Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
b07f469b
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b07f469b
编写于
6月 10, 2022
作者:
F
fwenguang
提交者:
GitHub
6月 10, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU] add randperm kernel and reduce_prod kernel (#43357)
上级
41bb70fb
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
380 addition
and
0 deletion
+380
-0
paddle/fluid/operators/randperm_op_mlu.cc
paddle/fluid/operators/randperm_op_mlu.cc
+23
-0
paddle/fluid/operators/reduce_ops/reduce_prod_op_mlu.cc
paddle/fluid/operators/reduce_ops/reduce_prod_op_mlu.cc
+36
-0
python/paddle/fluid/tests/unittests/mlu/test_randperm_op_mlu.py
.../paddle/fluid/tests/unittests/mlu/test_randperm_op_mlu.py
+222
-0
python/paddle/fluid/tests/unittests/mlu/test_reduce_prod_op_mlu.py
...ddle/fluid/tests/unittests/mlu/test_reduce_prod_op_mlu.py
+99
-0
未找到文件。
paddle/fluid/operators/randperm_op_mlu.cc
0 → 100644
浏览文件 @
b07f469b
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/randperm_op.h"
template
<
typename
T
>
using
kernel
=
paddle
::
operators
::
RandpermKernel
<
paddle
::
platform
::
MLUDeviceContext
,
T
>
;
REGISTER_OP_MLU_KERNEL
(
randperm
,
kernel
<
int64_t
>
,
kernel
<
int
>
,
kernel
<
float
>
,
kernel
<
double
>
);
paddle/fluid/operators/reduce_ops/reduce_prod_op_mlu.cc
0 → 100644
浏览文件 @
b07f469b
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reduce_ops/reduce_op_mlu.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
ReduceMeanMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
MLUReduceOp
<
T
>
(
context
,
"reduce_prod"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_MLU_KERNEL
(
reduce_prod
,
ops
::
ReduceMeanMLUKernel
<
float
>
,
ops
::
ReduceMeanMLUKernel
<
plat
::
float16
>
,
ops
::
ReduceMeanMLUKernel
<
int
>
);
python/paddle/fluid/tests/unittests/mlu/test_randperm_op_mlu.py
0 → 100644
浏览文件 @
b07f469b
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
'..'
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid.core
as
core
from
paddle.static
import
program_guard
,
Program
import
os
paddle
.
enable_static
()
def
check_randperm_out
(
n
,
data_np
):
assert
isinstance
(
data_np
,
np
.
ndarray
),
\
"The input data_np should be np.ndarray."
gt_sorted
=
np
.
arange
(
n
)
out_sorted
=
np
.
sort
(
data_np
)
return
list
(
gt_sorted
==
out_sorted
)
def
error_msg
(
data_np
):
return
"The sorted ground truth and sorted out should "
+
\
"be equal, out = "
+
str
(
data_np
)
def
convert_dtype
(
dtype_str
):
dtype_str_list
=
[
"int32"
,
"int64"
,
"float32"
,
"float64"
]
dtype_num_list
=
[
core
.
VarDesc
.
VarType
.
INT32
,
core
.
VarDesc
.
VarType
.
INT64
,
core
.
VarDesc
.
VarType
.
FP32
,
core
.
VarDesc
.
VarType
.
FP64
]
assert
dtype_str
in
dtype_str_list
,
dtype_str
+
\
" should in "
+
str
(
dtype_str_list
)
return
dtype_num_list
[
dtype_str_list
.
index
(
dtype_str
)]
class
TestRandpermOp
(
OpTest
):
""" Test randperm op."""
def
setUp
(
self
):
self
.
op_type
=
"randperm"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
python_api
=
paddle
.
randperm
self
.
n
=
200
self
.
dtype
=
"int64"
self
.
inputs
=
{}
self
.
outputs
=
{
"Out"
:
np
.
zeros
((
self
.
n
)).
astype
(
self
.
dtype
)}
self
.
init_attrs
()
self
.
attrs
=
{
"n"
:
self
.
n
,
"dtype"
:
convert_dtype
(
self
.
dtype
),
}
def
init_attrs
(
self
):
pass
def
test_check_output
(
self
):
self
.
check_output_with_place_customized
(
self
.
verify_output
,
self
.
place
)
def
verify_output
(
self
,
outs
):
out_np
=
np
.
array
(
outs
[
0
])
self
.
assertTrue
(
check_randperm_out
(
self
.
n
,
out_np
),
msg
=
error_msg
(
out_np
))
class
TestRandpermOpN
(
TestRandpermOp
):
def
init_attrs
(
self
):
self
.
n
=
10000
class
TestRandpermOpInt32
(
TestRandpermOp
):
def
init_attrs
(
self
):
self
.
dtype
=
"int32"
class
TestRandpermOpFloat32
(
TestRandpermOp
):
def
init_attrs
(
self
):
self
.
dtype
=
"float32"
class
TestRandpermOpFloat64
(
TestRandpermOp
):
def
init_attrs
(
self
):
self
.
dtype
=
"float64"
class
TestRandpermOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
self
.
assertRaises
(
ValueError
,
paddle
.
randperm
,
-
3
)
self
.
assertRaises
(
TypeError
,
paddle
.
randperm
,
10
,
'int8'
)
class
TestRandpermAPI
(
unittest
.
TestCase
):
def
test_out
(
self
):
n
=
10
place
=
paddle
.
MLUPlace
(
0
)
with
program_guard
(
Program
(),
Program
()):
x1
=
paddle
.
randperm
(
n
)
x2
=
paddle
.
randperm
(
n
,
'float32'
)
exe
=
paddle
.
static
.
Executor
(
place
)
res
=
exe
.
run
(
fetch_list
=
[
x1
,
x2
])
self
.
assertEqual
(
res
[
0
].
dtype
,
np
.
int64
)
self
.
assertEqual
(
res
[
1
].
dtype
,
np
.
float32
)
self
.
assertTrue
(
check_randperm_out
(
n
,
res
[
0
]))
self
.
assertTrue
(
check_randperm_out
(
n
,
res
[
1
]))
class
TestRandpermImperative
(
unittest
.
TestCase
):
def
test_out
(
self
):
paddle
.
disable_static
()
n
=
10
for
dtype
in
[
'int32'
,
np
.
int64
,
'float32'
,
'float64'
]:
data_p
=
paddle
.
randperm
(
n
,
dtype
)
data_np
=
data_p
.
numpy
()
self
.
assertTrue
(
check_randperm_out
(
n
,
data_np
),
msg
=
error_msg
(
data_np
))
paddle
.
enable_static
()
class
TestRandomValue
(
unittest
.
TestCase
):
def
test_fixed_random_number
(
self
):
# Test GPU Fixed random number, which is generated by 'curandStatePhilox4_32_10_t'
if
not
paddle
.
is_compiled_with_cuda
():
return
print
(
"Test Fixed Random number on GPU------>"
)
paddle
.
disable_static
()
paddle
.
set_device
(
'gpu'
)
paddle
.
seed
(
2021
)
x
=
paddle
.
randperm
(
30000
,
dtype
=
'int32'
).
numpy
()
expect
=
[
24562
,
8409
,
9379
,
10328
,
20503
,
18059
,
9681
,
21883
,
11783
,
27413
]
self
.
assertTrue
(
np
.
array_equal
(
x
[
0
:
10
],
expect
))
expect
=
[
29477
,
27100
,
9643
,
16637
,
8605
,
16892
,
27767
,
2724
,
1612
,
13096
]
self
.
assertTrue
(
np
.
array_equal
(
x
[
10000
:
10010
],
expect
))
expect
=
[
298
,
4104
,
16479
,
22714
,
28684
,
7510
,
14667
,
9950
,
15940
,
28343
]
self
.
assertTrue
(
np
.
array_equal
(
x
[
20000
:
20010
],
expect
))
x
=
paddle
.
randperm
(
30000
,
dtype
=
'int64'
).
numpy
()
expect
=
[
6587
,
1909
,
5525
,
23001
,
6488
,
14981
,
14355
,
3083
,
29561
,
8171
]
self
.
assertTrue
(
np
.
array_equal
(
x
[
0
:
10
],
expect
))
expect
=
[
23460
,
12394
,
22501
,
5427
,
20185
,
9100
,
5127
,
1651
,
25806
,
4818
]
self
.
assertTrue
(
np
.
array_equal
(
x
[
10000
:
10010
],
expect
))
expect
=
[
5829
,
4508
,
16193
,
24836
,
8526
,
242
,
9984
,
9243
,
1977
,
11839
]
self
.
assertTrue
(
np
.
array_equal
(
x
[
20000
:
20010
],
expect
))
x
=
paddle
.
randperm
(
30000
,
dtype
=
'float32'
).
numpy
()
expect
=
[
5154.
,
10537.
,
14362.
,
29843.
,
27185.
,
28399.
,
27561.
,
4144.
,
22906.
,
10705.
]
self
.
assertTrue
(
np
.
array_equal
(
x
[
0
:
10
],
expect
))
expect
=
[
1958.
,
18414.
,
20090.
,
21910.
,
22746.
,
27346.
,
22347.
,
3002.
,
4564.
,
26991.
]
self
.
assertTrue
(
np
.
array_equal
(
x
[
10000
:
10010
],
expect
))
expect
=
[
25580.
,
12606.
,
553.
,
16387.
,
29536.
,
4241.
,
20946.
,
16899.
,
16339.
,
4662.
]
self
.
assertTrue
(
np
.
array_equal
(
x
[
20000
:
20010
],
expect
))
x
=
paddle
.
randperm
(
30000
,
dtype
=
'float64'
).
numpy
()
expect
=
[
19051.
,
2449.
,
21940.
,
11121.
,
282.
,
7330.
,
13747.
,
24321.
,
21147.
,
9163.
]
self
.
assertTrue
(
np
.
array_equal
(
x
[
0
:
10
],
expect
))
expect
=
[
15483.
,
1315.
,
5723.
,
20954.
,
13251.
,
25539.
,
5074.
,
1823.
,
14945.
,
17624.
]
self
.
assertTrue
(
np
.
array_equal
(
x
[
10000
:
10010
],
expect
))
expect
=
[
10516.
,
2552.
,
29970.
,
5941.
,
986.
,
8007.
,
24805.
,
26753.
,
12202.
,
21404.
]
self
.
assertTrue
(
np
.
array_equal
(
x
[
20000
:
20010
],
expect
))
paddle
.
enable_static
()
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_reduce_prod_op_mlu.py
0 → 100644
浏览文件 @
b07f469b
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
paddle
.
enable_static
()
def
raw_reduce_prod
(
x
,
dim
=
[
0
],
keep_dim
=
False
):
return
paddle
.
prod
(
x
,
dim
,
keep_dim
)
class
TestProdOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_prod"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
python_api
=
raw_reduce_prod
self
.
init_data_type
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
self
.
data_type
)}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
prod
(
axis
=
0
)}
def
init_data_type
(
self
):
self
.
data_type
=
"float32"
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
check_eager
=
False
)
class
TestProd6DOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_prod"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
python_api
=
raw_reduce_prod
self
.
init_data_type
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
2
,
3
,
4
,
2
)).
astype
(
self
.
data_type
)
}
self
.
attrs
=
{
'dim'
:
[
2
,
3
,
4
]}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
prod
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
def
init_data_type
(
self
):
self
.
data_type
=
"float32"
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
check_eager
=
False
)
class
TestProd8DOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"reduce_prod"
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
python_api
=
raw_reduce_prod
self
.
init_data_type
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
(
2
,
5
,
3
,
2
,
2
,
3
,
4
,
2
)).
astype
(
self
.
data_type
)
}
self
.
attrs
=
{
'dim'
:
[
2
,
3
,
4
]}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
].
prod
(
axis
=
tuple
(
self
.
attrs
[
'dim'
]))
}
def
init_data_type
(
self
):
self
.
data_type
=
"float32"
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
check_eager
=
False
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录