle.tgz>`_"
"cuda7.5_cudnn5_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddle.tgz>`_"
"cuda8.0_cudnn5_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddle.tgz>`_"
"cuda8.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddle.tgz>`_"
......
......@@ -42,7 +42,7 @@ If the links below shows up the login form, just click "Log in as guest" to star
"cpu_avx_mkl", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddle.tgz>`_"
"cpu_avx_openblas", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxOpenblas/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxOpenblas/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl>`_", "Not Available"
"cpu_noavx_openblas", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl>`_", "Not Available"
"cpu_noavx_openblas", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_CpuNoavxOpenblas/.lastSuccessful/paddle.tgz>`_"
"cuda7.5_cudnn5_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddle.tgz>`_"
"cuda8.0_cudnn5_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddle.tgz>`_"
"cuda8.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddle.tgz>`_"
......
进阶使用
========
PaddlePaddle支持用户灵活地设置各种命令行参数,以实现对模型训练或预测流程的控制。使用方式请参考:
.. toctree::
:maxdepth: 1
cmd_parameter/index_cn.rst
PaddlePaddle支持在fabric集群、MPI集群、kubernetes集群上分布式训练任务,具体环境配置和使用说明请参考:
.. toctree::
:maxdepth: 1
cluster/index_cn.rst
PaddlePaddle提供了用于预测的C-API,关于C-API的使用,我们提供了如下指南:
.. toctree::
:maxdepth: 1
capi/index_cn.rst
PaddlePaddle支持多种灵活和高效的循环神经网络,具体配置使用方式请参考:
.. toctree::
:maxdepth: 1
rnn/index_cn.rst
关于如何使用内置的定时工具、nvprof 或 nvvp 来运行性能分析和调优,请参考:
.. toctree::
:maxdepth: 1
optimization/gpu_profiling_cn.rst
......@@ -53,6 +53,7 @@ struct CastDataType {
auto* context = static_cast<const platform::CUDADeviceContext*>(ctx_);
trans(*context, in_begin, in_end, out_begin,
CastDataTypeFunctor<InType, OutType>());
context->Wait();
#endif
} else {
PADDLE_THROW("Unsupported place!");
......
......@@ -50,13 +50,13 @@ TEST(DataTypeTransform, CPUTransform) {
TransDataType(kernel_fp32, kernel_fp64, in, &out);
double* out_data_double = out.data<double>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_double[i], static_cast<double>(i / 3));
EXPECT_EQ(out_data_double[i], static_cast<double>(i / 3));
}
TransDataType(kernel_fp32, kernel_int32, in, &out);
int* out_data_int = out.data<int>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_int[i], static_cast<int>(i / 3));
EXPECT_EQ(out_data_int[i], static_cast<int>(i / 3));
}
}
......@@ -76,31 +76,31 @@ TEST(DataTypeTransform, CPUTransform) {
TransDataType(kernel_fp16, kernel_fp32, in, &out);
float* out_data_float = out.data<float>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_float[i], static_cast<float>(ptr[i]));
EXPECT_EQ(out_data_float[i], static_cast<float>(ptr[i]));
}
TransDataType(kernel_fp16, kernel_fp64, in, &out);
double* out_data_double = out.data<double>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_double[i], static_cast<double>(ptr[i]));
EXPECT_EQ(out_data_double[i], static_cast<double>(ptr[i]));
}
TransDataType(kernel_fp16, kernel_int32, in, &out);
int* out_data_int = out.data<int>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_int[i], static_cast<int>(ptr[i]));
EXPECT_EQ(out_data_int[i], static_cast<int>(ptr[i]));
}
TransDataType(kernel_fp16, kernel_int64, in, &out);
int64_t* out_data_int64 = out.data<int64_t>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_int64[i], static_cast<int64_t>(ptr[i]));
EXPECT_EQ(out_data_int64[i], static_cast<int64_t>(ptr[i]));
}
TransDataType(kernel_fp16, kernel_bool, in, &out);
bool* out_data_bool = out.data<bool>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_bool[i], static_cast<bool>(ptr[i]));
EXPECT_EQ(out_data_bool[i], static_cast<bool>(ptr[i]));
}
// transform float to float16
......@@ -112,7 +112,7 @@ TEST(DataTypeTransform, CPUTransform) {
TransDataType(kernel_fp32, kernel_fp16, in, &out);
ptr = out.data<float16>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(ptr[i].x, static_cast<float16>(in_data_float[i]).x);
EXPECT_EQ(ptr[i].x, static_cast<float16>(in_data_float[i]).x);
}
// transform double to float16
......@@ -124,7 +124,7 @@ TEST(DataTypeTransform, CPUTransform) {
TransDataType(kernel_fp64, kernel_fp16, in, &out);
ptr = out.data<float16>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(ptr[i].x, static_cast<float16>(in_data_double[i]).x);
EXPECT_EQ(ptr[i].x, static_cast<float16>(in_data_double[i]).x);
}
// transform int to float16
......@@ -136,7 +136,7 @@ TEST(DataTypeTransform, CPUTransform) {
TransDataType(kernel_int32, kernel_fp16, in, &out);
ptr = out.data<float16>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(ptr[i].x, static_cast<float16>(in_data_int[i]).x);
EXPECT_EQ(ptr[i].x, static_cast<float16>(in_data_int[i]).x);
}
// transform int64 to float16
......@@ -148,7 +148,7 @@ TEST(DataTypeTransform, CPUTransform) {
TransDataType(kernel_int64, kernel_fp16, in, &out);
ptr = out.data<float16>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(ptr[i].x, static_cast<float16>(in_data_int64[i]).x);
EXPECT_EQ(ptr[i].x, static_cast<float16>(in_data_int64[i]).x);
}
// transform bool to float16
......@@ -160,7 +160,7 @@ TEST(DataTypeTransform, CPUTransform) {
TransDataType(kernel_bool, kernel_fp16, in, &out);
ptr = out.data<float16>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(ptr[i].x, static_cast<float16>(in_data_bool[i]).x);
EXPECT_EQ(ptr[i].x, static_cast<float16>(in_data_bool[i]).x);
}
}
}
......@@ -49,15 +49,16 @@ TEST(DataTypeTransform, GPUTransform) {
float arr[6] = {0, 1, 2, 3, 4, 5};
int data_number = sizeof(arr) / sizeof(arr[0]);
memcpy(in_ptr, arr, sizeof(arr));
TensorCopy(in, gpu_place, context, &in_gpu);
TensorCopy(in, gpu_place, context, &in_gpu);
context.Wait();
TransDataType(kernel_fp32, kernel_fp64, in_gpu, &out_gpu);
TensorCopy(out_gpu, cpu_place, context, &out);
context.Wait();
double* out_data_double = out.data<double>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_double[i], static_cast<double>(arr[i]));
EXPECT_EQ(out_data_double[i], static_cast<double>(arr[i]));
}
TransDataType(kernel_fp32, kernel_int32, in_gpu, &out_gpu);
......@@ -66,7 +67,7 @@ TEST(DataTypeTransform, GPUTransform) {
int* out_data_int = out.data<int>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_int[i], static_cast<int>(arr[i]));
EXPECT_EQ(out_data_int[i], static_cast<int>(arr[i]));
}
}
......@@ -83,6 +84,7 @@ TEST(DataTypeTransform, GPUTransform) {
int data_number = sizeof(arr) / sizeof(arr[0]);
memcpy(ptr, arr, sizeof(arr));
TensorCopy(in, gpu_place, context, &in_gpu);
context.Wait();
// transform from float16 to other data types
TransDataType(kernel_fp16, kernel_fp32, in_gpu, &out_gpu);
......@@ -91,7 +93,7 @@ TEST(DataTypeTransform, GPUTransform) {
float* out_data_float = out.data<float>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_float[i], static_cast<float>(ptr[i]));
EXPECT_EQ(out_data_float[i], static_cast<float>(ptr[i]));
}
TransDataType(kernel_fp16, kernel_fp64, in_gpu, &out_gpu);
......@@ -100,7 +102,7 @@ TEST(DataTypeTransform, GPUTransform) {
double* out_data_double = out.data<double>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_double[i], static_cast<double>(ptr[i]));
EXPECT_EQ(out_data_double[i], static_cast<double>(ptr[i]));
}
TransDataType(kernel_fp16, kernel_int32, in_gpu, &out_gpu);
......@@ -109,7 +111,7 @@ TEST(DataTypeTransform, GPUTransform) {
int* out_data_int = out.data<int>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_int[i], static_cast<int>(ptr[i]));
EXPECT_EQ(out_data_int[i], static_cast<int>(ptr[i]));
}
TransDataType(kernel_fp16, kernel_int64, in_gpu, &out_gpu);
......@@ -118,7 +120,7 @@ TEST(DataTypeTransform, GPUTransform) {
int64_t* out_data_int64 = out.data<int64_t>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_int64[i], static_cast<int64_t>(ptr[i]));
EXPECT_EQ(out_data_int64[i], static_cast<int64_t>(ptr[i]));
}
TransDataType(kernel_fp16, kernel_bool, in_gpu, &out_gpu);
......@@ -127,7 +129,7 @@ TEST(DataTypeTransform, GPUTransform) {
bool* out_data_bool = out.data<bool>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_bool[i], static_cast<bool>(ptr[i]));
EXPECT_EQ(out_data_bool[i], static_cast<bool>(ptr[i]));
}
// transform float to float16
......@@ -137,13 +139,14 @@ TEST(DataTypeTransform, GPUTransform) {
}
TensorCopy(in, gpu_place, context, &in_gpu);
context.Wait();
TransDataType(kernel_fp32, kernel_fp16, in_gpu, &out_gpu);
TensorCopy(out_gpu, cpu_place, context, &out);
context.Wait();
ptr = out.data<float16>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(ptr[i].x, static_cast<float16>(in_data_float[i]).x);
EXPECT_EQ(ptr[i].x, static_cast<float16>(in_data_float[i]).x);
}
// transform double to float16
......@@ -154,13 +157,14 @@ TEST(DataTypeTransform, GPUTransform) {
}
TensorCopy(in, gpu_place, context, &in_gpu);
context.Wait();
TransDataType(kernel_fp64, kernel_fp16, in_gpu, &out_gpu);
TensorCopy(out_gpu, cpu_place, context, &out);
context.Wait();
ptr = out.data<float16>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(ptr[i].x, static_cast<float16>(in_data_double[i]).x);
EXPECT_EQ(ptr[i].x, static_cast<float16>(in_data_double[i]).x);
}
// transform int to float16
......@@ -170,13 +174,14 @@ TEST(DataTypeTransform, GPUTransform) {
}
TensorCopy(in, gpu_place, context, &in_gpu);
context.Wait();
TransDataType(kernel_int32, kernel_fp16, in_gpu, &out_gpu);
TensorCopy(out_gpu, cpu_place, context, &out);
context.Wait();
ptr = out.data<float16>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(ptr[i].x, static_cast<float16>(in_data_int[i]).x);
EXPECT_EQ(ptr[i].x, static_cast<float16>(in_data_int[i]).x);
}
// transform int64 to float16
......@@ -187,13 +192,14 @@ TEST(DataTypeTransform, GPUTransform) {
}
TensorCopy(in, gpu_place, context, &in_gpu);
context.Wait();
TransDataType(kernel_int64, kernel_fp16, in_gpu, &out_gpu);
TensorCopy(out_gpu, cpu_place, context, &out);
context.Wait();
ptr = out.data<float16>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(ptr[i].x, static_cast<float16>(in_data_int64[i]).x);
EXPECT_EQ(ptr[i].x, static_cast<float16>(in_data_int64[i]).x);
}
// transform bool to float16
......@@ -203,13 +209,14 @@ TEST(DataTypeTransform, GPUTransform) {
}
TensorCopy(in, gpu_place, context, &in_gpu);
context.Wait();
TransDataType(kernel_bool, kernel_fp16, in_gpu, &out_gpu);
TensorCopy(out_gpu, cpu_place, context, &out);
context.Wait();
ptr = out.data<float16>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(ptr[i].x, static_cast<float16>(in_data_bool[i]).x);
EXPECT_EQ(ptr[i].x, static_cast<float16>(in_data_bool[i]).x);
}
}
}
......@@ -5,7 +5,8 @@ cc_library(paddle_fluid_api
DEPS ${FLUID_CORE_MODULES} ${GLOB_OP_LIB})
# Create static library
cc_library(paddle_fluid DEPS paddle_fluid_api ${FLUID_CORE_MODULES} ${GLOB_OP_LIB})
get_property(fluid_modules GLOBAL PROPERTY FLUID_MODULES)
cc_library(paddle_fluid DEPS ${fluid_modules})
# Create shared library
cc_library(paddle_fluid_shared SHARED
......
......@@ -22,14 +22,14 @@ namespace paddle {
namespace inference {
void ReadBinaryFile(const std::string& filename, std::string& contents) {
VLOG(3) << "loading model from " << filename;
std::ifstream inputfs(filename, std::ios::in | std::ios::binary);
inputfs.seekg(0, std::ios::end);
std::ifstream fin(filename, std::ios::in | std::ios::binary);
PADDLE_ENFORCE(static_cast<bool>(fin), "Cannot open file %s", filename);
fin.seekg(0, std::ios::end);
contents.clear();
contents.resize(inputfs.tellg());
inputfs.seekg(0, std::ios::beg);
inputfs.read(&contents[0], contents.size());
inputfs.close();
contents.resize(fin.tellg());
fin.seekg(0, std::ios::beg);
fin.read(&contents[0], contents.size());
fin.close();
}
bool IsPersistable(const framework::VarDesc* var) {
......@@ -97,6 +97,7 @@ std::unique_ptr<framework::ProgramDesc> Load(framework::Executor& executor,
const std::string& dirname) {
std::string model_filename = dirname + "/__model__";
std::string program_desc_str;
VLOG(3) << "loading model from " << model_filename;
ReadBinaryFile(model_filename, program_desc_str);
std::unique_ptr<framework::ProgramDesc> main_program(
......
......@@ -17,10 +17,13 @@ limitations under the License. */
#include "paddle/fluid/inference/tests/test_helper.h"
DEFINE_string(dirname, "", "Directory of the inference model.");
DEFINE_int32(batch_size, 1, "Batch size of input data");
DEFINE_int32(repeat, 1, "Running the inference program repeat times");
TEST(inference, image_classification) {
if (FLAGS_dirname.empty()) {
LOG(FATAL) << "Usage: ./example --dirname=path/to/your/model";
if (FLAGS_dirname.empty() || FLAGS_batch_size < 1 || FLAGS_repeat < 1) {
LOG(FATAL) << "Usage: ./example --dirname=path/to/your/model "
"--batch_size=1 --repeat=1";
}
LOG(INFO) << "FLAGS_dirname: " << FLAGS_dirname << std::endl;
......@@ -29,13 +32,11 @@ TEST(inference, image_classification) {
// 0. Call `paddle::framework::InitDevices()` initialize all the devices
// In unittests, this is done in paddle/testing/paddle_gtest_main.cc
int64_t batch_size = 1;
paddle::framework::LoDTensor input;
// Use normilized image pixels as input data,
// which should be in the range [0.0, 1.0].
SetupTensor<float>(input,
{batch_size, 3, 32, 32},
{FLAGS_batch_size, 3, 32, 32},
static_cast<float>(0),
static_cast<float>(1));
std::vector<paddle::framework::LoDTensor*> cpu_feeds;
......@@ -46,7 +47,9 @@ TEST(inference, image_classification) {
cpu_fetchs1.push_back(&output1);
// Run inference on CPU
TestInference<paddle::platform::CPUPlace>(dirname, cpu_feeds, cpu_fetchs1);
LOG(INFO) << "--- CPU Runs: ---";
TestInference<paddle::platform::CPUPlace>(
dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat);
LOG(INFO) << output1.dims();
#ifdef PADDLE_WITH_CUDA
......@@ -55,7 +58,9 @@ TEST(inference, image_classification) {
cpu_fetchs2.push_back(&output2);
// Run inference on CUDA GPU
TestInference<paddle::platform::CUDAPlace>(dirname, cpu_feeds, cpu_fetchs2);
LOG(INFO) << "--- GPU Runs: ---";
TestInference<paddle::platform::CUDAPlace>(
dirname, cpu_feeds, cpu_fetchs2, FLAGS_repeat);
LOG(INFO) << output2.dims();
CheckError<float>(output1, output2);
......
......@@ -17,10 +17,13 @@ limitations under the License. */
#include "paddle/fluid/inference/tests/test_helper.h"
DEFINE_string(dirname, "", "Directory of the inference model.");
DEFINE_int32(batch_size, 1, "Batch size of input data");
DEFINE_int32(repeat, 1, "Running the inference program repeat times");
TEST(inference, recognize_digits) {
if (FLAGS_dirname.empty()) {
LOG(FATAL) << "Usage: ./example --dirname=path/to/your/model";
if (FLAGS_dirname.empty() || FLAGS_batch_size < 1 || FLAGS_repeat < 1) {
LOG(FATAL) << "Usage: ./example --dirname=path/to/your/model "
"--batch_size=1 --repeat=1";
}
LOG(INFO) << "FLAGS_dirname: " << FLAGS_dirname << std::endl;
......@@ -29,77 +32,39 @@ TEST(inference, recognize_digits) {
// 0. Call `paddle::framework::InitDevices()` initialize all the devices
// In unittests, this is done in paddle/testing/paddle_gtest_main.cc
int64_t batch_size = 1;
paddle::framework::LoDTensor input;
// Use normilized image pixels as input data,
// which should be in the range [-1.0, 1.0].
SetupTensor<float>(input,
{batch_size, 1, 28, 28},
{FLAGS_batch_size, 1, 28, 28},
static_cast<float>(-1),
static_cast<float>(1));
std::vector<paddle::framework::LoDTensor*> cpu_feeds;
cpu_feeds.push_back(&input);
paddle::framework::LoDTensor output1;
std::vector<paddle::framework::LoDTensor*> cpu_fetchs1;
cpu_fetchs1.push_back(&output1);
for (auto is_combined : {false, true}) {
paddle::framework::LoDTensor output1;
std::vector<paddle::framework::LoDTensor*> cpu_fetchs1;
cpu_fetchs1.push_back(&output1);
// Run inference on CPU
TestInference<paddle::platform::CPUPlace>(dirname, cpu_feeds, cpu_fetchs1);
LOG(INFO) << output1.dims();
// Run inference on CPU
LOG(INFO) << "--- CPU Runs: is_combined=" << is_combined << " ---";
TestInference<paddle::platform::CPUPlace>(
dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat, is_combined);
LOG(INFO) << output1.dims();
#ifdef PADDLE_WITH_CUDA
paddle::framework::LoDTensor output2;
std::vector<paddle::framework::LoDTensor*> cpu_fetchs2;
cpu_fetchs2.push_back(&output2);
paddle::framework::LoDTensor output2;
std::vector<paddle::framework::LoDTensor*> cpu_fetchs2;
cpu_fetchs2.push_back(&output2);
// Run inference on CUDA GPU
TestInference<paddle::platform::CUDAPlace>(dirname, cpu_feeds, cpu_fetchs2);
LOG(INFO) << output2.dims();
// Run inference on CUDA GPU
LOG(INFO) << "--- GPU Runs: is_combined=" << is_combined << " ---";
TestInference<paddle::platform::CUDAPlace>(
dirname, cpu_feeds, cpu_fetchs2, FLAGS_repeat, is_combined);
LOG(INFO) << output2.dims();
CheckError<float>(output1, output2);
CheckError<float>(output1, output2);
#endif
}
TEST(inference, recognize_digits_combine) {
if (FLAGS_dirname.empty()) {
LOG(FATAL) << "Usage: ./example --dirname=path/to/your/model";
}
LOG(INFO) << "FLAGS_dirname: " << FLAGS_dirname << std::endl;
std::string dirname = FLAGS_dirname;
// 0. Call `paddle::framework::InitDevices()` initialize all the devices
// In unittests, this is done in paddle/testing/paddle_gtest_main.cc
paddle::framework::LoDTensor input;
// Use normilized image pixels as input data,
// which should be in the range [-1.0, 1.0].
SetupTensor<float>(
input, {1, 1, 28, 28}, static_cast<float>(-1), static_cast<float>(1));
std::vector<paddle::framework::LoDTensor*> cpu_feeds;
cpu_feeds.push_back(&input);
paddle::framework::LoDTensor output1;
std::vector<paddle::framework::LoDTensor*> cpu_fetchs1;
cpu_fetchs1.push_back(&output1);
// Run inference on CPU
TestInference<paddle::platform::CPUPlace, true>(
dirname, cpu_feeds, cpu_fetchs1);
LOG(INFO) << output1.dims();
#ifdef PADDLE_WITH_CUDA
paddle::framework::LoDTensor output2;
std::vector<paddle::framework::LoDTensor*> cpu_fetchs2;
cpu_fetchs2.push_back(&output2);
// Run inference on CUDA GPU
TestInference<paddle::platform::CUDAPlace, true>(
dirname, cpu_feeds, cpu_fetchs2);
LOG(INFO) << output2.dims();
CheckError<float>(output1, output2);
#endif
}
......@@ -15,6 +15,7 @@ limitations under the License. */
#include <time.h>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/inference/io.h"
#include "paddle/fluid/platform/profiler.h"
template <typename T>
void SetupTensor(paddle::framework::LoDTensor& input,
......@@ -87,31 +88,60 @@ void CheckError(paddle::framework::LoDTensor& output1,
EXPECT_EQ(count, 0U) << "There are " << count << " different elements.";
}
template <typename Place, bool IsCombined = false>
template <typename Place>
void TestInference(const std::string& dirname,
const std::vector<paddle::framework::LoDTensor*>& cpu_feeds,
std::vector<paddle::framework::LoDTensor*>& cpu_fetchs) {
std::vector<paddle::framework::LoDTensor*>& cpu_fetchs,
const int repeat = 1,
const bool is_combined = false) {
// 1. Define place, executor, scope
auto place = Place();
auto executor = paddle::framework::Executor(place);
auto* scope = new paddle::framework::Scope();
// Profile the performance
paddle::platform::ProfilerState state;
if (paddle::platform::is_cpu_place(place)) {
state = paddle::platform::ProfilerState::kCPU;
} else {
#ifdef PADDLE_WITH_CUDA
state = paddle::platform::ProfilerState::kCUDA;
// The default device_id of paddle::platform::CUDAPlace is 0.
// Users can get the device_id using:
// int device_id = place.GetDeviceId();
paddle::platform::SetDeviceId(0);
#else
PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
#endif
}
// Enable the profiler
paddle::platform::EnableProfiler(state);
// 2. Initialize the inference_program and load parameters
std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
if (IsCombined) {
// All parameters are saved in a single file.
// Hard-coding the file names of program and parameters in unittest.
// The file names should be consistent with that used in Python API
// `fluid.io.save_inference_model`.
std::string prog_filename = "__model_combined__";
std::string param_filename = "__params_combined__";
inference_program = paddle::inference::Load(executor,
*scope,
dirname + "/" + prog_filename,
dirname + "/" + param_filename);
} else {
// Parameters are saved in separate files sited in the specified `dirname`.
inference_program = paddle::inference::Load(executor, *scope, dirname);
{
paddle::platform::RecordEvent record_event(
"init_program",
paddle::platform::DeviceContextPool::Instance().Get(place));
if (is_combined) {
// All parameters are saved in a single file.
// Hard-coding the file names of program and parameters in unittest.
// The file names should be consistent with that used in Python API
// `fluid.io.save_inference_model`.
std::string prog_filename = "__model_combined__";
std::string param_filename = "__params_combined__";
inference_program =
paddle::inference::Load(executor,
*scope,
dirname + "/" + prog_filename,
dirname + "/" + param_filename);
} else {
// Parameters are saved in separate files sited in the specified
// `dirname`.
inference_program = paddle::inference::Load(executor, *scope, dirname);
}
}
// 3. Get the feed_target_names and fetch_target_names
......@@ -134,7 +164,21 @@ void TestInference(const std::string& dirname,
}
// 6. Run the inference program
executor.Run(*inference_program, scope, feed_targets, fetch_targets);
{
// Run repeat times to profile the performance
for (int i = 0; i < repeat; ++i) {
paddle::platform::RecordEvent record_event(
"run_inference",
paddle::platform::DeviceContextPool::Instance().Get(place));
executor.Run(*inference_program, scope, feed_targets, fetch_targets);
}
}
// Disable the profiler and print the timing information
paddle::platform::DisableProfiler(paddle::platform::EventSortingKey::kDefault,
"profiler.txt");
paddle::platform::ResetProfiler();
delete scope;
}
file(GLOB GENERAL_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "*_op.cc")
string(REPLACE "_mkldnn" "" GENERAL_OPS "${GENERAL_OPS}")
string(REPLACE ".cc" "" GENERAL_OPS "${GENERAL_OPS}")
list(REMOVE_DUPLICATES GENERAL_OPS)
set(DEPS_OPS "")
set(pybind_file ${PADDLE_SOURCE_DIR}/paddle/fluid/pybind/pybind.h)
file(WRITE ${pybind_file} "// Generated by the paddle/operator/CMakeLists.txt. DO NOT EDIT!\n\n")
......@@ -13,6 +15,8 @@ function(op_library TARGET)
set(cu_cc_srcs)
set(cudnn_cu_cc_srcs)
set(CUDNN_FILE)
set(mkldnn_cc_srcs)
set(MKLDNN_FILE)
set(op_common_deps operator op_registry math_function)
set(options "")
set(oneValueArgs "")
......@@ -36,12 +40,20 @@ function(op_library TARGET)
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${CUDNN_FILE}.cu.cc)
list(APPEND cudnn_cu_cc_srcs ${CUDNN_FILE}.cu.cc)
endif()
if(WITH_MKLDNN)
string(REPLACE "_op" "_mkldnn_op" MKLDNN_FILE "${TARGET}")
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${MKLDNN_FILE}.cc)
list(APPEND mkldnn_cc_srcs ${MKLDNN_FILE}.cc)
endif()
endif()
else()
foreach(src ${op_library_SRCS})
if (${src} MATCHES ".*\\.cu$")
list(APPEND cu_srcs ${src})
elseif(${src} MATCHES ".*_cudnn_op.cu.cc$")
list(APPEND cudnn_cu_cc_srcs ${src})
elseif(WITH_MKLDNN AND ${src} MATCHES ".*_mkldnn_op.cc$")
list(APPEND mkldnn_cc_srcs ${src})
elseif(${src} MATCHES ".*\\.cu.cc$")
list(APPEND cu_cc_srcs ${src})
elseif(${src} MATCHES ".*\\.cc$")
......@@ -62,11 +74,11 @@ function(op_library TARGET)
set(DEPS_OPS ${TARGET} ${DEPS_OPS} PARENT_SCOPE)
endif()
if (WITH_GPU)
nv_library(${TARGET} SRCS ${cc_srcs} ${cu_cc_srcs} ${cudnn_cu_cc_srcs} ${cu_srcs} DEPS ${op_library_DEPS}
nv_library(${TARGET} SRCS ${cc_srcs} ${cu_cc_srcs} ${cudnn_cu_cc_srcs} ${mkldnn_cc_srcs} ${cu_srcs} DEPS ${op_library_DEPS}
${op_common_deps})
else()
cc_library(${TARGET} SRCS ${cc_srcs} DEPS ${op_library_DEPS}
${op_common_deps})
cc_library(${TARGET} SRCS ${cc_srcs} ${mkldnn_cc_srcs} DEPS ${op_library_DEPS}
${op_common_deps})
endif()
# Define operators that don't need pybind here.
......@@ -101,7 +113,8 @@ function(op_library TARGET)
# pybind USE_CPU_ONLY_OP
list(LENGTH cu_srcs cu_srcs_len)
list(LENGTH cu_cc_srcs cu_cc_srcs_len)
if (${pybind_flag} EQUAL 0 AND ${cu_srcs_len} EQUAL 0 AND ${cu_cc_srcs_len} EQUAL 0)
list(LENGTH mkldnn_cc_srcs mkldnn_cc_srcs_len)
if (${pybind_flag} EQUAL 0 AND ${mkldnn_cc_srcs_len} EQUAL 0 AND ${cu_srcs_len} EQUAL 0 AND ${cu_cc_srcs_len} EQUAL 0)
file(APPEND ${pybind_file} "USE_CPU_ONLY_OP(${TARGET});\n")
set(pybind_flag 1)
endif()
......@@ -112,6 +125,11 @@ function(op_library TARGET)
file(APPEND ${pybind_file} "USE_OP_DEVICE_KERNEL(${TARGET}, CUDNN);\n")
endif()
# pybind USE_OP_DEVICE_KERNEL for MKLDNN
if (WITH_MKLDNN AND ${mkldnn_cc_srcs_len} GREATER 0)
file(APPEND ${pybind_file} "USE_OP_DEVICE_KERNEL(${TARGET}, MKLDNN);\n")
endif()
# pybind USE_OP
if (${pybind_flag} EQUAL 0)
file(APPEND ${pybind_file} "USE_OP(${TARGET});\n")
......@@ -172,17 +190,18 @@ op_library(cos_sim_op DEPS cos_sim_functor)
op_library(parallel_do_op DEPS executor)
if (WITH_GPU)
op_library(conv_op DEPS vol2col depthwise_conv)
op_library(conv_op DEPS vol2col depthwise_conv im2col)
else()
op_library(conv_op DEPS vol2col)
op_library(conv_op DEPS vol2col im2col)
endif()
op_library(conv_transpose_op DEPS vol2col)
op_library(conv_transpose_op DEPS vol2col im2col)
# FIXME(typhoonzero): save/load depends lodtensor serialization functions
op_library(save_op DEPS lod_tensor)
op_library(load_op DEPS lod_tensor)
op_library(save_combine_op DEPS lod_tensor)
op_library(load_combine_op DEPS lod_tensor)
op_library(concat_op DEPS concat)
list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS})
foreach(src ${GENERAL_OPS})
......
......@@ -100,7 +100,8 @@ class ConcatOpGrad : public framework::OperatorWithKernel {
namespace ops = paddle::operators;
REGISTER_OP_EX(concat, ops::ConcatOp, ops::ConcatOpMaker, concat_grad,
ops::ConcatOpGrad, false)
REGISTER_OP_CPU_KERNEL(concat,
ops::ConcatKernel<paddle::platform::CPUPlace, float>)
REGISTER_OP_CPU_KERNEL(concat_grad,
ops::ConcatGradKernel<paddle::platform::CPUPlace, float>)
REGISTER_OP_CPU_KERNEL(
concat, ops::ConcatKernel<paddle::platform::CPUDeviceContext, float>)
REGISTER_OP_CPU_KERNEL(
concat_grad,
ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, float>)
......@@ -17,6 +17,7 @@ limitations under the License. */
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/concat.h"
#include "paddle/fluid/operators/strided_memcpy.h"
namespace paddle {
......@@ -27,54 +28,30 @@ class ConcatKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto ins = ctx.MultiInput<framework::Tensor>("X");
auto* out = ctx.Output<framework::Tensor>("Out");
framework::Tensor* out = ctx.Output<framework::Tensor>("Out");
int64_t axis = static_cast<int64_t>(ctx.Attr<int>("axis"));
auto place = ctx.GetPlace();
out->mutable_data<T>(place);
auto out_stride = framework::stride_numel(out->dims());
size_t output_offset = 0;
// If axis >=1, copy to out immediately need to call many times
// of cuda memcpy. Copy the input to cpu and do the stride copy,
// then copy to gpu output.
if (platform::is_gpu_place(place) && axis >= 1) {
platform::CPUPlace copy_place;
auto& cpu_ctx = *platform::DeviceContextPool::Instance().Get(copy_place);
framework::Tensor cpu_out;
cpu_out.Resize(out->dims());
cpu_out.mutable_data<T>(copy_place);
auto& dev_ctx = ctx.device_context();
std::vector<std::unique_ptr<framework::Tensor>> cpu_ins;
for (auto* in : ins) {
std::unique_ptr<framework::Tensor> cpu_in(new framework::Tensor);
framework::TensorCopy(*in, copy_place, dev_ctx, cpu_in.get());
cpu_ins.emplace_back(std::move(cpu_in));
}
// TODO(dzhwinter): overlap copy and compute stream
// https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/
dev_ctx.Wait();
for (auto& in : cpu_ins) {
auto& cpu_in = *in.get();
auto in_stride = framework::stride_numel(cpu_in.dims());
StridedNumelCopyWithAxis<T>(
cpu_ctx, axis, cpu_out.data<T>() + output_offset, out_stride,
cpu_in.data<T>(), in_stride, in_stride[axis]);
output_offset += in_stride[axis];
}
framework::TensorCopy(cpu_out, place, dev_ctx, out);
} else {
// Sometimes direct copies will be faster, this maybe need deeply analysis.
if (axis == 0 && ins.size() < 10) {
size_t output_offset = 0;
for (auto* in : ins) {
auto in_stride = framework::stride_numel(in->dims());
auto out_stride = framework::stride_numel(out->dims());
StridedNumelCopyWithAxis<T>(ctx.device_context(), axis,
out->data<T>() + output_offset, out_stride,
in->data<T>(), in_stride, in_stride[axis]);
output_offset += in_stride[axis];
}
} else {
std::vector<framework::Tensor> inputs(ins.size());
for (size_t j = 0; j < ins.size(); ++j) {
inputs[j] = *ins[j];
}
auto& dev_ctx = ctx.template device_context<DeviceContext>();
paddle::operators::math::ConcatFunctor<DeviceContext, T> concat_functor;
concat_functor(dev_ctx, inputs, static_cast<int>(axis), out);
}
}
};
......@@ -86,16 +63,31 @@ class ConcatGradKernel : public framework::OpKernel<T> {
auto* in = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto outs = ctx.MultiOutput<framework::Tensor>(framework::GradVarName("X"));
int64_t axis = static_cast<int64_t>(ctx.Attr<int>("axis"));
size_t input_offset = 0;
auto in_stride = framework::stride_numel(in->dims());
for (auto& out : outs) {
out->mutable_data<T>(ctx.GetPlace());
auto out_stride = framework::stride_numel(out->dims());
StridedNumelCopyWithAxis<T>(ctx.device_context(), axis, out->data<T>(),
out_stride, in->data<T>() + input_offset,
in_stride, out_stride[axis]);
input_offset += out_stride[axis];
// Sometimes direct copies will be faster, this maybe need deeply analysis.
if (axis == 0 && outs.size() < 10) {
size_t input_offset = 0;
auto in_stride = framework::stride_numel(in->dims());
for (auto& out : outs) {
out->mutable_data<T>(ctx.GetPlace());
auto out_stride = framework::stride_numel(out->dims());
StridedNumelCopyWithAxis<T>(ctx.device_context(), axis, out->data<T>(),
out_stride, in->data<T>() + input_offset,
in_stride, out_stride[axis]);
input_offset += out_stride[axis];
}
} else {
std::vector<framework::Tensor> outputs(outs.size());
for (size_t j = 0; j < outs.size(); ++j) {
outs[j]->mutable_data<T>(ctx.GetPlace());
outputs[j] = *outs[j];
}
auto& dev_ctx = ctx.template device_context<DeviceContext>();
paddle::operators::math::ConcatGradFunctor<DeviceContext, T>
concat_grad_functor;
concat_grad_functor(dev_ctx, *in, static_cast<int>(axis), outputs);
}
}
};
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "mkldnn.hpp"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
namespace paddle {
namespace operators {
using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNMemDesc;
using mkldnn::memory; // Note: paddle has also "memory" namespace
using mkldnn::primitive;
using mkldnn::convolution_forward;
using mkldnn::convolution_backward_weights;
using mkldnn::convolution_backward_data;
using mkldnn::convolution_direct;
using mkldnn::prop_kind;
using mkldnn::padding_kind;
using mkldnn::stream;
namespace {
std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
const memory::desc& dst, const std::vector<int>& strides,
const std::vector<int>& paddings,
const mkldnn::engine& engine);
convolution_backward_weights::primitive_desc ConvBwdWeightsPrimitiveDesc(
const memory::desc& src, const memory::desc& diff_weights,
const memory::desc& diff_dst, const std::vector<int>& strides,
const std::vector<int>& paddings,
const convolution_forward::primitive_desc& conv_pd,
const mkldnn::engine& engine);
convolution_backward_data::primitive_desc ConvBwdDataPrimitiveDesc(
const memory::desc& diff_src, const memory::desc& weights,
const memory::desc& diff_dst, const std::vector<int>& strides,
const std::vector<int>& paddings,
const convolution_forward::primitive_desc& conv_pd,
const mkldnn::engine& engine);
} // anonymous namespace
template <typename T>
class ConvOpMkldnnKernel : public paddle::framework::OpKernel<T> {
public:
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace.");
auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
const auto& mkldnn_engine = dev_ctx.GetEngine();
auto* input = ctx.Input<Tensor>("Input");
auto* filter = ctx.Input<Tensor>("Filter");
auto* output = ctx.Output<Tensor>("Output");
// Get an unique name from "argument" name of "Output" variable
// This name will be used as key when saving info into device context
const std::string key = ctx.op().Output("Output");
const std::string key_conv_pd = key + "@conv_pd";
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
int groups = ctx.Attr<int>("groups");
// TODO(pzelazko-intel) add support for group convolution and dilation
PADDLE_ENFORCE(groups == 1, "group convolution is not implemented yet");
PADDLE_ENFORCE(
dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
"dilation in convolution is not implemented yet");
const T* input_data = input->data<T>();
const T* filter_data = filter->data<T>();
// allocate memory for output
T* output_data = output->mutable_data<T>(ctx.GetPlace());
PADDLE_ENFORCE(input->dims().size() == 4,
"Input must be with 4 dimensions, i.e. NCHW");
PADDLE_ENFORCE(filter->dims().size() == 4,
"Filter must be with 4 dimensions, i.e. OIHW");
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
std::vector<int> weights_tz =
paddle::framework::vectorize2int(filter->dims());
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
// TODO(pzelazko-intel): support more formats
// memory descriptors for convolution src/weight/dst
auto conv_src_md =
MKLDNNMemDesc(src_tz, memory::data_type::f32, memory::format::nchw);
auto conv_weights_md =
MKLDNNMemDesc(weights_tz, memory::data_type::f32, memory::format::oihw);
auto conv_dst_md =
MKLDNNMemDesc(dst_tz, memory::data_type::f32, memory::format::nchw);
// create memory primitives
auto conv_src_memory =
memory({conv_src_md, mkldnn_engine}, (void*)input_data);
auto conv_weights_memory =
memory({conv_weights_md, mkldnn_engine}, (void*)filter_data);
auto conv_dst_memory = memory({conv_dst_md, mkldnn_engine}, output_data);
std::unique_ptr<convolution_forward::primitive_desc> conv_pd =
ConvFwdPrimitiveDesc(conv_src_md, conv_weights_md, conv_dst_md, strides,
paddings, mkldnn_engine);
// save p_conv_pd into dev_ctx to be referred in backward path
auto p_conv_pd = conv_pd.get();
std::shared_ptr<void> conv_pd_value = std::move(conv_pd);
dev_ctx.SetBlob(key_conv_pd, conv_pd_value);
// create convolution op primitive
auto conv_prim = convolution_forward(*p_conv_pd, conv_src_memory,
conv_weights_memory, conv_dst_memory);
// push op to stream and wait MKLDNN until it's executed
std::vector<primitive> pipeline{conv_prim};
stream(stream::kind::eager).submit(pipeline).wait();
}
};
template <typename T>
class ConvGradOpMkldnnKernel : public paddle::framework::OpKernel<T> {
public:
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace.");
auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
const auto& mkldnn_engine = dev_ctx.GetEngine();
const Tensor* input = ctx.Input<Tensor>("Input");
const Tensor* filter = ctx.Input<Tensor>("Filter");
const Tensor* output = ctx.Input<Tensor>("Output");
const Tensor* output_grad =
ctx.Input<Tensor>(framework::GradVarName("Output"));
Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));
if (!input_grad && !filter_grad) return;
// Get an unique name from "argument" name of "Output" variable
// This name will be used as key when saving info into device context
const std::string key = ctx.op().Input("Output");
const std::string key_conv_pd = key + "@conv_pd";
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
const T* input_data = input->data<T>();
const T* filter_data = filter->data<T>();
const T* output_grad_data = output_grad->data<T>();
T* input_grad_data = nullptr;
T* filter_grad_data = nullptr;
// allocate memory for gradient of input/filter
if (input_grad) {
input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
}
if (filter_grad) {
filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
}
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
std::vector<int> weights_tz =
paddle::framework::vectorize2int(filter->dims());
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
// TODO(pzelazko-intel): support more formats
auto conv_src_md =
MKLDNNMemDesc(src_tz, memory::data_type::f32, memory::format::nchw);
auto conv_diff_src_md =
MKLDNNMemDesc(src_tz, memory::data_type::f32, memory::format::nchw);
auto conv_weights_md =
MKLDNNMemDesc(weights_tz, memory::data_type::f32, memory::format::oihw);
auto conv_diff_weights_md =
MKLDNNMemDesc(weights_tz, memory::data_type::f32, memory::format::oihw);
auto conv_diff_dst_md =
MKLDNNMemDesc(dst_tz, memory::data_type::f32, memory::format::nchw);
// create memory
auto conv_diff_dst_memory =
memory({conv_diff_weights_md, mkldnn_engine}, (void*)output_grad_data);
// Retrieve conv_pd from device context
std::shared_ptr<void> conv_pd;
convolution_forward::primitive_desc* p_conv_pd;
conv_pd = dev_ctx.GetBlob(key_conv_pd);
PADDLE_ENFORCE(conv_pd != nullptr,
"Fail to find conv_pd in device context");
p_conv_pd =
static_cast<convolution_forward::primitive_desc*>(conv_pd.get());
// create backward conv primitive for weights
if (filter_grad) {
// create primitive descriptor
convolution_backward_weights::primitive_desc conv_bwd_weights_pd =
ConvBwdWeightsPrimitiveDesc(conv_src_md, conv_diff_weights_md,
conv_diff_dst_md, strides, paddings,
*p_conv_pd, mkldnn_engine);
// create memory
auto conv_diff_weights_memory = memory(
{conv_diff_weights_md, mkldnn_engine}, (void*)filter_grad_data);
auto conv_src_memory =
memory({conv_src_md, mkldnn_engine}, (void*)input_data);
// create backward conv primitive for weights
auto conv_bwd_weights_prim = convolution_backward_weights(
conv_bwd_weights_pd, conv_src_memory, conv_diff_dst_memory,
conv_diff_weights_memory);
// push primitive and execute it
std::vector<primitive> pipeline{conv_bwd_weights_prim};
stream(stream::kind::eager).submit(pipeline).wait();
}
if (input_grad) {
// create primitive descriptor
convolution_backward_data::primitive_desc conv_bwd_data_pd =
ConvBwdDataPrimitiveDesc(conv_diff_src_md, conv_weights_md,
conv_diff_dst_md, strides, paddings,
*p_conv_pd, mkldnn_engine);
// create memory
auto conv_diff_src_memory =
memory({conv_diff_src_md, mkldnn_engine}, (void*)input_grad_data);
auto conv_weights_memory =
memory({conv_weights_md, mkldnn_engine}, (void*)filter_data);
// create backward conv primitive for data
auto conv_bwd_data_prim =
convolution_backward_data(conv_bwd_data_pd, conv_diff_dst_memory,
conv_weights_memory, conv_diff_src_memory);
// push primitive and execute it
std::vector<primitive> pipeline{conv_bwd_data_prim};
stream(stream::kind::eager).submit(pipeline).wait();
}
} // Compute()
};
namespace {
std::unique_ptr<convolution_forward::primitive_desc> ConvFwdPrimitiveDesc(
const memory::desc& src, const memory::desc& weights,
const memory::desc& dst, const std::vector<int>& strides,
const std::vector<int>& paddings, const mkldnn::engine& engine) {
mkldnn::memory::dims stride_dims = {strides[0], strides[1]};
mkldnn::memory::dims padding_dims = {paddings[0], paddings[1]};
auto conv_desc = mkldnn::convolution_forward::desc(
mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights, dst,
stride_dims, padding_dims, padding_dims, mkldnn::padding_kind::zero);
auto p_conv_pd = new convolution_forward::primitive_desc(conv_desc, engine);
return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
p_conv_pd);
}
convolution_backward_weights::primitive_desc ConvBwdWeightsPrimitiveDesc(
const memory::desc& src, const memory::desc& diff_weights,
const memory::desc& diff_dst, const std::vector<int>& strides,
const std::vector<int>& paddings,
const convolution_forward::primitive_desc& conv_pd,
const mkldnn::engine& engine) {
auto conv_bwd_weights_desc = convolution_backward_weights::desc(
convolution_direct, src, diff_weights, diff_dst, strides, paddings,
paddings, padding_kind::zero);
return convolution_backward_weights::primitive_desc(conv_bwd_weights_desc,
engine, conv_pd);
}
convolution_backward_data::primitive_desc ConvBwdDataPrimitiveDesc(
const memory::desc& diff_src, const memory::desc& weights,
const memory::desc& diff_dst, const std::vector<int>& strides,
const std::vector<int>& paddings,
const convolution_forward::primitive_desc& conv_pd,
const mkldnn::engine& engine) {
auto conv_bwd_data_desc = convolution_backward_data::desc(
convolution_direct, diff_src, weights, diff_dst, strides, paddings,
paddings, padding_kind::zero);
return convolution_backward_data::primitive_desc(conv_bwd_data_desc, engine,
conv_pd);
}
} // anonymous namespace
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_KERNEL(conv2d, MKLDNN, ::paddle::platform::CPUPlace,
ops::ConvOpMkldnnKernel<float>);
REGISTER_OP_KERNEL(conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
ops::ConvGradOpMkldnnKernel<float>);
......@@ -13,6 +13,12 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/conv_op.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace paddle {
namespace operators {
......@@ -64,22 +70,21 @@ void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
framework::OpKernelType ConvOp::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
bool use_cudnn = ctx.Attr<bool>("use_cudnn");
use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
framework::LibraryType library_{framework::LibraryType::kPlain};
#ifdef PADDLE_WITH_CUDA
if (platform::is_gpu_place(ctx.GetPlace())) {
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
if (platform::CanCUDNNBeUsed(ctx)) {
library_ = framework::LibraryType::kCUDNN;
}
#endif
framework::LibraryType library_;
if (use_cudnn) {
library_ = framework::LibraryType::kCUDNN;
} else {
library_ = framework::LibraryType::kPlain;
#ifdef PADDLE_WITH_MKLDNN
if (library_ == framework::LibraryType::kPlain &&
platform::CanMKLDNNBeUsed(ctx)) {
library_ = framework::LibraryType::kMKLDNN;
}
#endif
std::string data_format = ctx.Attr<std::string>("data_format");
// TODO(pzelazko-intel): enable MKLDNN layout when it's ready
framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
......@@ -131,6 +136,9 @@ Conv2DOpMaker::Conv2DOpMaker(OpProto* proto, OpAttrChecker* op_checker)
"use_cudnn",
"(bool, default false) Only used in cudnn kernel, need install cudnn")
.SetDefault(false);
AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddAttr<std::string>(
"data_format",
"(string, default NCHW) Only used in "
......@@ -224,6 +232,9 @@ Conv3DOpMaker::Conv3DOpMaker(OpProto* proto, OpAttrChecker* op_checker)
"use_cudnn",
"(bool, default false) Only used in cudnn kernel, need install cudnn")
.SetDefault(false);
AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddAttr<std::string>(
"data_format",
"(string, default NCHW) Only used in "
......@@ -284,23 +295,21 @@ void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
bool use_cudnn = ctx.Attr<bool>("use_cudnn");
use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
framework::LibraryType library_{framework::LibraryType::kPlain};
#ifdef PADDLE_WITH_CUDA
if (platform::is_gpu_place(ctx.GetPlace())) {
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
if (platform::CanCUDNNBeUsed(ctx)) {
library_ = framework::LibraryType::kCUDNN;
}
#endif
framework::LibraryType library_;
if (use_cudnn) {
library_ = framework::LibraryType::kCUDNN;
} else {
library_ = framework::LibraryType::kPlain;
#ifdef PADDLE_WITH_MKLDNN
if (library_ == framework::LibraryType::kPlain &&
platform::CanMKLDNNBeUsed(ctx)) {
library_ = framework::LibraryType::kMKLDNN;
}
#endif
std::string data_format = ctx.Attr<std::string>("data_format");
// TODO(pzelazko-intel): enable MKLDNN layout when it's ready
framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
......
......@@ -71,7 +71,7 @@ class DetectionMAPOp : public framework::OperatorWithKernel {
return framework::OpKernelType(
framework::ToDataType(
ctx.Input<framework::Tensor>("DetectRes")->type()),
ctx.device_context());
platform::CPUPlace());
}
};
......
......@@ -41,77 +41,14 @@ class ElementwiseDivKernel : public framework::OpKernel<T> {
};
template <typename T>
struct ElementwiseDivGradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto z_e = framework::EigenVector<T>::Flatten(*z);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = dz_e / y_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = -1.0 * dz_e * z_e / y_e;
}
}
};
template <typename T>
struct ElementwiseDivBroadCastGradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ, typename Pre, typename N>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) {
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
.broadcast(Eigen::DSizes<int, 2>(pre, 1))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = dz_e / y_e_bcast;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = (-1.0 * (x_e * dz_e) / (y_e_bcast * y_e_bcast))
.reshape(Eigen::DSizes<int, 2>(pre, n))
.sum(Eigen::array<int, 1>{{0}});
}
}
struct DivGradDX {
HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout / y; }
};
template <typename T>
struct ElementwiseDivBroadCast2GradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ, typename Pre, typename N, typename Post>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n,
Post post) {
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
.broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = dz_e / y_e_bcast;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = (-1.0 * (x_e * dz_e) / (y_e_bcast * y_e_bcast))
.reshape(Eigen::DSizes<int, 3>(pre, n, post))
.sum(Eigen::array<int, 2>{{0, 2}});
}
struct DivGradDY {
HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
return -dout * x / (y * y);
}
};
......@@ -128,10 +65,8 @@ class ElementwiseDivGradKernel : public framework::OpKernel<T> {
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
int axis = ctx.Attr<int>("axis");
ElementwiseGradCompute<DeviceContext, T, ElementwiseDivGradFunctor<T>,
ElementwiseDivBroadCastGradFunctor<T>,
ElementwiseDivBroadCast2GradFunctor<T>>(
ctx, x, y, out, dout, axis, dx, dy);
ElemwiseGradCompute<DeviceContext, T, DivGradDX<T>, DivGradDY<T>>(
ctx, *x, *y, *out, *dout, axis, dx, dy, DivGradDX<T>(), DivGradDY<T>());
}
};
......
......@@ -41,76 +41,16 @@ class ElementwiseMaxKernel : public framework::OpKernel<T> {
};
template <typename T>
struct ElementwiseMaxGradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = (x_e > y_e).template cast<T>() * dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = (x_e <= y_e).template cast<T>() * dz_e;
}
struct MaxGradDx {
HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
return dout * (x > y);
}
};
template <typename T>
struct ElementwiseMaxBroadCastGradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ, typename Pre, typename N>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) {
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
.broadcast(Eigen::DSizes<int, 2>(pre, 1))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = (x_e > y_e_bcast).template cast<T>() * dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = ((x_e <= y_e_bcast).template cast<T>() * dz_e)
.reshape(Eigen::DSizes<int, 2>(pre, n))
.sum(Eigen::array<int, 1>{{0}});
}
}
};
template <typename T>
struct ElementwiseMaxBroadCast2GradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ, typename Pre, typename N, typename Post>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n,
Post post) {
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
.broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = (x_e > y_e_bcast).template cast<T>() * dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = ((x_e <= y_e_bcast).template cast<T>() * dz_e)
.reshape(Eigen::DSizes<int, 3>(pre, n, post))
.sum(Eigen::array<int, 2>{{0, 2}});
}
struct MaxGradDy {
HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
return dout * (x <= y);
}
};
......@@ -127,12 +67,9 @@ class ElementwiseMaxGradKernel : public framework::OpKernel<T> {
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
int axis = ctx.Attr<int>("axis");
ElementwiseGradCompute<DeviceContext, T, ElementwiseMaxGradFunctor<T>,
ElementwiseMaxBroadCastGradFunctor<T>,
ElementwiseMaxBroadCast2GradFunctor<T>>(
ctx, x, y, out, dout, axis, dx, dy);
ElemwiseGradCompute<DeviceContext, T, MaxGradDx<T>, MaxGradDy<T>>(
ctx, *x, *y, *out, *dout, axis, dx, dy, MaxGradDx<T>(), MaxGradDy<T>());
}
};
} // namespace operators
} // namespace paddle
......@@ -41,76 +41,16 @@ class ElementwiseMinKernel : public framework::OpKernel<T> {
};
template <typename T>
struct ElementwiseMinGradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = (x_e < y_e).template cast<T>() * dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = (x_e >= y_e).template cast<T>() * dz_e;
}
struct MinGradDx {
HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
return dout * (x < y);
}
};
template <typename T>
struct ElementwiseMinBroadCastGradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ, typename Pre, typename N>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) {
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
.broadcast(Eigen::DSizes<int, 2>(pre, 1))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = (x_e < y_e_bcast).template cast<T>() * dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = ((x_e >= y_e_bcast).template cast<T>() * dz_e)
.reshape(Eigen::DSizes<int, 2>(pre, n))
.sum(Eigen::array<int, 1>{{0}});
}
}
};
template <typename T>
struct ElementwiseMinBroadCast2GradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ, typename Pre, typename N, typename Post>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n,
Post post) {
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
.broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = (x_e < y_e_bcast).template cast<T>() * dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = ((x_e >= y_e_bcast).template cast<T>() * dz_e)
.reshape(Eigen::DSizes<int, 3>(pre, n, post))
.sum(Eigen::array<int, 2>{{0, 2}});
}
struct MinGradDy {
HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
return dout * (x >= y);
}
};
......@@ -127,12 +67,9 @@ class ElementwiseMinGradKernel : public framework::OpKernel<T> {
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
int axis = ctx.Attr<int>("axis");
ElementwiseGradCompute<DeviceContext, T, ElementwiseMinGradFunctor<T>,
ElementwiseMinBroadCastGradFunctor<T>,
ElementwiseMinBroadCast2GradFunctor<T>>(
ctx, x, y, out, dout, axis, dx, dy);
ElemwiseGradCompute<DeviceContext, T, MinGradDx<T>, MinGradDy<T>>(
ctx, *x, *y, *out, *dout, axis, dx, dy, MinGradDx<T>(), MinGradDy<T>());
}
};
} // namespace operators
} // namespace paddle
......@@ -40,14 +40,15 @@ class ElementwiseMulKernel : public framework::OpKernel<T> {
};
template <typename T>
struct IdentityGrad_DX {
struct MulGradDX {
HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * y; }
};
template <typename T>
struct IdentityGrad_DY {
struct MulGradDY {
HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * x; }
};
template <typename DeviceContext, typename T>
class ElementwiseMulGradKernel : public framework::OpKernel<T> {
public:
......@@ -61,10 +62,8 @@ class ElementwiseMulGradKernel : public framework::OpKernel<T> {
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
int axis = ctx.Attr<int>("axis");
ElemwiseGradCompute<DeviceContext, T, IdentityGrad_DX<T>,
IdentityGrad_DY<T>>(ctx, *x, *y, *out, *dout, axis, dx,
dy, IdentityGrad_DX<T>(),
IdentityGrad_DY<T>());
ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
ctx, *x, *y, *out, *dout, axis, dx, dy, MulGradDX<T>(), MulGradDY<T>());
}
};
} // namespace operators
......
......@@ -40,61 +40,13 @@ class ElementwiseSubKernel : public framework::OpKernel<T> {
};
template <typename T>
struct ElementwiseSubGradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = (-1.0) * dz_e;
}
}
struct SubGradDX {
HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout; }
};
template <typename T>
struct ElementwiseSubBroadCastGradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ, typename Pre, typename N>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) {
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = (-1.0) *
dz_e.reshape(Eigen::DSizes<int, 2>(pre, n))
.sum(Eigen::array<int, 1>{{0}});
}
}
};
template <typename T>
struct ElementwiseSubBroadCast2GradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ, typename Pre, typename N, typename Post>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n,
Post post) {
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = (-1.0) *
dz_e.reshape(Eigen::DSizes<int, 3>(pre, n, post))
.sum(Eigen::array<int, 2>{{0, 2}});
}
}
struct SubGradDY {
HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return -dout; }
};
template <typename DeviceContext, typename T>
......@@ -110,12 +62,9 @@ class ElementwiseSubGradKernel : public framework::OpKernel<T> {
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
int axis = ctx.Attr<int>("axis");
ElementwiseGradCompute<DeviceContext, T, ElementwiseSubGradFunctor<T>,
ElementwiseSubBroadCastGradFunctor<T>,
ElementwiseSubBroadCast2GradFunctor<T>>(
ctx, x, y, out, dout, axis, dx, dy);
ElemwiseGradCompute<DeviceContext, T, SubGradDX<T>, SubGradDY<T>>(
ctx, *x, *y, *out, *dout, axis, dx, dy, SubGradDX<T>(), SubGradDY<T>());
}
};
} // namespace operators
} // namespace paddle
add_subdirectory(detail)
if(WITH_GPU)
nv_library(math_function SRCS math_function.cc math_function.cu im2col.cc im2col.cu DEPS cblas device_context framework_proto)
nv_test(math_function_gpu_test SRCS math_function_test.cu DEPS math_function tensor)
nv_library(selected_rows_functor SRCS selected_rows_functor.cc selected_rows_functor.cu DEPS selected_rows math_function)
nv_test(selected_rows_functor_gpu_test SRCS selected_rows_functor_test.cu DEPS selected_rows_functor)
nv_library(softmax SRCS softmax.cc softmax.cu DEPS device_context)
nv_library(cross_entropy SRCS cross_entropy.cc cross_entropy.cu DEPS device_context)
nv_library(pooling SRCS pooling.cc pooling.cu DEPS device_context)
nv_library(depthwise_conv SRCS depthwise_conv.cu DEPS device_context)
nv_library(sequence_pooling SRCS sequence_pooling.cc sequence_pooling.cu DEPS device_context math_function)
nv_library(vol2col SRCS vol2col.cc vol2col.cu DEPS device_context tensor)
nv_library(context_project SRCS context_project.cc context_project.cu DEPS device_context math_function)
nv_library(sequence2batch SRCS sequence2batch.cc sequence2batch.cu DEPS device_context tensor math_function)
nv_library(sequence_padding SRCS sequence_padding.cc sequence_padding.cu DEPS lod_tensor device_context)
nv_library(sequence_scale SRCS sequence_scale.cc sequence_scale.cu DEPS lod_tensor device_context)
nv_library(lstm_compute SRCS lstm_compute.cc lstm_compute.cu DEPS device_context activation_functions)
nv_library(maxouting SRCS maxouting.cc maxouting.cu DEPS device_context)
nv_library(unpooling SRCS unpooling.cc unpooling.cu DEPS device_context)
nv_library(gru_compute SRCS gru_compute.cc gru_compute.cu DEPS device_context activation_functions math_function)
nv_library(cos_sim_functor SRCS cos_sim_functor.cc cos_sim_functor.cu DEPS device_context)
else()
cc_library(math_function SRCS math_function.cc im2col.cc DEPS cblas device_context framework_proto)
cc_library(selected_rows_functor SRCS selected_rows_functor.cc DEPS selected_rows math_function)
cc_library(softmax SRCS softmax.cc DEPS device_context)
cc_library(cross_entropy SRCS cross_entropy.cc DEPS device_context)
cc_library(pooling SRCS pooling.cc DEPS device_context)
cc_library(sequence_pooling SRCS sequence_pooling.cc DEPS device_context math_function)
cc_library(vol2col SRCS vol2col.cc DEPS device_context tensor)
cc_library(context_project SRCS context_project.cc DEPS device_context math_function)
cc_library(sequence2batch SRCS sequence2batch.cc DEPS device_context tensor math_function)
cc_library(sequence_padding SRCS sequence_padding.cc DEPS lod_tensor device_context)
cc_library(sequence_scale SRCS sequence_scale.cc DEPS lod_tensor device_context)
cc_library(lstm_compute SRCS lstm_compute.cc DEPS device_context activation_functions)
cc_library(maxouting SRCS maxouting.cc DEPS device_context)
cc_library(unpooling SRCS unpooling.cc DEPS device_context)
cc_library(gru_compute SRCS gru_compute.cc DEPS device_context activation_functions math_function)
cc_library(cos_sim_functor SRCS cos_sim_functor.cc DEPS device_context)
endif()
function(math_library TARGET)
# math_library is a function to create math library.
# The interface is the same as cc_library.
# But it handle split GPU/CPU code and link some common library.
set(cc_srcs)
set(cu_srcs)
set(math_common_deps device_context framework_proto)
set(multiValueArgs DEPS)
cmake_parse_arguments(math_library "${options}" "${oneValueArgs}"
"${multiValueArgs}" ${ARGN})
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${TARGET}.cc)
list(APPEND cc_srcs ${TARGET}.cc)
endif()
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${TARGET}.cu)
list(APPEND cu_srcs ${TARGET}.cu)
endif()
list(LENGTH cc_srcs cc_srcs_len)
if (WITH_GPU)
nv_library(${TARGET} SRCS ${cc_srcs} ${cu_srcs} DEPS ${math_library_DEPS} ${math_common_deps})
elseif(${cc_srcs_len} GREATER 0)
cc_library(${TARGET} SRCS ${cc_srcs} DEPS ${math_library_DEPS} ${math_common_deps})
endif()
endfunction()
cc_test(math_function_test SRCS math_function_test.cc DEPS math_function tensor)
# please add new math_library in alphabetical order
math_library(concat)
math_library(context_project DEPS im2col math_function)
math_library(cross_entropy)
math_library(cos_sim_functor)
math_library(depthwise_conv)
math_library(gru_compute DEPS activation_functions math_function)
math_library(im2col)
math_library(lstm_compute DEPS activation_functions)
math_library(math_function DEPS cblas)
math_library(maxouting)
math_library(pooling)
math_library(selected_rows_functor DEPS selected_rows)
math_library(sequence2batch)
math_library(sequence_padding)
math_library(sequence_pooling DEPS math_function)
math_library(sequence_scale)
math_library(softmax)
math_library(unpooling)
math_library(vol2col)
cc_test(math_function_test SRCS math_function_test.cc)
cc_test(selected_rows_functor_test SRCS selected_rows_functor_test.cc DEPS selected_rows_functor)
cc_test(im2col_test SRCS im2col_test.cc DEPS math_function tensor)
cc_test(vol2col_test SRCS vol2col_test.cc DEPS vol2col tensor)
cc_test(im2col_test SRCS im2col_test.cc DEPS im2col)
cc_test(vol2col_test SRCS vol2col_test.cc DEPS vol2col)
cc_test(sequence_padding_test SRCS sequence_padding_test.cc DEPS sequence_padding)
if(WITH_GPU)
nv_test(math_function_gpu_test SRCS math_function_test.cu)
nv_test(selected_rows_functor_gpu_test SRCS selected_rows_functor_test.cu DEPS selected_rows_functor)
endif()
cc_test(concat_test SRCS concat_test.cc DEPS concat)
/* Copyright (c) 2018 paddlepaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/concat.h"
namespace paddle {
namespace operators {
namespace math {
/*
* All tensors' dimension should be the same and the values of
* each dimension are the same, except the axis dimension.
*/
template <typename T>
class ConcatFunctor<platform::CPUDeviceContext, T> {
public:
void operator()(const platform::CPUDeviceContext& context,
const std::vector<framework::Tensor>& input, const int axis,
framework::Tensor* output) {
// TODO(zcd): Add input data validity checking
int num = input.size();
int rows = 1;
auto dim_0 = input[0].dims();
for (int i = 0; i < axis; ++i) {
rows *= dim_0[i];
}
int out_rows = rows, out_cols = 0;
std::vector<int64_t> input_cols(input.size());
for (int i = 0; i < num; ++i) {
int t_cols = input[i].numel() / rows;
out_cols += t_cols;
input_cols[i] = t_cols;
}
auto& cpu_place = boost::get<platform::CPUPlace>(context.GetPlace());
// computation
for (int k = 0; k < out_rows; ++k) {
T* dst_ptr = output->data<T>() + k * out_cols;
int col_idx = 0;
for (int j = 0; j < num; ++j) {
int col_len = input_cols[j];
const T* src_prt = input[j].data<T>() + k * col_len;
memory::Copy(cpu_place, dst_ptr + col_idx, cpu_place, src_prt,
sizeof(T) * col_len);
col_idx += col_len;
}
}
}
};
/*
* All tensors' dimension should be the same and the values of
* each dimension are the same, except the axis dimension.
*/
template <typename T>
class ConcatGradFunctor<platform::CPUDeviceContext, T> {
public:
void operator()(const platform::CPUDeviceContext& context,
const framework::Tensor& input, const int axis,
std::vector<framework::Tensor>& outputs) {
// TODO(zcd): Add input data validity checking
int num = outputs.size();
int input_rows = 1;
auto dim_0 = outputs[0].dims();
for (int i = 0; i < axis; ++i) {
input_rows *= dim_0[i];
}
int input_cols = 0;
std::vector<int64_t> output_cols(outputs.size());
for (int i = 0; i < num; ++i) {
int t_cols = outputs[i].numel() / input_rows;
input_cols += t_cols;
output_cols[i] = t_cols;
}
auto& cpu_place = boost::get<platform::CPUPlace>(context.GetPlace());
// computation
for (int k = 0; k < input_rows; ++k) {
const T* src_ptr = input.data<T>() + k * input_cols;
int col_idx = 0;
for (int j = 0; j < num; ++j) {
int col_len = output_cols[j];
T* dst_ptr = outputs[j].data<T>() + k * col_len;
memory::Copy(cpu_place, dst_ptr, cpu_place, src_ptr + col_idx,
sizeof(T) * col_len);
col_idx += col_len;
}
}
}
};
template class ConcatFunctor<platform::CPUDeviceContext, int>;
template class ConcatFunctor<platform::CPUDeviceContext, int64_t>;
template class ConcatFunctor<platform::CPUDeviceContext, float>;
template class ConcatFunctor<platform::CPUDeviceContext, double>;
template class ConcatGradFunctor<platform::CPUDeviceContext, int>;
template class ConcatGradFunctor<platform::CPUDeviceContext, int64_t>;
template class ConcatGradFunctor<platform::CPUDeviceContext, float>;
template class ConcatGradFunctor<platform::CPUDeviceContext, double>;
} // namespace math
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 paddlepaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/mixed_vector.h"
#include "paddle/fluid/operators/math/concat.h"
#include "paddle/fluid/platform/cuda_helper.h"
namespace paddle {
namespace operators {
namespace math {
template <typename T>
__device__ T upper_bound(const T* first, T count, T val) {
const T* orig = first;
const T* it = nullptr;
T step = 0;
while (count > 0) {
it = first;
step = count / 2;
it += step;
if (!(val < *it)) {
first = ++it;
count -= step + 1;
} else {
count = step;
}
}
return first - orig;
}
template <typename T>
__global__ void KernelConcat(T** inputs, const int* input_cols, int col_size,
const int output_rows, const int output_cols,
T* output) {
int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
int segment = upper_bound<int>(input_cols, col_size, tid_x) - 1;
int curr_offset = input_cols[segment];
int curr_segment = segment;
for (; tid_x < output_cols; tid_x += blockDim.x * gridDim.x) {
T curr_col_offset;
while ((curr_col_offset = input_cols[curr_segment + 1]) <= tid_x) {
curr_offset = curr_col_offset;
++curr_segment;
}
int local_col = tid_x - curr_offset;
int segment_width = curr_col_offset - curr_offset;
T* input_ptr = inputs[curr_segment];
int tid_y = blockIdx.y * blockDim.y + threadIdx.y;
for (; tid_y < output_rows; tid_y += blockDim.y * gridDim.y)
output[tid_y * output_cols + tid_x] =
input_ptr[tid_y * segment_width + local_col];
}
}
template <typename T>
__global__ void KernelConcat(T** inputs, const int input_col,
const int output_rows, const int output_cols,
T* output) {
int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
double inv_input_col = 1.0 / input_col;
for (; tid_x < output_cols; tid_x += blockDim.x * gridDim.x) {
int split = tid_x * inv_input_col;
int in_offset = tid_x - split * input_col;
T* input_ptr = inputs[split];
int tid_y = blockIdx.y * blockDim.y + threadIdx.y;
for (; tid_y < output_rows; tid_y += blockDim.y * gridDim.y) {
output[tid_y * output_cols + tid_x] =
input_ptr[tid_y * input_col + in_offset];
}
}
}
template <typename T>
__global__ void KernelConcatGrad(const T* input, const int input_row,
const int input_col, const int* output_cols,
int col_size, T** outputs) {
int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
int segment = upper_bound<int>(output_cols, col_size, tid_x) - 1;
int curr_offset = output_cols[segment];
int curr_segment = segment;
for (; tid_x < input_col; tid_x += blockDim.x * gridDim.x) {
T curr_col_offset;
while ((curr_col_offset = output_cols[curr_segment + 1]) <= tid_x) {
curr_offset = curr_col_offset;
++curr_segment;
}
int local_col = tid_x - curr_offset;
int segment_width = curr_col_offset - curr_offset;
T* output_ptr = outputs[curr_segment];
int tid_y = blockIdx.y * blockDim.y + threadIdx.y;
for (; tid_y < input_row; tid_y += blockDim.y * gridDim.y)
output_ptr[tid_y * segment_width + local_col] =
input[tid_y * input_col + tid_x];
}
}
template <typename T>
__global__ void KernelConcatGrad(const T* input, const int input_row,
const int input_col, const int output_cols,
T** outputs) {
int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
double inv_input_col = 1.0 / input_col;
for (; tid_x < input_col; tid_x += blockDim.x * gridDim.x) {
int split = tid_x * inv_input_col;
int in_offset = tid_x - split * input_col;
T* output_ptr = outputs[split];
int tid_y = blockIdx.y * blockDim.y + threadIdx.y;
for (; tid_y < input_row; tid_y += blockDim.y * gridDim.y)
output_ptr[tid_y * output_cols + in_offset] =
input[tid_y * input_col + tid_x];
}
}
/*
* All tensors' dimension should be the same and the values of
* each dimension are the same, except the axis dimension.
*/
template <typename T>
class ConcatFunctor<platform::CUDADeviceContext, T> {
public:
void operator()(const platform::CUDADeviceContext& context,
const std::vector<framework::Tensor>& input, const int axis,
framework::Tensor* output) {
// TODO(zcd): Add input data validity checking
int num = input.size();
int rows = 1;
auto dim_0 = input[0].dims();
for (int i = 0; i < axis; ++i) {
rows *= dim_0[i];
}
int cols = input[0].numel() / rows;
int out_rows = rows, out_cols = 0;
framework::Vector<int16_t> inputs_data(num * sizeof(T*) / 2);
framework::Vector<int> inputs_cols(num + 1);
inputs_cols[0] = 0;
T** inputs_ptr = reinterpret_cast<T**>(inputs_data.data());
bool sameShape = true;
for (int i = 0; i < num; ++i) {
int t_cols = input[i].numel() / rows;
if (sameShape) {
if (t_cols != cols) sameShape = false;
}
out_cols += t_cols;
inputs_cols[i + 1] = out_cols;
inputs_ptr[i] = const_cast<T*>(input[i].data<T>());
}
T** ins_gpu =
reinterpret_cast<T**>(inputs_data.CUDAMutableData(context.GetPlace()));
const int* ins_col_gpu = inputs_cols.CUDAData(context.GetPlace());
// computation
// set the thread block and grid according to CurrentDeviceId
const int kThreadsPerBlock = 1024;
int block_cols = kThreadsPerBlock;
if (out_cols < kThreadsPerBlock) { // block_cols is aligned by 32.
block_cols = ((out_cols + 31) >> 5) << 5;
}
int block_rows = kThreadsPerBlock / block_cols;
dim3 block_size = dim3(block_cols, block_rows, 1);
int max_threads = context.GetMaxPhysicalThreadCount();
int max_blocks = std::max(max_threads / kThreadsPerBlock, 1);
int grid_cols =
std::min((out_cols + block_cols - 1) / block_cols, max_blocks);
int grid_rows =
std::min(max_blocks / grid_cols, std::max(out_rows / block_rows, 1));
dim3 grid_size = dim3(grid_cols, grid_rows, 1);
if (sameShape) {
KernelConcat<<<grid_size, block_size, 0, context.stream()>>>(
ins_gpu, cols, out_rows, out_cols, output->data<T>());
} else {
KernelConcat<<<grid_size, block_size, 0, context.stream()>>>(
ins_gpu, ins_col_gpu, static_cast<int>(inputs_cols.size()), out_rows,
out_cols, output->data<T>());
}
}
};
/*
* All tensors' dimension should be the same and the values of
* each dimension are the same, except the axis dimension.
*/
template <typename T>
class ConcatGradFunctor<platform::CUDADeviceContext, T> {
public:
void operator()(const platform::CUDADeviceContext& context,
const framework::Tensor& input, const int axis,
std::vector<framework::Tensor>& outputs) {
// TODO(zcd): Add input data validity checking
int num = outputs.size();
int input_row = 1;
auto dim_0 = outputs[0].dims();
for (int i = 0; i < axis; ++i) {
input_row *= dim_0[i];
}
int output_col_0 = outputs[0].numel() / input_row;
int input_col = 0;
bool sameShape = true;
framework::Vector<int16_t> outputs_data(num * sizeof(T*) / 2);
framework::Vector<int> outputs_cols(num + 1);
outputs_cols[0] = 0;
T** outputs_ptr = reinterpret_cast<T**>(outputs_data.data());
for (int i = 0; i < num; ++i) {
int t_col = outputs[i].numel() / input_row;
if (sameShape) {
if (t_col != output_col_0) sameShape = false;
}
input_col += t_col;
outputs_cols[i + 1] = input_col;
outputs_ptr[i] = outputs[i].data<T>();
}
T** outs_gpu =
reinterpret_cast<T**>(outputs_data.CUDAMutableData(context.GetPlace()));
const int* outs_col_gpu = outputs_cols.CUDAData(context.GetPlace());
// computation
const int kThreadsPerBlock = 1024;
int block_cols = kThreadsPerBlock;
if (input_col < kThreadsPerBlock) { // block_cols is aligned by 32.
block_cols = ((input_col + 31) >> 5) << 5;
}
int block_rows = kThreadsPerBlock / block_cols;
dim3 block_size = dim3(block_cols, block_rows, 1);
int max_threads = context.GetMaxPhysicalThreadCount();
int max_blocks = std::max(max_threads / kThreadsPerBlock, 1);
int grid_cols =
std::min((input_col + block_cols - 1) / block_cols, max_blocks);
int grid_rows =
std::min(max_blocks / grid_cols, std::max(input_row / block_rows, 1));
dim3 grid_size = dim3(grid_cols, grid_rows, 1);
if (sameShape) {
KernelConcatGrad<<<grid_size, block_size, 0, context.stream()>>>(
input.data<T>(), input_row, input_col, output_col_0, outs_gpu);
} else {
KernelConcatGrad<<<grid_size, block_size, 0, context.stream()>>>(
input.data<T>(), input_row, input_col, outs_col_gpu,
static_cast<int>(outputs_cols.size()), outs_gpu);
}
}
};
template class ConcatFunctor<platform::CUDADeviceContext, int>;
template class ConcatFunctor<platform::CUDADeviceContext, int64_t>;
template class ConcatFunctor<platform::CUDADeviceContext, float>;
template class ConcatFunctor<platform::CUDADeviceContext, double>;
template class ConcatGradFunctor<platform::CUDADeviceContext, int>;
template class ConcatGradFunctor<platform::CUDADeviceContext, int64_t>;
template class ConcatGradFunctor<platform::CUDADeviceContext, float>;
template class ConcatGradFunctor<platform::CUDADeviceContext, double>;
} // namespace math
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/tensor.h"
namespace paddle {
namespace operators {
namespace math {
/*
* \brief Concatenate the input tensors along the dimension axis.
* TODO(zcd): maybe it needs to be more detailed.
* Examples:
* Input[0] = [[1,2],[3,4]]
* Input[1] = [[5,6]]
* axis = 0
*
* Output = [[1,2],
* [3,4],
* [5,6]]
*/
template <typename DeviceContext, typename T>
class ConcatFunctor {
public:
void operator()(const DeviceContext& context,
const std::vector<framework::Tensor>& input, const int axis,
framework::Tensor* output);
};
/*
* \brief Split the input tensors along the dimension axis into outputs.
* TODO(zcd): maybe it needs to be more detailed.
* Examples:
* Input = [[1,2],
* [3,4],
* [5,6]]
* axis = 0
*
* Output[0] = [[1,2],[3,4]]
* Output[1] = [[5,6]]
*/
template <typename DeviceContext, typename T>
class ConcatGradFunctor {
public:
void operator()(const DeviceContext& context, const framework::Tensor& input,
const int axis, std::vector<framework::Tensor>& outputs);
};
} // namespace math
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/concat.h"
#include <gtest/gtest.h>
#include <vector>
#include "paddle/fluid/framework/tensor_util.h"
using namespace paddle::framework;
using namespace paddle::platform;
template <typename DeviceContext, typename Place>
void testConcat() {
Tensor input_a_cpu;
Tensor input_b_cpu;
Tensor out_cpu;
Tensor input_a;
Tensor input_b;
Tensor out;
DeviceContext* context = new DeviceContext(Place());
// DeviceContext context(Place());
/**
* cast1:
* inputs:
* t_a.shape: [2, 3, 4]
* t_b.shape: [3, 3, 4]
* output:
* out.shape: [5, 3, 4]
*/
auto dim_a = make_ddim({2, 3, 4});
auto dim_b = make_ddim({3, 3, 4});
auto dim_out = make_ddim({5, 3, 4});
input_a.mutable_data<int>(dim_a, Place());
input_b.mutable_data<int>(dim_b, Place());
out.mutable_data<int>(dim_out, Place());
if (paddle::platform::is_gpu_place(Place())) {
input_a_cpu.mutable_data<int>(dim_a, CPUPlace());
input_b_cpu.mutable_data<int>(dim_b, CPUPlace());
out_cpu.mutable_data<int>(dim_out, CPUPlace());
}
int* a_ptr;
int* b_ptr;
if (paddle::platform::is_gpu_place(Place())) {
a_ptr = input_a_cpu.data<int>();
b_ptr = input_b_cpu.data<int>();
} else {
a_ptr = input_a.data<int>();
b_ptr = input_b.data<int>();
}
for (int i = 0; i < 2 * 3 * 4; ++i) {
a_ptr[i] = i;
}
for (int i = 0; i < 3 * 3 * 4; ++i) {
b_ptr[i] = i;
}
if (paddle::platform::is_gpu_place(Place())) {
TensorCopy(input_a_cpu, Place(), *context, &input_a);
TensorCopy(input_b_cpu, Place(), *context, &input_b);
}
std::vector<Tensor> input;
input.push_back(input_a);
input.push_back(input_b);
paddle::operators::math::ConcatFunctor<DeviceContext, int> concat_functor;
concat_functor(*context, input, 0, &out);
// check the dim of input_a, input_b
PADDLE_ENFORCE_EQ(input_a.dims(), dim_a);
PADDLE_ENFORCE_EQ(input_b.dims(), dim_b);
int* out_ptr;
if (paddle::platform::is_gpu_place(Place())) {
TensorCopy(out, CPUPlace(), *context, &out_cpu);
out_ptr = out_cpu.data<int>();
} else {
out_ptr = out.data<int>();
}
int cols = 2 * 3 * 4;
int idx_a = 0, idx_b = 0;
for (int j = 0; j < 5 * 3 * 4; ++j) {
if (j >= cols) {
PADDLE_ENFORCE_EQ(out_ptr[j], b_ptr[idx_b]);
++idx_b;
} else {
PADDLE_ENFORCE_EQ(out_ptr[j], a_ptr[idx_a]);
++idx_a;
}
}
//
/**
* cast2:
* inputs:
* t_a.shape: [2, 3, 4]
* t_b.shape: [2, 4, 4]
* output:
* out.shape: [2, 7, 4]
*/
dim_a = make_ddim({2, 3, 4});
dim_b = make_ddim({2, 4, 4});
dim_out = make_ddim({2, 7, 4});
input_a.Resize(dim_a);
input_b.Resize(dim_b);
out.Resize(dim_out);
if (paddle::platform::is_gpu_place(Place())) {
input_a_cpu.Resize(dim_a);
input_b_cpu.Resize(dim_b);
out_cpu.Resize(dim_out);
}
if (paddle::platform::is_gpu_place(Place())) {
a_ptr = input_a_cpu.data<int>();
b_ptr = input_b_cpu.data<int>();
} else {
a_ptr = input_a.data<int>();
b_ptr = input_b.data<int>();
}
for (int i = 0; i < 2 * 3 * 4; ++i) {
a_ptr[i] = i;
}
for (int i = 0; i < 2 * 4 * 4; ++i) {
b_ptr[i] = i;
}
if (paddle::platform::is_gpu_place(Place())) {
TensorCopy(input_a_cpu, Place(), *context, &input_a);
TensorCopy(input_b_cpu, Place(), *context, &input_b);
}
input.clear();
input.push_back(input_a);
input.push_back(input_b);
concat_functor(*context, input, 1, &out);
// check the dim of input_a, input_b
PADDLE_ENFORCE_EQ(input_a.dims(), dim_a);
PADDLE_ENFORCE_EQ(input_b.dims(), dim_b);
if (paddle::platform::is_gpu_place(Place())) {
TensorCopy(out, CPUPlace(), *context, &out_cpu);
out_ptr = out_cpu.data<int>();
} else {
out_ptr = out.data<int>();
}
cols = 3 * 4;
idx_a = 0, idx_b = 0;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 28; ++j) {
if (j >= cols) {
PADDLE_ENFORCE_EQ(out_ptr[i * 28 + j], b_ptr[idx_b]);
++idx_b;
} else {
PADDLE_ENFORCE_EQ(out_ptr[i * 28 + j], a_ptr[idx_a]);
++idx_a;
}
}
}
/**
* cast3:
* inputs:
* t_a.shape: [2, 3, 5]
* t_b.shape: [2, 3, 4]
* output:
* out.shape: [2, 3, 9]
*/
dim_a = make_ddim({2, 3, 4});
dim_b = make_ddim({2, 3, 5});
dim_out = make_ddim({2, 3, 9});
input_a.Resize(dim_a);
input_b.Resize(dim_b);
out.Resize(dim_out);
if (paddle::platform::is_gpu_place(Place())) {
input_a_cpu.Resize(dim_a);
input_b_cpu.Resize(dim_b);
out_cpu.Resize(dim_out);
}
if (paddle::platform::is_gpu_place(Place())) {
a_ptr = input_a_cpu.data<int>();
b_ptr = input_b_cpu.data<int>();
} else {
a_ptr = input_a.data<int>();
b_ptr = input_b.data<int>();
}
for (int i = 0; i < 2 * 3 * 4; ++i) {
a_ptr[i] = i;
}
for (int i = 0; i < 2 * 3 * 5; ++i) {
b_ptr[i] = i;
}
if (paddle::platform::is_gpu_place(Place())) {
TensorCopy(input_a_cpu, Place(), *context, &input_a);
TensorCopy(input_b_cpu, Place(), *context, &input_b);
}
input.clear();
input.push_back(input_a);
input.push_back(input_b);
concat_functor(*context, input, 2, &out);
// check the dim of input_a, input_b
PADDLE_ENFORCE_EQ(input_a.dims(), dim_a);
PADDLE_ENFORCE_EQ(input_b.dims(), dim_b);
if (paddle::platform::is_gpu_place(Place())) {
TensorCopy(out, CPUPlace(), *context, &out_cpu);
out_ptr = out_cpu.data<int>();
} else {
out_ptr = out.data<int>();
}
// check the data
cols = 4;
idx_a = 0, idx_b = 0;
for (int i = 0; i < 6; ++i) {
for (int j = 0; j < 9; ++j) {
if (j >= cols) {
PADDLE_ENFORCE_EQ(out_ptr[i * 9 + j], b_ptr[idx_b]);
++idx_b;
} else {
PADDLE_ENFORCE_EQ(out_ptr[i * 9 + j], a_ptr[idx_a]);
++idx_a;
}
}
}
/**
* cast4:
* inputs:
* axis = 1
* t_a.shape: [2, 3, 4]
* t_b.shape: [2, 3, 4]
* output:
* out.shape: [2, 6, 4]
*/
dim_a = make_ddim({2, 3, 4});
dim_b = make_ddim({2, 3, 4});
dim_out = make_ddim({2, 6, 4});
input_a.Resize(dim_a);
input_b.Resize(dim_b);
out.Resize(dim_out);
if (paddle::platform::is_gpu_place(Place())) {
input_a_cpu.Resize(dim_a);
input_b_cpu.Resize(dim_b);
out_cpu.Resize(dim_out);
}
if (paddle::platform::is_gpu_place(Place())) {
a_ptr = input_a_cpu.data<int>();
b_ptr = input_b_cpu.data<int>();
} else {
a_ptr = input_a.data<int>();
b_ptr = input_b.data<int>();
}
for (int i = 0; i < 2 * 3 * 4; ++i) {
a_ptr[i] = i;
}
for (int i = 0; i < 2 * 3 * 4; ++i) {
b_ptr[i] = i;
}
if (paddle::platform::is_gpu_place(Place())) {
TensorCopy(input_a_cpu, Place(), *context, &input_a);
TensorCopy(input_b_cpu, Place(), *context, &input_b);
}
input.clear();
input.push_back(input_a);
input.push_back(input_b);
concat_functor(*context, input, 1, &out);
// check the dim of input_a, input_b
PADDLE_ENFORCE_EQ(input_a.dims(), dim_a);
PADDLE_ENFORCE_EQ(input_b.dims(), dim_b);
if (paddle::platform::is_gpu_place(Place())) {
TensorCopy(out, CPUPlace(), *context, &out_cpu);
out_ptr = out_cpu.data<int>();
} else {
out_ptr = out.data<int>();
}
// check the data
cols = 12;
idx_a = 0, idx_b = 0;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 24; ++j) {
if (j >= cols) {
PADDLE_ENFORCE_EQ(out_ptr[i * 24 + j], b_ptr[idx_b]);
++idx_b;
} else {
PADDLE_ENFORCE_EQ(out_ptr[i * 24 + j], a_ptr[idx_a]);
++idx_a;
}
}
}
}
TEST(math, concat) {
testConcat<paddle::platform::CPUDeviceContext, paddle::platform::CPUPlace>();
#ifdef PADDLE_WITH_CUDA
testConcat<paddle::platform::CUDADeviceContext,
paddle::platform::CUDAPlace>();
#endif
}
......@@ -13,7 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/sequence2batch.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace paddle {
namespace operators {
......
......@@ -84,6 +84,9 @@ class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<std::vector<int>>("shape",
"(vector<int>) "
"Target shape of reshape operator.");
AddAttr<bool>("inplace",
"Change the source tensor's shape without copy memory.")
.SetDefault(true);
AddComment(R"DOC(
Reshape Operator.
......
......@@ -26,10 +26,16 @@ class ReshapeKernel : public framework::OpKernel<T> {
void Compute(const framework::ExecutionContext& ctx) const {
auto* out = ctx.Output<framework::Tensor>("Out");
auto* in = ctx.Input<framework::Tensor>("X");
bool inplace = ctx.Attr<bool>("inplace");
auto out_dims = out->dims();
out->mutable_data<T>(ctx.GetPlace());
framework::TensorCopy(*in, ctx.GetPlace(), ctx.device_context(), out);
out->Resize(out_dims);
if (!inplace) {
out->mutable_data<T>(ctx.GetPlace());
framework::TensorCopy(*in, ctx.GetPlace(), ctx.device_context(), out);
out->Resize(out_dims);
} else {
out->ShareDataWith(*in);
out->Resize(out_dims);
}
}
};
......@@ -40,10 +46,16 @@ class ReshapeGradKernel : public framework::OpKernel<T> {
auto* d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
d_x->mutable_data<T>(ctx.GetPlace());
bool inplace = ctx.Attr<bool>("inplace");
auto in_dims = d_x->dims();
framework::TensorCopy(*d_out, ctx.GetPlace(), ctx.device_context(), d_x);
d_x->Resize(in_dims);
if (!inplace) {
framework::TensorCopy(*d_out, ctx.GetPlace(), ctx.device_context(), d_x);
d_x->Resize(in_dims);
} else {
d_x->ShareDataWith(*d_out);
d_x->Resize(in_dims);
}
}
};
} // namespace operators
......
......@@ -15,6 +15,8 @@ limitations under the License. */
#pragma once
#include <vector>
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/macros.h"
......@@ -282,5 +284,17 @@ class ScopedPoolingDescriptor {
DISABLE_COPY_AND_ASSIGN(ScopedPoolingDescriptor);
};
inline bool CanCUDNNBeUsed(const framework::ExecutionContext& ctx) {
bool use_cudnn = ctx.Attr<bool>("use_cudnn");
use_cudnn &= paddle::platform::is_gpu_place(ctx.GetPlace());
#ifdef PADDLE_WITH_CUDA
if (use_cudnn) {
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
}
#endif
return use_cudnn;
}
} // namespace platform
} // namespace paddle
......@@ -33,9 +33,15 @@ DeviceContextPool::DeviceContextPool(
PADDLE_ENFORCE_GT(places.size(), 0);
for (size_t i = 0; i < places.size(); i++) {
if (platform::is_cpu_place(places[i])) {
#ifdef PADDLE_WITH_MKLDNN
device_contexts_.emplace(places[i],
new platform::MKLDNNDeviceContext(
boost::get<platform::CPUPlace>(places[i])));
#else
device_contexts_.emplace(places[i],
new platform::CPUDeviceContext(
boost::get<platform::CPUPlace>(places[i])));
#endif
} else if (platform::is_gpu_place(places[i])) {
#ifdef PADDLE_WITH_CUDA
device_contexts_.emplace(places[i],
......@@ -121,6 +127,8 @@ class EigenCudaStreamDevice : public Eigen::StreamInterface {
CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place) {
SetDeviceId(place_.device);
multi_process = GetCUDAMultiProcessors(place_.device);
max_threads_per_mp = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
PADDLE_ENFORCE(cudaStreamCreate(&stream_));
eigen_stream_.reset(new EigenCudaStreamDevice());
eigen_stream_->Reinitialize(&stream_, place);
......@@ -154,6 +162,10 @@ void CUDADeviceContext::Wait() const {
PADDLE_ENFORCE(cudaGetLastError());
}
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
return multi_process * max_threads_per_mp;
}
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
return eigen_device_.get();
}
......@@ -170,64 +182,38 @@ cudaStream_t CUDADeviceContext::stream() const { return stream_; }
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
: CPUDeviceContext(place), ready_(false) {
stream_.reset(new mkldnn::stream(mkldnn::stream::kind::eager));
engine_.reset(new mkldnn::engine(mkldnn::engine::cpu, 0));
: CPUDeviceContext(place), engine_(mkldnn::engine::cpu, 0), p_blobs_() {
p_blobs_.reset(new std::unordered_map<std::string, std::shared_ptr<void>>());
}
template <typename T>
void MKLDNNDeviceContext::AddElement(const std::string& op_key,
const T& value) {
if (GetElement<T>(op_key)) {
return;
}
GetElementPool<T>().emplace(op_key, std::move(value));
}
void MKLDNNDeviceContext::SetBlob(const std::string& name,
std::shared_ptr<void> data) const {
std::unordered_map<std::string, std::shared_ptr<void>>* p;
p = p_blobs_.get();
template <typename T>
const T& MKLDNNDeviceContext::GetElement(const std::string& op_key) const {
auto it = GetElementPool<T>().find(op_key);
return it == GetElementPool<T>().end() ? nullptr : it->second;
}
auto it = p->find(name);
template <>
const std::unordered_map<const std::string, const MKLDNNMemoryPtr,
std::hash<std::string>>&
MKLDNNDeviceContext::GetElementPool<MKLDNNMemoryPtr>() const {
return memory_pool_;
}
if (it == p->end()) {
(*p)[name] = data; // create new blob
} else {
it->second = data; // set data to existing blob
}
template <>
const std::unordered_map<const std::string, const MKLDNNPrimitivePtr,
std::hash<std::string>>&
MKLDNNDeviceContext::GetElementPool<MKLDNNPrimitivePtr>() const {
return primitive_pool_;
return;
}
template <>
const std::unordered_map<const std::string, const MKLDNNPrimitiveDescPtr,
std::hash<std::string>>&
MKLDNNDeviceContext::GetElementPool<MKLDNNPrimitiveDescPtr>() const {
return primitive_desc_pool_;
}
std::shared_ptr<void> MKLDNNDeviceContext::GetBlob(
const std::string& name) const {
std::unordered_map<std::string, std::shared_ptr<void>>* p;
p = p_blobs_.get();
void MKLDNNDeviceContext::Execute(bool block) {
if (pipeline_.empty()) {
return;
}
ResetStream();
stream_->submit(pipeline_).wait(block);
ready_ = false;
pipeline_.clear();
}
auto it = p->find(name);
void MKLDNNDeviceContext::ResetStream() {
if (ready_) {
return;
if (it != p->end()) {
return it->second;
}
// TODO(TJ): change me when mkldnn have specific method to reset this state
stream_.reset(new mkldnn::stream(mkldnn::stream::kind::eager));
ready_ = true;
return nullptr;
}
#endif
......
......@@ -22,7 +22,7 @@ limitations under the License. */
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#include <mkldnn.hpp>
#endif
#include "paddle/fluid/platform/enforce.h"
......@@ -79,6 +79,9 @@ class CUDADeviceContext : public DeviceContext {
/*! \brief Return place in the device context. */
Place GetPlace() const override;
/*! \brief Return the max physical thread count in the device context */
int GetMaxPhysicalThreadCount() const;
/*! \brief Return eigen device in the device context. */
Eigen::GpuDevice* eigen_device() const;
......@@ -100,6 +103,9 @@ class CUDADeviceContext : public DeviceContext {
cudaStream_t stream_;
cudnnHandle_t cudnn_handle_;
cublasHandle_t cublas_handle_;
int multi_process;
int max_threads_per_mp;
};
template <>
......@@ -114,46 +120,19 @@ class MKLDNNDeviceContext : public CPUDeviceContext {
public:
explicit MKLDNNDeviceContext(CPUPlace place);
/* \brief Add new element: memory, primitive or primitive desc */
template <typename T>
void AddElement(const std::string& op_key, const T& value);
/* \brief Get existed element: memory, primitive or primitive desc */
template <typename T>
const T& GetElement(const std::string& op_key) const;
/* \brief Get element pool: memory, primitive or primitive desc pool */
template <typename T>
const std::unordered_map<const std::string, const T, std::hash<std::string>>&
GetElementPool() const;
/* \brief Get the active engine */
const MKLDNNEngine& engine() const { return *engine_; }
/* \brief Submit primitive to pipeline */
void Submit(const MKLDNNPrimitivePtr& p) { pipeline_.push_back(*p); }
const mkldnn::engine& GetEngine() const { return engine_; }
/*! \brief Execute all submitted primitives in pipeline */
void Execute(bool block = true);
// Set data to blob (i.e. name/data pair). Create blob if not existing
void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
protected:
/*! \brief Reset the stream to prepare next exectue */
void ResetStream();
// Find a saved blob. Return nullptr if not found
std::shared_ptr<void> GetBlob(const std::string& name) const;
private:
std::unordered_map<const std::string, const MKLDNNMemoryPtr,
std::hash<std::string>>
memory_pool_;
std::unordered_map<const std::string, const MKLDNNPrimitivePtr,
std::hash<std::string>>
primitive_pool_;
std::unordered_map<const std::string, const MKLDNNPrimitiveDescPtr,
std::hash<std::string>>
primitive_desc_pool_;
std::vector<MKLDNNPrimitive> pipeline_;
MKLDNNStreamPtr stream_;
MKLDNNEnginePtr engine_;
bool ready_;
mkldnn::engine engine_;
std::shared_ptr<std::unordered_map<std::string, std::shared_ptr<void>>>
p_blobs_;
};
#endif
......
......@@ -33,6 +33,26 @@ int GetCUDADeviceCount() {
return count;
}
int GetCUDAMultiProcessors(int id) {
PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
int count;
PADDLE_ENFORCE(
cudaDeviceGetAttribute(&count, cudaDevAttrMultiProcessorCount, id),
"cudaDeviceGetAttribute failed in "
"paddle::platform::GetCUDAMultiProcessors");
return count;
}
int GetCUDAMaxThreadsPerMultiProcessor(int id) {
PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
int count;
PADDLE_ENFORCE(cudaDeviceGetAttribute(
&count, cudaDevAttrMaxThreadsPerMultiProcessor, id),
"cudaDeviceGetAttribute failed in "
"paddle::platform::GetCUDAMaxThreadsPerMultiProcessor");
return count;
}
int GetCurrentDeviceId() {
int device_id;
PADDLE_ENFORCE(
......
......@@ -30,6 +30,12 @@ const std::string kEnvFractionGpuMemoryToUse =
//! Get the total number of GPU devices in system.
int GetCUDADeviceCount();
//! Get the MultiProcessors of the ith GPU.
int GetCUDAMultiProcessors(int i);
//! Get the MaxThreads of each MultiProcessor of the ith GPU.
int GetCUDAMaxThreadsPerMultiProcessor(int i);
//! Get the current GPU device id in system.
int GetCurrentDeviceId();
......
......@@ -16,12 +16,15 @@ limitations under the License. */
#include <mkldnn.hpp>
#include "paddle/fluid/framework/operator.h"
namespace paddle {
namespace platform {
using MKLDNNStream = mkldnn::stream;
using MKLDNNEngine = mkldnn::engine;
using MKLDNNMemory = mkldnn::memory;
using MKLDNNMemoryDescriptor = mkldnn::memory::desc;
using MKLDNNPrimitive = mkldnn::primitive;
using MKLDNNPrimitiveDesc = mkldnn::handle<mkldnn_primitive_desc_t>;
......@@ -31,5 +34,17 @@ typedef std::unique_ptr<MKLDNNMemory> MKLDNNMemoryPtr;
typedef std::unique_ptr<MKLDNNPrimitive> MKLDNNPrimitivePtr;
typedef std::unique_ptr<MKLDNNPrimitiveDesc> MKLDNNPrimitiveDescPtr;
inline mkldnn::memory::desc MKLDNNMemDesc(const std::vector<int>& dims,
mkldnn::memory::data_type data_type,
mkldnn::memory::format format) {
mkldnn::memory::dims tz = dims;
return mkldnn::memory::desc({tz}, data_type, format);
}
inline bool CanMKLDNNBeUsed(const framework::ExecutionContext& ctx) {
bool use_mkldnn = ctx.Attr<bool>("use_mkldnn");
return use_mkldnn && platform::is_cpu_place(ctx.GetPlace());
}
} // namespace platform
} // namespace paddle
......@@ -178,7 +178,7 @@ void EnableProfiler(ProfilerState state) {
}
#ifdef PADDLE_WITH_CUDA
if (g_state == ProfilerState::kCUDA) {
// Generate some dummy evenets first to reduce the startup overhead.
// Generate some dummy events first to reduce the startup overhead.
for (int i = 0; i < 5; i++) {
ForEachDevice([](int d) {
DeviceContext* dev_ctx = new CUDADeviceContext(CUDAPlace(d));
......
......@@ -213,7 +213,7 @@ function gen_fluid_inference_lib() {
if [ ${WITH_C_API:-OFF} == "OFF" ] ; then
cat <<EOF
========================================
Building fluid inference library ...
Deploying fluid inference library ...
========================================
EOF
make inference_lib_dist
......
......@@ -28,6 +28,7 @@ import nets
import optimizer
import backward
import regularizer
import average
from param_attr import ParamAttr, WeightNormParamAttr
from data_feeder import DataFeeder
from core import LoDTensor, CPUPlace, CUDAPlace
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
"""
Class of all kinds of Average.
All Averages are accomplished via Python totally.
They do not change Paddle's Program, nor do anything to
modify NN model's configuration. They are completely
wrappers of Python functions.
"""
def _is_number_(var):
return isinstance(var, int) or isinstance(var, float) or (isinstance(
var, np.ndarray) and var.shape == (1, ))
def _is_number_or_matrix_(var):
return _is_number_(var) or isinstance(var, np.ndarray)
class WeightedAverage(object):
def __init__(self):
self.reset()
def reset(self):
self.numerator = None
self.denominator = None
def add(self, value, weight):
if not _is_number_or_matrix_(value):
raise ValueError(
"The 'value' must be a number(int, float) or a numpy ndarray.")
if not _is_number_(weight):
raise ValueError("The 'weight' must be a number(int, float).")
if self.numerator is None or self.denominator is None:
self.numerator = value * weight
self.denominator = weight
else:
self.numerator += value * weight
self.denominator += weight
def eval(self):
if self.numerator is None or self.denominator is None:
raise ValueError(
"There is no data to be averaged in WeightedAverage.")
return self.numerator / self.denominator
......@@ -486,7 +486,7 @@ def append_backward(loss, parameter_list=None, no_grad_set=None,
params_and_grads = []
for param in parameters:
if param not in grad_info_map:
raise ValueError("param %s is not in map" % param)
continue
grad_info = grad_info_map[param]
grad_block = grad_info[1]
if not grad_block.has_var(grad_info[0]):
......
......@@ -108,44 +108,6 @@ class Evaluator(object):
return state
class Accuracy(Evaluator):
"""
Average Accuracy for multiple mini-batches.
"""
def __init__(self, input, label, k=1, **kwargs):
super(Accuracy, self).__init__("accuracy", **kwargs)
main_program = self.helper.main_program
if main_program.current_block().idx != 0:
raise ValueError("You can only invoke Evaluator in root block")
self.total = self.create_state(dtype='int64', shape=[1], suffix='total')
self.correct = self.create_state(
dtype='int64', shape=[1], suffix='correct')
total = self.helper.create_tmp_variable(dtype='int')
correct = self.helper.create_tmp_variable(dtype='int')
acc = layers.accuracy(
input=input, label=label, k=k, total=total, correct=correct)
total = layers.cast(x=total, dtype='int64')
correct = layers.cast(x=correct, dtype='int64')
layers.sums(input=[self.total, total], out=self.total)
layers.sums(input=[self.correct, correct], out=self.correct)
self.metrics.append(acc)
def eval(self, executor, eval_program=None):
if eval_program is None:
eval_program = Program()
block = eval_program.current_block()
with program_guard(main_program=eval_program):
total = _clone_var_(block, self.total)
correct = _clone_var_(block, self.correct)
total = layers.cast(total, dtype='float32')
correct = layers.cast(correct, dtype='float32')
out = layers.elementwise_div(x=correct, y=total)
return np.array(executor.run(eval_program, fetch_list=[out])[0])
class ChunkEvaluator(Evaluator):
"""
Accumulate counter numbers output by chunk_eval from mini-batches and
......
......@@ -28,6 +28,8 @@ import math_op_patch
from math_op_patch import *
import detection
from detection import *
import metric
from metric import *
from learning_rate_scheduler import *
__all__ = []
......@@ -39,4 +41,5 @@ __all__ += control_flow.__all__
__all__ += ops.__all__
__all__ += device.__all__
__all__ += detection.__all__
__all__ += metric.__all__
__all__ += learning_rate_scheduler.__all__
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to metric.
"""
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
from ..param_attr import ParamAttr
__all__ = ['accuracy']
def accuracy(input, label, k=1, correct=None, total=None):
"""
This function computes the accuracy using the input and label.
The output is the top_k inputs and their indices.
"""
helper = LayerHelper("accuracy", **locals())
topk_out = helper.create_tmp_variable(dtype=input.dtype)
topk_indices = helper.create_tmp_variable(dtype="int64")
helper.append_op(
type="top_k",
inputs={"X": [input]},
outputs={"Out": [topk_out],
"Indices": [topk_indices]},
attrs={"k": k})
acc_out = helper.create_tmp_variable(dtype="float32")
if correct is None:
correct = helper.create_tmp_variable(dtype="int64")
if total is None:
total = helper.create_tmp_variable(dtype="int64")
helper.append_op(
type="accuracy",
inputs={
"Out": [topk_out],
"Indices": [topk_indices],
"Label": [label]
},
outputs={
"Accuracy": [acc_out],
"Correct": [correct],
"Total": [total],
})
return acc_out
......@@ -35,7 +35,6 @@ __all__ = [
'cos_sim',
'cross_entropy',
'square_error_cost',
'accuracy',
'chunk_eval',
'sequence_conv',
'conv2d',
......@@ -1022,40 +1021,6 @@ def square_error_cost(input, label):
return square_out
def accuracy(input, label, k=1, correct=None, total=None):
"""
This function computes the accuracy using the input and label.
The output is the top_k inputs and their indices.
"""
helper = LayerHelper("accuracy", **locals())
topk_out = helper.create_tmp_variable(dtype=input.dtype)
topk_indices = helper.create_tmp_variable(dtype="int64")
helper.append_op(
type="top_k",
inputs={"X": [input]},
outputs={"Out": [topk_out],
"Indices": [topk_indices]},
attrs={"k": k})
acc_out = helper.create_tmp_variable(dtype="float32")
if correct is None:
correct = helper.create_tmp_variable(dtype="int64")
if total is None:
total = helper.create_tmp_variable(dtype="int64")
helper.append_op(
type="accuracy",
inputs={
"Out": [topk_out],
"Indices": [topk_indices],
"Label": [label]
},
outputs={
"Accuracy": [acc_out],
"Correct": [correct],
"Total": [total],
})
return acc_out
def chunk_eval(input,
label,
chunk_scheme,
......@@ -1146,6 +1111,7 @@ def conv2d(input,
param_attr=None,
bias_attr=None,
use_cudnn=True,
use_mkldnn=False,
act=None):
"""
**Convlution2D Layer**
......@@ -1287,7 +1253,8 @@ def conv2d(input,
'strides': stride,
'paddings': padding,
'groups': groups,
'use_cudnn': use_cudnn
'use_cudnn': use_cudnn,
'use_mkldnn': use_mkldnn
})
pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
......@@ -3182,7 +3149,7 @@ def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
data = fluid.layers.data(name='data', shape=[128], dtype='float32')
label = fluid.layers.data(name='label', shape=[100], dtype='int64')
fc = fluid.layers.fc(input=data, size=100)
out = fluid.layers.smooth_l1(logits=fc, label=label)
out = fluid.layers.smooth_l1(x=fc, y=label)
"""
helper = LayerHelper('smooth_l1_loss', **locals())
diff = helper.create_tmp_variable(dtype=x.dtype)
......
......@@ -31,6 +31,8 @@ dtype_to_size = {
sub_block_ops = ["while", "while_grad", "parallel_do", "parallel_do_grad"]
PRINT_LOG = False
class ControlFlowGraph(object):
def __init__(self, Program, ops, forward_num, skip_opt):
......@@ -171,12 +173,14 @@ class ControlFlowGraph(object):
# TODO(qijun): actually, we should compare dtype_to_size[x_dtype]
# and dtype_to_size[cache_dtype]
if x_dtype == cache_dtype:
print(("Hit Cache !!!! cache pool index "
"is %d, var name is %s, "
"cached var name is %s, "
"var shape is %s ") %
(index, x, cache_var,
str(cache_shape)))
if PRINT_LOG:
print(
("Hit Cache !!!! cache pool index "
"is %d, var name is %s, "
"cached var name is %s, "
"var shape is %s ") %
(index, x, cache_var,
str(cache_shape)))
self.pool.pop(index)
if x == cache_var:
break
......@@ -277,7 +281,9 @@ def _get_cfgs(input_program):
return cfgs
def memory_optimize(input_program):
def memory_optimize(input_program, print_log=False):
global PRINT_LOG
PRINT_LOG = print_log
cfgs = _get_cfgs(input_program)
for cfg in cfgs:
cfg.memory_optimize()
......@@ -29,14 +29,16 @@ def simple_img_conv_pool(input,
act,
param_attr=None,
pool_type='max',
use_cudnn=True):
use_cudnn=True,
use_mkldnn=False):
conv_out = layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
param_attr=param_attr,
act=act,
use_cudnn=use_cudnn)
use_cudnn=use_cudnn,
use_mkldnn=use_mkldnn)
pool_out = layers.pool2d(
input=conv_out,
......@@ -58,7 +60,8 @@ def img_conv_group(input,
conv_batchnorm_drop_rate=0.0,
pool_stride=1,
pool_type=None,
use_cudnn=True):
use_cudnn=True,
use_mkldnn=False):
"""
Image Convolution Group, Used for vgg net.
"""
......@@ -90,7 +93,8 @@ def img_conv_group(input,
padding=conv_padding[i],
param_attr=param_attr[i],
act=local_conv_act,
use_cudnn=use_cudnn)
use_cudnn=use_cudnn,
use_mkldnn=use_mkldnn)
if conv_with_batchnorm[i]:
tmp = layers.batch_norm(input=tmp, act=conv_act)
......
......@@ -49,7 +49,7 @@ avg_cost = fluid.layers.mean(x=cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.01)
sgd_optimizer.minimize(avg_cost)
fluid.memory_optimize(fluid.default_main_program())
fluid.memory_optimize(fluid.default_main_program(), print_log=True)
BATCH_SIZE = 200
......
......@@ -122,7 +122,8 @@ avg_cost = fluid.layers.mean(cost)
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
opts = optimizer.minimize(avg_cost)
accuracy = fluid.evaluator.Accuracy(input=predict, label=label)
batch_size = fluid.layers.create_tensor(dtype='int64')
batch_acc = fluid.layers.accuracy(input=predict, label=label, total=batch_size)
fluid.memory_optimize(fluid.default_main_program())
......@@ -144,13 +145,17 @@ feeder = fluid.DataFeeder(place=place, feed_list=[images, label])
exe.run(fluid.default_startup_program())
i = 0
accuracy = fluid.average.WeightedAverage()
for pass_id in range(PASS_NUM):
accuracy.reset(exe)
accuracy.reset()
for data in train_reader():
loss, acc = exe.run(fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[avg_cost] + accuracy.metrics)
pass_acc = accuracy.eval(exe)
loss, acc, weight = exe.run(
fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[avg_cost, batch_acc, batch_size])
accuracy.add(value=acc, weight=weight)
pass_acc = accuracy.eval()
print("loss:" + str(loss) + " acc:" + str(acc) + " pass_acc:" + str(
pass_acc))
# this model is slow, so if we can train two mini batch, we think it works properly.
......
......@@ -64,6 +64,7 @@ def conv2d_forward_naive(input, filter, group, conv_param):
class TestConv2dOp(OpTest):
def setUp(self):
self.use_cudnn = False
self.use_mkldnn = False
self.init_op_type()
self.init_group()
self.init_dilation()
......@@ -85,7 +86,8 @@ class TestConv2dOp(OpTest):
'paddings': self.pad,
'groups': self.groups,
'dilations': self.dilations,
'use_cudnn': self.use_cudnn
'use_cudnn': self.use_cudnn,
'use_mkldnn': self.use_mkldnn
}
self.outputs = {'Output': output}
......@@ -290,5 +292,25 @@ class TestDepthwiseConv2(TestConv2dOp):
# def init_op_type(self):
# self.op_type = "conv_cudnn"
#----------------Conv2dMKLDNN----------------
class TestMKLDNN(TestConv2dOp):
def init_op_type(self):
self.use_mkldnn = True
self.op_type = "conv2d"
class TestMKLDNNWithPad(TestWithPad):
def init_op_type(self):
self.use_mkldnn = True
self.op_type = "conv2d"
class TestMKLDNNWithStride(TestWithStride):
def init_op_type(self):
self.use_mkldnn = True
self.op_type = "conv2d"
if __name__ == '__main__':
unittest.main()
......@@ -37,7 +37,9 @@ class TestProfiler(unittest.TestCase):
label = fluid.layers.data(name='y', shape=[1], dtype='int64')
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(cost)
accuracy = fluid.evaluator.Accuracy(input=predict, label=label)
batch_size = fluid.layers.create_tensor(dtype='int64')
batch_acc = fluid.layers.accuracy(
input=predict, label=label, total=batch_size)
optimizer = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9)
opts = optimizer.minimize(avg_cost, startup_program=startup_program)
......@@ -46,7 +48,7 @@ class TestProfiler(unittest.TestCase):
exe = fluid.Executor(place)
exe.run(startup_program)
accuracy.reset(exe)
pass_acc_calculator = fluid.average.WeightedAverage()
with profiler.profiler(state, 'total', profile_path) as prof:
for iter in range(10):
if iter == 2:
......@@ -57,9 +59,11 @@ class TestProfiler(unittest.TestCase):
outs = exe.run(main_program,
feed={'x': x,
'y': y},
fetch_list=[avg_cost] + accuracy.metrics)
fetch_list=[avg_cost, batch_acc, batch_size])
acc = np.array(outs[1])
pass_acc = accuracy.eval(exe)
b_size = np.array(outs[2])
pass_acc_calculator.add(value=acc, weight=b_size)
pass_acc = pass_acc_calculator.eval()
def test_cpu_profiler(self):
self.net_profiler('CPU')
......
......@@ -45,5 +45,33 @@ class TestReshapeOpDimInfer(OpTest):
self.check_grad(["X"], "Out")
class TestReshapeOpInplace(OpTest):
def setUp(self):
self.op_type = "reshape"
self.inputs = {'X': np.random.random((10, 20)).astype("float32")}
self.attrs = {'shape': [10 * 20], 'inplace': True}
self.outputs = {'Out': self.inputs['X'].reshape(self.attrs['shape'])}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
class TestReshapeOpDimInferInplace(OpTest):
def setUp(self):
self.op_type = "reshape"
self.inputs = {'X': np.random.random((10, 20)).astype("float32")}
self.attrs = {'shape': [4, -1, 5], 'inplace': True}
self.outputs = {'Out': self.inputs['X'].reshape(self.attrs['shape'])}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册