Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
b2912939
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b2912939
编写于
6月 21, 2022
作者:
C
cifar10
提交者:
GitHub
6月 21, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add mlu arg_max kernel (#43624)
上级
be05f84b
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
500 addition
and
0 deletion
+500
-0
paddle/fluid/operators/arg_max_op_mlu.cc
paddle/fluid/operators/arg_max_op_mlu.cc
+112
-0
python/paddle/fluid/tests/unittests/mlu/test_arg_max_op_mlu.py
...n/paddle/fluid/tests/unittests/mlu/test_arg_max_op_mlu.py
+388
-0
未找到文件。
paddle/fluid/operators/arg_max_op_mlu.cc
0 → 100644
浏览文件 @
b2912939
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
ArgMaxMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
axis
=
static_cast
<
int
>
(
ctx
.
Attr
<
int64_t
>
(
"axis"
));
auto
dtype
=
ctx
.
Attr
<
int
>
(
"dtype"
);
const
bool
&
flatten
=
ctx
.
Attr
<
bool
>
(
"flatten"
);
if
(
x
->
numel
()
==
0
)
return
;
PADDLE_ENFORCE_EQ
(
(
dtype
==
2
||
dtype
==
3
),
true
,
platform
::
errors
::
InvalidArgument
(
"The attribute of dtype in argmax op must be [%s] or [%s], "
"but "
"received [%s]"
,
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT64
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT32
),
paddle
::
framework
::
DataTypeToString
(
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
dtype
))));
if
(
axis
<
0
)
{
framework
::
DDim
x_dims
;
x_dims
=
x
->
dims
();
axis
+=
x_dims
.
size
();
}
framework
::
Tensor
flatten_x
(
x
->
type
());
flatten_x
.
ShareDataWith
(
*
x
);
if
(
flatten
)
{
flatten_x
.
Resize
(
phi
::
make_ddim
({
x
->
numel
()}));
// if flatten, the axis just as 0
axis
=
0
;
}
std
::
vector
<
int
>
reduce_dims
;
reduce_dims
.
push_back
(
axis
);
auto
out_dims
=
out
->
dims
();
int
out_count
=
out_dims
[
0
];
for
(
int
i
=
1
;
i
<
out_dims
.
size
();
i
++
)
{
out_count
=
out_count
*
out_dims
[
i
];
}
size_t
indices_size_inbytes
=
out_count
*
sizeof
(
int32_t
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MLUDeviceContext
>();
framework
::
Tensor
value_out
=
ctx
.
AllocateTmpTensor
<
T
,
MLUDeviceContext
>
(
out
->
dims
(),
dev_ctx
);
MLUCnnlTensorDesc
value_out_desc
(
value_out
);
MLUCnnlTensorDesc
input_desc
(
flatten_x
,
CNNL_LAYOUT_ARRAY
,
ToCnnlDataType
(
flatten_x
.
dtype
()));
MLUCnnlReduceDesc
reduction_desc
(
reduce_dims
,
CNNL_REDUCE_MAX_LAST_INDEX
,
ToCnnlDataType
<
T
>
(),
CNNL_NOT_PROPAGATE_NAN
,
CNNL_REDUCE_ONLY_INDICES
,
CNNL_32BIT_INDICES
);
if
(
dtype
==
2
)
{
out
->
template
mutable_data
<
int32_t
>(
ctx
.
GetPlace
());
MLUCnnl
::
Reduce
(
ctx
,
true
/*need_workspace*/
,
reduction_desc
.
get
(),
nullptr
,
input_desc
.
get
(),
GetBasePtr
(
&
flatten_x
),
indices_size_inbytes
/*indices_size*/
,
GetBasePtr
(
out
),
nullptr
,
value_out_desc
.
get
(),
GetBasePtr
(
&
value_out
));
}
else
{
out
->
template
mutable_data
<
int64_t
>(
ctx
.
GetPlace
());
framework
::
Tensor
out_int32
=
ctx
.
AllocateTmpTensor
<
int32_t
,
MLUDeviceContext
>
(
out
->
dims
(),
dev_ctx
);
MLUCnnl
::
Reduce
(
ctx
,
true
/*need_workspace*/
,
reduction_desc
.
get
(),
nullptr
,
input_desc
.
get
(),
GetBasePtr
(
&
flatten_x
),
indices_size_inbytes
/*indices_size*/
,
GetBasePtr
(
&
out_int32
),
nullptr
,
value_out_desc
.
get
(),
GetBasePtr
(
&
value_out
));
// cast indices type to int64
MLUCnnlTensorDesc
out_int32_desc
(
out_int32
);
MLUCnnlTensorDesc
cast_output_desc
(
*
out
);
cnnlCastDataType_t
cast_type
=
GetCastDataType
(
VT
::
INT32
,
VT
::
INT64
);
MLUCnnl
::
Cast
(
ctx
,
cast_type
,
out_int32_desc
.
get
(),
GetBasePtr
(
&
out_int32
),
cast_output_desc
.
get
(),
GetBasePtr
(
out
));
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_MLU_KERNEL
(
arg_max
,
ops
::
ArgMaxMLUKernel
<
int
>
,
ops
::
ArgMaxMLUKernel
<
float
>
,
ops
::
ArgMaxMLUKernel
<
paddle
::
platform
::
float16
>
);
python/paddle/fluid/tests/unittests/mlu/test_arg_max_op_mlu.py
0 → 100644
浏览文件 @
b2912939
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid
import
Program
,
program_guard
paddle
.
enable_static
()
class
BaseTestCase
(
OpTest
):
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
MLUPlace
(
0
)
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
,
5
)
self
.
dtype
=
'float32'
self
.
axis
=
0
def
setUp
(
self
):
self
.
set_mlu
()
self
.
initTestCase
()
self
.
x
=
(
1000
*
np
.
random
.
random
(
self
.
dims
)).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
self
.
x
}
self
.
attrs
=
{
'axis'
:
self
.
axis
}
self
.
outputs
=
{
'Out'
:
np
.
argmax
(
self
.
x
,
axis
=
self
.
axis
)}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
# test argmax, dtype: float16
class
TestArgMaxFloat16Case1
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
,
5
)
self
.
dtype
=
'float16'
self
.
axis
=
-
1
class
TestArgMaxFloat16Case2
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
,
5
)
self
.
dtype
=
'float16'
self
.
axis
=
0
class
TestArgMaxFloat16Case3
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
,
5
)
self
.
dtype
=
'float16'
self
.
axis
=
1
class
TestArgMaxFloat16Case4
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
,
5
)
self
.
dtype
=
'float16'
self
.
axis
=
2
class
TestArgMaxFloat16Case5
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
)
self
.
dtype
=
'float16'
self
.
axis
=
-
1
class
TestArgMaxFloat16Case6
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
)
self
.
dtype
=
'float16'
self
.
axis
=
0
class
TestArgMaxFloat16Case7
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
)
self
.
dtype
=
'float16'
self
.
axis
=
1
class
TestArgMaxFloat16Case8
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
1
,
)
self
.
dtype
=
'float16'
self
.
axis
=
0
class
TestArgMaxFloat16Case9
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
2
,
)
self
.
dtype
=
'float16'
self
.
axis
=
0
class
TestArgMaxFloat16Case10
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
)
self
.
dtype
=
'float16'
self
.
axis
=
0
# test argmax, dtype: float32
class
TestArgMaxFloat32Case1
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
,
5
)
self
.
dtype
=
'float32'
self
.
axis
=
-
1
class
TestArgMaxFloat32Case2
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
,
5
)
self
.
dtype
=
'float32'
self
.
axis
=
0
class
TestArgMaxFloat32Case3
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
,
5
)
self
.
dtype
=
'float32'
self
.
axis
=
1
class
TestArgMaxFloat32Case4
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
,
5
)
self
.
dtype
=
'float32'
self
.
axis
=
2
class
TestArgMaxFloat32Case5
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
)
self
.
dtype
=
'float32'
self
.
axis
=
-
1
class
TestArgMaxFloat32Case6
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
)
self
.
dtype
=
'float32'
self
.
axis
=
0
class
TestArgMaxFloat32Case7
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
4
)
self
.
dtype
=
'float32'
self
.
axis
=
1
class
TestArgMaxFloat32Case8
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
1
,
)
self
.
dtype
=
'float32'
self
.
axis
=
0
class
TestArgMaxFloat32Case9
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
2
,
)
self
.
dtype
=
'float32'
self
.
axis
=
0
class
TestArgMaxFloat32Case10
(
BaseTestCase
):
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
3
,
)
self
.
dtype
=
'float32'
self
.
axis
=
0
class
BaseTestComplex1_1
(
OpTest
):
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
MLUPlace
(
0
)
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
4
,
5
,
6
)
self
.
dtype
=
'float32'
self
.
axis
=
2
def
setUp
(
self
):
self
.
set_mlu
()
self
.
initTestCase
()
self
.
x
=
(
np
.
random
.
random
(
self
.
dims
)).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
self
.
x
}
self
.
attrs
=
{
'axis'
:
self
.
axis
,
'dtype'
:
int
(
core
.
VarDesc
.
VarType
.
INT32
)
}
self
.
outputs
=
{
'Out'
:
np
.
argmax
(
self
.
x
,
axis
=
self
.
axis
).
astype
(
"int32"
)
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
class
BaseTestComplex1_2
(
OpTest
):
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
MLUPlace
(
0
)
def
initTestCase
(
self
):
self
.
op_type
=
'arg_max'
self
.
dims
=
(
4
,
5
,
6
)
self
.
dtype
=
'float16'
self
.
axis
=
2
def
setUp
(
self
):
self
.
set_mlu
()
self
.
initTestCase
()
self
.
x
=
(
np
.
random
.
random
(
self
.
dims
)).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
self
.
x
}
self
.
attrs
=
{
'axis'
:
self
.
axis
,
'dtype'
:
int
(
core
.
VarDesc
.
VarType
.
INT32
)
}
self
.
outputs
=
{
'Out'
:
np
.
argmax
(
self
.
x
,
axis
=
self
.
axis
).
astype
(
"int32"
)
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
class
TestArgMaxAPI
(
unittest
.
TestCase
):
def
initTestCase
(
self
):
self
.
dims
=
(
3
,
4
,
5
)
self
.
dtype
=
'float32'
self
.
axis
=
0
def
setUp
(
self
):
self
.
initTestCase
()
self
.
__class__
.
use_mlu
=
True
self
.
place
=
[
paddle
.
MLUPlace
(
0
)]
def
test_dygraph_api
(
self
):
def
run
(
place
):
paddle
.
disable_static
(
place
)
np
.
random
.
seed
(
2022
)
numpy_input
=
(
np
.
random
.
random
(
self
.
dims
)).
astype
(
self
.
dtype
)
tensor_input
=
paddle
.
to_tensor
(
numpy_input
)
numpy_output
=
np
.
argmax
(
numpy_input
,
axis
=
self
.
axis
)
paddle_output
=
paddle
.
argmax
(
tensor_input
,
axis
=
self
.
axis
)
self
.
assertEqual
(
np
.
allclose
(
numpy_output
,
paddle_output
.
numpy
()),
True
)
paddle
.
enable_static
()
for
place
in
self
.
place
:
run
(
place
)
class
TestArgMaxAPI_2
(
unittest
.
TestCase
):
def
initTestCase
(
self
):
self
.
dims
=
(
3
,
4
,
5
)
self
.
dtype
=
'float32'
self
.
axis
=
0
self
.
keep_dims
=
True
def
setUp
(
self
):
self
.
initTestCase
()
self
.
__class__
.
use_mlu
=
True
self
.
place
=
[
paddle
.
MLUPlace
(
0
)]
def
test_dygraph_api
(
self
):
def
run
(
place
):
paddle
.
disable_static
(
place
)
np
.
random
.
seed
(
2022
)
numpy_input
=
(
np
.
random
.
random
(
self
.
dims
)).
astype
(
self
.
dtype
)
tensor_input
=
paddle
.
to_tensor
(
numpy_input
)
numpy_output
=
np
.
argmax
(
numpy_input
,
axis
=
self
.
axis
).
reshape
(
1
,
4
,
5
)
paddle_output
=
paddle
.
argmax
(
tensor_input
,
axis
=
self
.
axis
,
keepdim
=
self
.
keep_dims
)
self
.
assertEqual
(
np
.
allclose
(
numpy_output
,
paddle_output
.
numpy
()),
True
)
self
.
assertEqual
(
numpy_output
.
shape
,
paddle_output
.
numpy
().
shape
)
paddle
.
enable_static
()
for
place
in
self
.
place
:
run
(
place
)
class
TestArgMaxAPI_3
(
unittest
.
TestCase
):
def
initTestCase
(
self
):
self
.
dims
=
(
1
,
9
)
self
.
dtype
=
'float32'
def
setUp
(
self
):
self
.
initTestCase
()
self
.
__class__
.
use_mlu
=
True
self
.
place
=
[
paddle
.
MLUPlace
(
0
)]
def
test_dygraph_api
(
self
):
def
run
(
place
):
paddle
.
disable_static
(
place
)
np
.
random
.
seed
(
2022
)
numpy_input
=
(
np
.
random
.
random
(
self
.
dims
)).
astype
(
self
.
dtype
)
tensor_input
=
paddle
.
to_tensor
(
numpy_input
)
numpy_output
=
np
.
argmax
(
numpy_input
).
reshape
([
1
])
paddle_output
=
paddle
.
argmax
(
tensor_input
)
self
.
assertEqual
(
np
.
allclose
(
numpy_output
,
paddle_output
.
numpy
()),
True
)
self
.
assertEqual
(
numpy_output
.
shape
,
paddle_output
.
numpy
().
shape
)
paddle
.
enable_static
()
for
place
in
self
.
place
:
run
(
place
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录