Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
b151d90b
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b151d90b
编写于
9月 29, 2018
作者:
X
Xin Pan
提交者:
GitHub
9月 29, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #13661 from velconia/10_fix_api_local
10 fix api local
上级
598b2d1f
67558c59
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
225 addition
and
67 deletion
+225
-67
paddle/fluid/API.spec
paddle/fluid/API.spec
+6
-6
python/paddle/fluid/layers/control_flow.py
python/paddle/fluid/layers/control_flow.py
+1
-1
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+218
-54
python/paddle/fluid/layers/ops.py
python/paddle/fluid/layers/ops.py
+0
-6
未找到文件。
paddle/fluid/API.spec
浏览文件 @
b151d90b
...
@@ -160,6 +160,12 @@ paddle.fluid.layers.gaussian_random_batch_size_like ArgSpec(args=['input', 'shap
...
@@ -160,6 +160,12 @@ paddle.fluid.layers.gaussian_random_batch_size_like ArgSpec(args=['input', 'shap
paddle.fluid.layers.sum ArgSpec(args=['x', 'use_mkldnn'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.layers.sum ArgSpec(args=['x', 'use_mkldnn'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.layers.slice ArgSpec(args=['input', 'axes', 'starts', 'ends'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.slice ArgSpec(args=['input', 'axes', 'starts', 'ends'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.shape ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.shape ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.logical_and ArgSpec(args=['x', 'y', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.logical_or ArgSpec(args=['x', 'y', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.logical_xor ArgSpec(args=['x', 'y', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.logical_not ArgSpec(args=['x', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.clip ArgSpec(args=['x', 'min', 'max', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.clip_by_norm ArgSpec(args=['x', 'max_norm', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None)
...
@@ -225,12 +231,6 @@ paddle.fluid.layers.is_empty ArgSpec(args=['x', 'cond'], varargs=None, keywords=
...
@@ -225,12 +231,6 @@ paddle.fluid.layers.is_empty ArgSpec(args=['x', 'cond'], varargs=None, keywords=
paddle.fluid.layers.mean ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.mean ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.mul ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.mul ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sigmoid_cross_entropy_with_logits ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sigmoid_cross_entropy_with_logits ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.clip ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.clip_by_norm ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.logical_and ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.logical_or ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.logical_xor ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.logical_not ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.maxout ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.maxout ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sigmoid ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sigmoid ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.logsigmoid ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.logsigmoid ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
...
...
python/paddle/fluid/layers/control_flow.py
浏览文件 @
b151d90b
...
@@ -21,7 +21,7 @@ from .. import core
...
@@ -21,7 +21,7 @@ from .. import core
from
..framework
import
Program
,
Variable
,
Operator
from
..framework
import
Program
,
Variable
,
Operator
from
..layer_helper
import
LayerHelper
,
unique_name
from
..layer_helper
import
LayerHelper
,
unique_name
from
..initializer
import
force_init_on_cpu
from
..initializer
import
force_init_on_cpu
from
.
ops
import
logical_and
,
logical_not
,
logical_or
from
.
nn
import
logical_and
,
logical_not
,
logical_or
import
numpy
import
numpy
import
warnings
import
warnings
import
six
import
six
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
b151d90b
...
@@ -51,7 +51,9 @@ __all__ = [
...
@@ -51,7 +51,9 @@ __all__ = [
'expand'
,
'sequence_concat'
,
'scale'
,
'elementwise_add'
,
'elementwise_div'
,
'expand'
,
'sequence_concat'
,
'scale'
,
'elementwise_add'
,
'elementwise_div'
,
'elementwise_sub'
,
'elementwise_mul'
,
'elementwise_max'
,
'elementwise_min'
,
'elementwise_sub'
,
'elementwise_mul'
,
'elementwise_max'
,
'elementwise_min'
,
'elementwise_pow'
,
'uniform_random_batch_size_like'
,
'gaussian_random'
,
'elementwise_pow'
,
'uniform_random_batch_size_like'
,
'gaussian_random'
,
'sampling_id'
,
'gaussian_random_batch_size_like'
,
'sum'
,
'slice'
,
'shape'
'sampling_id'
,
'gaussian_random_batch_size_like'
,
'sum'
,
'slice'
,
'shape'
,
'logical_and'
,
'logical_or'
,
'logical_xor'
,
'logical_not'
,
'clip'
,
'clip_by_norm'
]
]
...
@@ -953,8 +955,8 @@ def cross_entropy(input, label, soft_label=False, ignore_index=-100):
...
@@ -953,8 +955,8 @@ def cross_entropy(input, label, soft_label=False, ignore_index=-100):
soft_label (bool): a flag indicating whether to
soft_label (bool): a flag indicating whether to
interpretate the given labels as soft
interpretate the given labels as soft
labels. Default: `False`.
labels. Default: `False`.
ignore_index (int): Specifies a target value that is ignored and does
ignore_index (int): Specifies a target value that is ignored and does
not contribute to the input gradient. Only valid
not contribute to the input gradient. Only valid
if soft_label is set to False. Default: -100
if soft_label is set to False. Default: -100
Returns:
Returns:
...
@@ -2714,20 +2716,20 @@ def sequence_pad(x, pad_value, maxlen=None):
...
@@ -2714,20 +2716,20 @@ def sequence_pad(x, pad_value, maxlen=None):
Args:
Args:
x(Variable): Input variable which should contain lod information.
x(Variable): Input variable which should contain lod information.
pad_value(Variable): The Variable that holds values that will be fill
pad_value(Variable): The Variable that holds values that will be fill
into padded steps. It can be a scalar or a tensor whose shape
into padded steps. It can be a scalar or a tensor whose shape
equals to time steps in sequences. If it's a scalar, it will be
equals to time steps in sequences. If it's a scalar, it will be
automatically broadcasted to the shape of time step.
automatically broadcasted to the shape of time step.
maxlen(int, default None): The length of padded sequences. It can be
maxlen(int, default None): The length of padded sequences. It can be
None or any positive int. When it is None, all sequences will be
None or any positive int. When it is None, all sequences will be
padded up to the length of the longest one among them; when it a
padded up to the length of the longest one among them; when it a
certain positive value, it must be greater than the length of the
certain positive value, it must be greater than the length of the
longest original sequence."
longest original sequence."
Returns:
Returns:
Variable: The padded sequence batch and the original lengths before
Variable: The padded sequence batch and the original lengths before
padding. All sequences has the same length.
padding. All sequences has the same length.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -4343,8 +4345,8 @@ def softmax_with_cross_entropy(logits,
...
@@ -4343,8 +4345,8 @@ def softmax_with_cross_entropy(logits,
soft_label is set to true, Label is a Tensor<float/double> with
soft_label is set to true, Label is a Tensor<float/double> with
soft_label (bool): A flag to indicate whether to interpretate the given
soft_label (bool): A flag to indicate whether to interpretate the given
labels as soft labels. By default, `soft_label` is set to False.
labels as soft labels. By default, `soft_label` is set to False.
ignore_index (int): Specifies a target value that is ignored and does
ignore_index (int): Specifies a target value that is ignored and does
not contribute to the input gradient. Only valid
not contribute to the input gradient. Only valid
if soft_label is set to False. Default: -100
if soft_label is set to False. Default: -100
Returns:
Returns:
...
@@ -4601,14 +4603,14 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
...
@@ -4601,14 +4603,14 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
def
squeeze
(
input
,
axes
,
name
=
None
):
def
squeeze
(
input
,
axes
,
name
=
None
):
"""
"""
Remove single-dimensional entries from the shape of a tensor. Takes a
Remove single-dimensional entries from the shape of a tensor. Takes a
parameter axes with a list of axes to squeeze. If axes is not provided, all
parameter axes with a list of axes to squeeze. If axes is not provided, all
the single dimensions will be removed from the shape. If an axis is
the single dimensions will be removed from the shape. If an axis is
selected with shape entry not equal to one, an error is raised.
selected with shape entry not equal to one, an error is raised.
Examples:
Examples:
Case 1:
Case 1:
Given
Given
X.shape = (1, 3, 1, 5)
X.shape = (1, 3, 1, 5)
and
and
axes = [0]
axes = [0]
...
@@ -4617,11 +4619,11 @@ def squeeze(input, axes, name=None):
...
@@ -4617,11 +4619,11 @@ def squeeze(input, axes, name=None):
Case 2:
Case 2:
Given
Given
X.shape = (1, 3, 1, 5)
X.shape = (1, 3, 1, 5)
and
and
axes = []
axes = []
we get:
we get:
Out.shape = (3, 5)
Out.shape = (3, 5)
Args:
Args:
input (Variable): The input variable to be squeezed.
input (Variable): The input variable to be squeezed.
axes (list): List of integers, indicating the dimensions to be squeezed.
axes (list): List of integers, indicating the dimensions to be squeezed.
...
@@ -4651,14 +4653,14 @@ def squeeze(input, axes, name=None):
...
@@ -4651,14 +4653,14 @@ def squeeze(input, axes, name=None):
def
unsqueeze
(
input
,
axes
,
name
=
None
):
def
unsqueeze
(
input
,
axes
,
name
=
None
):
"""
"""
Insert single-dimensional entries to the shape of a tensor. Takes one
Insert single-dimensional entries to the shape of a tensor. Takes one
required argument axes, a list of dimensions that will be inserted.
required argument axes, a list of dimensions that will be inserted.
Dimension indices in axes are as seen in the output tensor.
Dimension indices in axes are as seen in the output tensor.
For example:
For example:
Given a tensor such that tensor with shape [3, 4, 5],
Given a tensor such that tensor with shape [3, 4, 5],
then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
Args:
Args:
input (Variable): The input variable to be unsqueezed.
input (Variable): The input variable to be unsqueezed.
axes (list): List of integers, indicating the dimensions to be inserted.
axes (list): List of integers, indicating the dimensions to be inserted.
...
@@ -5757,39 +5759,39 @@ def pad2d(input,
...
@@ -5757,39 +5759,39 @@ def pad2d(input,
Example:
Example:
Given that X is a channel of image from input:
Given that X is a channel of image from input:
X = [[1, 2, 3],
X = [[1, 2, 3],
[4, 5, 6]]
[4, 5, 6]]
Case 0:
Case 0:
paddings = [0, 1, 2, 3],
paddings = [0, 1, 2, 3],
mode = 'constant'
mode = 'constant'
pad_value = 0
pad_value = 0
Out = [[0, 0, 1, 2, 3, 0, 0, 0]
Out = [[0, 0, 1, 2, 3, 0, 0, 0]
[0, 0, 4, 5, 6, 0, 0, 0]
[0, 0, 4, 5, 6, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0]]
[0, 0, 0, 0, 0, 0, 0, 0]]
Case 1:
Case 1:
paddings = [0, 1, 2, 1],
paddings = [0, 1, 2, 1],
mode = 'reflect'
mode = 'reflect'
Out = [[3, 2, 1, 2, 3, 2]
Out = [[3, 2, 1, 2, 3, 2]
[6, 5, 4, 5, 6, 5]
[6, 5, 4, 5, 6, 5]
[3, 2, 1, 2, 3, 2]]
[3, 2, 1, 2, 3, 2]]
Case 2:
Case 2:
paddings = [0, 1, 2, 1],
paddings = [0, 1, 2, 1],
mode = 'edge'
mode = 'edge'
Out = [[1, 1, 1, 2, 3, 3]
Out = [[1, 1, 1, 2, 3, 3]
[4, 4, 4, 5, 6, 6]
[4, 4, 4, 5, 6, 6]
[4, 4, 4, 5, 6, 6]]
[4, 4, 4, 5, 6, 6]]
Args:
Args:
input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
paddings (tuple|list): The padding size. If padding is a tuple, it must
paddings (tuple|list): The padding size. If padding is a tuple, it must
...
@@ -5988,7 +5990,7 @@ def prelu(x, mode, param_attr=None, name=None):
...
@@ -5988,7 +5990,7 @@ def prelu(x, mode, param_attr=None, name=None):
channel:elements in a channel share same weight
channel:elements in a channel share same weight
element:each element has a weight
element:each element has a weight
name(str|None): A name for this layer(optional). If set None, the layer
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
will be named automatically.
Returns:
Returns:
Variable: The output tensor with the same shape as input.
Variable: The output tensor with the same shape as input.
...
@@ -6166,10 +6168,10 @@ def flatten(x, axis=1, name=None):
...
@@ -6166,10 +6168,10 @@ def flatten(x, axis=1, name=None):
def
sequence_enumerate
(
input
,
win_size
,
pad_value
=
0
,
name
=
None
):
def
sequence_enumerate
(
input
,
win_size
,
pad_value
=
0
,
name
=
None
):
"""
"""
Generate a new sequence for the input index sequence, which enumerates all the
Generate a new sequence for the input index sequence, which enumerates all the
sub-sequences with length `win_size` of the input.
sub-sequences with length `win_size` of the input.
The enumerated sequence has the same 1st dimension with variable `input`, and
The enumerated sequence has the same 1st dimension with variable `input`, and
the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
Examples:
Examples:
Case 1:
Case 1:
Input:
Input:
...
@@ -6296,20 +6298,20 @@ def unstack(x, axis=0, num=None):
...
@@ -6296,20 +6298,20 @@ def unstack(x, axis=0, num=None):
**UnStack Layer**
**UnStack Layer**
This layer unstacks input :code:`x` into several tensors along axis.
This layer unstacks input :code:`x` into several tensors along axis.
If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
raised.
raised.
Args:
Args:
x (Variable): Input variable.
x (Variable): Input variable.
axis (int): The axis along which the input is unstacked.
axis (int): The axis along which the input is unstacked.
num (int|None): The number of output variables.
num (int|None): The number of output variables.
Returns:
Returns:
list(Variable): The unstacked variables.
list(Variable): The unstacked variables.
"""
"""
helper
=
LayerHelper
(
'unstack'
,
**
locals
())
helper
=
LayerHelper
(
'unstack'
,
**
locals
())
...
@@ -6342,21 +6344,21 @@ def expand(x, expand_times, name=None):
...
@@ -6342,21 +6344,21 @@ def expand(x, expand_times, name=None):
.. code-block:: text
.. code-block:: text
Input(X) is a 3-D tensor with shape [2, 3, 1]:
Input(X) is a 3-D tensor with shape [2, 3, 1]:
[
[
[[1], [2], [3]],
[[1], [2], [3]],
[[4], [5], [6]]
[[4], [5], [6]]
]
]
Attr(expand_times): [1, 2, 2]
Attr(expand_times): [1, 2, 2]
Output(Out) is a 3-D tensor with shape [2, 6, 2]:
Output(Out) is a 3-D tensor with shape [2, 6, 2]:
[
[
[[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
[[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
[[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
[[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
]
]
Args:
Args:
x (Variable): A tensor with rank in [1, 6].
x (Variable): A tensor with rank in [1, 6].
expand_times (list|tuple): Expand times number for each dimension.
expand_times (list|tuple): Expand times number for each dimension.
...
@@ -6658,7 +6660,7 @@ def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
...
@@ -6658,7 +6660,7 @@ def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
bias(${bias_type}): ${bias_comment}
bias(${bias_type}): ${bias_comment}
bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
act(basestring|None): Activation applied to the output.
act(basestring|None): Activation applied to the output.
name(basestring|None): Name of the output.
name(basestring|None): Name of the output.
Returns:
Returns:
out(${out_type}): ${out_comment}
out(${out_type}): ${out_comment}
...
@@ -6722,3 +6724,165 @@ for func in [
...
@@ -6722,3 +6724,165 @@ for func in [
"act (basestring|None): Activation applied to the output."
,
"act (basestring|None): Activation applied to the output."
,
"name (basestring|None): Name of the output."
"name (basestring|None): Name of the output."
])
])
def
_logical_op
(
op_name
,
x
,
y
,
out
=
None
,
name
=
None
,
binary_op
=
True
):
helper
=
LayerHelper
(
op_name
,
**
locals
())
if
binary_op
:
assert
x
.
dtype
==
y
.
dtype
if
out
is
None
:
if
name
is
None
:
out
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
if
binary_op
:
helper
.
append_op
(
type
=
op_name
,
inputs
=
{
"X"
:
x
,
"Y"
:
y
},
outputs
=
{
"Out"
:
out
})
else
:
helper
.
append_op
(
type
=
op_name
,
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
out
})
return
out
@
templatedoc
()
def
logical_and
(
x
,
y
,
out
=
None
,
name
=
None
):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
y(${y_type}): ${y_comment}
out(Tensor): Output tensor of logical operation.
name(basestring|None): Name of the output.
Returns:
out(${out_type}): ${out_comment}
"""
return
_logical_op
(
op_name
=
"logical_and"
,
x
=
x
,
y
=
y
,
name
=
name
,
out
=
out
,
binary_op
=
True
)
@
templatedoc
()
def
logical_or
(
x
,
y
,
out
=
None
,
name
=
None
):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
y(${y_type}): ${y_comment}
out(Tensor): Output tensor of logical operation.
name(basestring|None): Name of the output.
Returns:
out(${out_type}): ${out_comment}
"""
return
_logical_op
(
op_name
=
"logical_or"
,
x
=
x
,
y
=
y
,
name
=
name
,
out
=
out
,
binary_op
=
True
)
@
templatedoc
()
def
logical_xor
(
x
,
y
,
out
=
None
,
name
=
None
):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
y(${y_type}): ${y_comment}
out(Tensor): Output tensor of logical operation.
name(basestring|None): Name of the output.
Returns:
out(${out_type}): ${out_comment}
"""
return
_logical_op
(
op_name
=
"logical_xor"
,
x
=
x
,
y
=
y
,
name
=
name
,
out
=
out
,
binary_op
=
True
)
@
templatedoc
()
def
logical_not
(
x
,
out
=
None
,
name
=
None
):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
out(Tensor): Output tensor of logical operation.
name(basestring|None): Name of the output.
Returns:
out(${out_type}): ${out_comment}
"""
return
_logical_op
(
op_name
=
"logical_not"
,
x
=
x
,
y
=
None
,
name
=
name
,
out
=
out
,
binary_op
=
False
)
@
templatedoc
()
def
clip
(
x
,
min
,
max
,
name
=
None
):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
min(${min_type}): ${min_comment}
max(${max_type}): ${max_comment}
name(basestring|None): Name of the output.
Returns:
out(${out_type}): ${out_comment}
"""
helper
=
LayerHelper
(
"clip"
,
**
locals
())
if
name
is
None
:
out
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
helper
.
append_op
(
type
=
"clip"
,
inputs
=
{
"X"
:
x
},
attrs
=
{
"min"
:
min
,
"max"
:
max
},
outputs
=
{
"Out"
:
out
})
return
out
@
templatedoc
()
def
clip_by_norm
(
x
,
max_norm
,
name
=
None
):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
max_norm(${max_norm_type}): ${max_norm_comment}
name(basestring|None): Name of the output.
Returns:
out(${out_type}): ${out_comment}
"""
helper
=
LayerHelper
(
"clip_by_norm"
,
**
locals
())
if
name
is
None
:
out
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
x
.
dtype
,
persistable
=
False
)
helper
.
append_op
(
type
=
"clip_by_norm"
,
inputs
=
{
"X"
:
x
},
attrs
=
{
"max_norm"
:
max_norm
},
outputs
=
{
"Out"
:
out
})
return
out
python/paddle/fluid/layers/ops.py
浏览文件 @
b151d90b
...
@@ -39,12 +39,6 @@ __all__ = [
...
@@ -39,12 +39,6 @@ __all__ = [
'mean'
,
'mean'
,
'mul'
,
'mul'
,
'sigmoid_cross_entropy_with_logits'
,
'sigmoid_cross_entropy_with_logits'
,
'clip'
,
'clip_by_norm'
,
'logical_and'
,
'logical_or'
,
'logical_xor'
,
'logical_not'
,
'maxout'
,
'maxout'
,
]
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录