未验证 提交 b4565172 编写于 作者: Y Yu Yang 提交者: GitHub

Merge pull request #7821 from reyoung/feature/add_demo_for_parallel.do

Feature/add demo for parallel.do
......@@ -17,6 +17,7 @@ limitations under the License. */
#include "paddle/framework/executor.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/threadpool.h"
#include "paddle/operators/detail/safe_ref.h"
namespace paddle {
namespace operators {
......@@ -39,8 +40,10 @@ static void SplitTensorAndMoveTensorToScopes(
const std::vector<std::string> &names) {
size_t num_sub_scopes = 0;
for (auto &argu : names) {
auto *var = scope.FindVar(argu);
const auto &tensor = var->Get<LoDTensor>();
const auto &tensor =
detail::Ref(scope.FindVar(argu),
"Cannot find variable %s in the parent scope", argu)
.Get<LoDTensor>();
auto lod_tensors = tensor.SplitLoDTensor(places);
for (auto &lod : lod_tensors) {
......@@ -60,7 +63,9 @@ static void SplitTensorAndMoveTensorToScopes(
}
for (size_t i = 0; i < lod_tensors.size(); ++i) {
*(*sub_scopes)[i]->Var(argu)->GetMutable<LoDTensor>() = lod_tensors[i];
*detail::Ref(sub_scopes->at(i)->Var(argu),
"Cannot find variable in the sub-scope", argu)
.GetMutable<LoDTensor>() = lod_tensors[i];
}
}
}
......@@ -287,6 +292,17 @@ class ParallelDoGradOpDescMaker : public framework::SingleGradOpDescMaker {
this->InputGrad(input_param, false));
}
}
auto *g_block = this->grad_block_[0];
// All variable name that needed by gradient operators
std::unordered_set<std::string> all_inputs_in_grad_blocks;
for (size_t i = 0; i < g_block->OpSize(); ++i) {
auto *op = g_block->Op(i);
for (auto &var_name : op->InputArgumentNames()) {
all_inputs_in_grad_blocks.insert(var_name);
}
}
for (auto &output_param : this->OutputNames()) {
if (output_param == kParallelScopes) {
......@@ -295,8 +311,17 @@ class ParallelDoGradOpDescMaker : public framework::SingleGradOpDescMaker {
this->Output(output_param));
} else {
grad->SetInput(output_param, this->Output(output_param));
grad->SetInput(framework::GradVarName(output_param),
this->OutputGrad(output_param));
std::vector<std::string> og_names;
for (auto &og_name : this->OutputGrad(output_param)) {
if (all_inputs_in_grad_blocks.count(og_name) != 0) {
// there are some gradient operators who need the OG. So make this
// OG as an input of parallel.do
og_names.push_back(og_name);
}
// else, there is no operator who need the OG. Do not use this OG as
// an input
}
grad->SetInput(framework::GradVarName(output_param), og_names);
}
}
grad->SetAttrMap(this->Attrs());
......
file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py")
string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}")
list(REMOVE_ITEM TEST_OPS test_image_classification_train)
list(REMOVE_ITEM TEST_OPS test_image_classification_train test_recognize_digits)
py_test(test_image_classification_train_resnet SRCS test_image_classification_train.py ARGS resnet)
py_test(test_image_classification_train_vgg SRCS test_image_classification_train.py ARGS vgg)
py_test(test_recognize_digits_mlp_cpu
SRCS test_recognize_digits.py
ARGS mlp)
py_test(test_recognize_digits_mlp_cuda
SRCS test_recognize_digits.py
ARGS mlp --use_cuda)
py_test(test_recognize_digits_conv_cpu
SRCS test_recognize_digits.py
ARGS conv)
py_test(test_recognize_digits_conv_cuda
SRCS test_recognize_digits.py
ARGS conv --use_cuda)
py_test(test_recognize_digits_mlp_cpu_parallel
SRCS test_recognize_digits.py
ARGS mlp --parallel)
py_test(test_recognize_digits_mlp_cuda_parallel
SRCS test_recognize_digits.py
ARGS mlp --use_cuda --parallel)
py_test(test_recognize_digits_conv_cpu_parallel
SRCS test_recognize_digits.py
ARGS conv --parallel)
py_test(test_recognize_digits_conv_cuda_parallel
SRCS test_recognize_digits.py
ARGS conv --use_cuda --parallel)
# default test
foreach(src ${TEST_OPS})
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import argparse
import paddle.v2.fluid as fluid
import paddle.v2 as paddle
import sys
import numpy
def parse_arg():
parser = argparse.ArgumentParser()
parser.add_argument(
"nn_type",
help="The neural network type, in ['mlp', 'conv']",
type=str,
choices=['mlp', 'conv'])
parser.add_argument(
"--parallel",
help='Run in parallel or not',
default=False,
action="store_true")
parser.add_argument(
"--use_cuda",
help="Run the program by using CUDA",
default=False,
action="store_true")
return parser.parse_args()
BATCH_SIZE = 64
def loss_net(hidden, label):
prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
return fluid.layers.mean(x=loss), fluid.layers.accuracy(
input=prediction, label=label)
def mlp(img, label):
hidden = fluid.layers.fc(input=img, size=200, act='tanh')
hidden = fluid.layers.fc(input=hidden, size=200, act='tanh')
return loss_net(hidden, label)
def conv_net(img, label):
conv_pool_1 = fluid.nets.simple_img_conv_pool(
input=img,
filter_size=5,
num_filters=20,
pool_size=2,
pool_stride=2,
act="relu")
conv_pool_2 = fluid.nets.simple_img_conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=50,
pool_size=2,
pool_stride=2,
act="relu")
return loss_net(conv_pool_2, label)
def main():
args = parse_arg()
print("recognize digits with args: {0}".format(" ".join(sys.argv[1:])))
img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
if args.nn_type == 'mlp':
net_conf = mlp
else:
net_conf = conv_net
if args.parallel:
places = fluid.layers.get_places()
pd = fluid.layers.ParallelDo(places)
with pd.do():
img_ = pd.read_input(img)
label_ = pd.read_input(label)
for o in net_conf(img_, label_):
pd.write_output(o)
avg_loss, acc = pd()
# get mean loss and acc through every devices.
avg_loss = fluid.layers.mean(x=avg_loss)
acc = fluid.layers.mean(x=acc)
else:
avg_loss, acc = net_conf(img, label)
test_program = fluid.default_main_program().clone()
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
optimizer.minimize(avg_loss)
place = fluid.CUDAPlace(0) if args.use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=500),
batch_size=BATCH_SIZE)
test_reader = paddle.batch(
paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
feeder = fluid.DataFeeder(feed_list=[img, label], place=place)
PASS_NUM = 100
for pass_id in range(PASS_NUM):
for batch_id, data in enumerate(train_reader()):
# train a mini-batch, fetch nothing
exe.run(feed=feeder.feed(data))
if (batch_id + 1) % 10 == 0:
acc_set = []
avg_loss_set = []
for test_data in test_reader():
acc_np, avg_loss_np = exe.run(program=test_program,
feed=feeder.feed(test_data),
fetch_list=[acc, avg_loss])
acc_set.append(float(acc_np))
avg_loss_set.append(float(avg_loss_np))
# get test acc and loss
acc_val = numpy.array(acc_set).mean()
avg_loss_val = numpy.array(avg_loss_set).mean()
if float(acc_val) > 0.85: # test acc > 85%
exit(0)
else:
print(
'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.
format(pass_id, batch_id + 1,
float(avg_loss_val), float(acc_val)))
if __name__ == '__main__':
main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
conv_pool_1 = fluid.nets.simple_img_conv_pool(
input=images,
filter_size=5,
num_filters=20,
pool_size=2,
pool_stride=2,
act="relu")
conv_pool_2 = fluid.nets.simple_img_conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=50,
pool_size=2,
pool_stride=2,
act="relu")
predict = fluid.layers.fc(input=conv_pool_2, size=10, act="softmax")
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
optimizer = fluid.optimizer.Adam(learning_rate=0.01)
optimizer.minimize(avg_cost)
accuracy = fluid.evaluator.Accuracy(input=predict, label=label)
BATCH_SIZE = 50
PASS_NUM = 3
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=500),
batch_size=BATCH_SIZE)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
feeder = fluid.DataFeeder(feed_list=[images, label], place=place)
exe.run(fluid.default_startup_program())
for pass_id in range(PASS_NUM):
accuracy.reset(exe)
for data in train_reader():
loss, acc = exe.run(fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[avg_cost] + accuracy.metrics)
pass_acc = accuracy.eval(exe)
print("pass_id=" + str(pass_id) + " acc=" + str(acc) + " pass_acc=" +
str(pass_acc))
# print loss, acc
if loss < 10.0 and pass_acc > 0.9:
# if avg cost less than 10.0 and accuracy is larger than 0.9, we think our code is good.
exit(0)
pass_acc = accuracy.eval(exe)
print("pass_id=" + str(pass_id) + " pass_acc=" + str(pass_acc))
exit(1)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
BATCH_SIZE = 128
image = fluid.layers.data(name='x', shape=[784], dtype='float32')
regularizer = fluid.regularizer.L2Decay(0.0005 * BATCH_SIZE)
hidden1 = fluid.layers.fc(input=image,
size=128,
act='relu',
param_attr=fluid.ParamAttr(
regularizer=regularizer,
gradient_clip=fluid.clip.ClipByValue(10)))
hidden2 = fluid.layers.fc(input=hidden1,
size=64,
act='relu',
param_attr=regularizer)
predict = fluid.layers.fc(input=hidden2,
size=10,
act='softmax',
param_attr=regularizer)
label = fluid.layers.data(name='y', shape=[1], dtype='int64')
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
optimizer = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9)
opts = optimizer.minimize(avg_cost)
accuracy = fluid.evaluator.Accuracy(input=predict, label=label)
inference_program = fluid.default_main_program().clone()
with fluid.program_guard(inference_program):
test_accuracy = fluid.evaluator.Accuracy(input=predict, label=label)
test_target = [avg_cost] + test_accuracy.metrics + test_accuracy.states
inference_program = fluid.io.get_inference_program(test_target)
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=8192),
batch_size=BATCH_SIZE)
test_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size=128)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
feeder = fluid.DataFeeder(feed_list=[image, label], place=place)
exe.run(fluid.default_startup_program())
PASS_NUM = 100
for pass_id in range(PASS_NUM):
accuracy.reset(exe)
for data in train_reader():
out, acc = exe.run(fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[avg_cost] + accuracy.metrics)
pass_acc = accuracy.eval(exe)
test_accuracy.reset(exe)
for data in test_reader():
out, acc = exe.run(inference_program,
feed=feeder.feed(data),
fetch_list=[avg_cost] + test_accuracy.metrics)
test_pass_acc = test_accuracy.eval(exe)
print("pass_id=" + str(pass_id) + " train_cost=" + str(
out) + " train_acc=" + str(acc) + " train_pass_acc=" + str(pass_acc)
+ " test_acc=" + str(test_pass_acc))
if test_pass_acc > 0.7:
fluid.io.save_inference_model(
"./recognize_digits_mlp.inference.model/", ["x"], [predict],
exe)
break
# Use load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[infer_prog, feed_target_names, fetch_targets] = fluid.io.load_inference_model(
"./recognize_digits_mlp.inference.model/", exe)
tensor_x = np.random.rand(1, 784).astype("float32")
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
results = exe.run(infer_prog,
feed={feed_target_names[0]: tensor_x},
fetch_list=fetch_targets)
print(results[0])
exit(0)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册