Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
adfaf9a6
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
adfaf9a6
编写于
7月 02, 2018
作者:
W
Wu Yi
提交者:
GitHub
7月 02, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
make transpiler test reliable (#11848)
* make transpiler test reliable * add more * follow comments
上级
58560622
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
235 addition
and
184 deletion
+235
-184
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
+222
-25
python/paddle/fluid/tests/unittests/test_simple_dist_transpiler.py
...ddle/fluid/tests/unittests/test_simple_dist_transpiler.py
+0
-80
python/paddle/fluid/tests/unittests/transpiler_test.py
python/paddle/fluid/tests/unittests/transpiler_test.py
+0
-73
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+13
-6
未找到文件。
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
浏览文件 @
adfaf9a6
...
...
@@ -15,51 +15,248 @@
import
unittest
import
paddle.fluid
as
fluid
from
paddle.fluid.transpiler.distribute_transpiler
import
delete_ops
import
traceback
from
transpiler_test
import
TranspilerTest
class
TestDistTranspiler
(
TranspilerTest
):
class
TranspilerTest
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
current_pserver_ep
=
"127.0.0.1:6174"
self
.
trainer_id
=
0
self
.
trainers
=
2
self
.
pservers
=
2
# NOTE: we do not actually bind this port
self
.
pserver_eps
=
"127.0.0.1:6174,127.0.0.1:6175"
self
.
pserver1_ep
=
"127.0.0.1:6174"
self
.
pserver2_ep
=
"127.0.0.1:6175"
self
.
slice_var_up
=
True
self
.
sync_mode
=
True
self
.
transpiler
=
None
def
net_conf
(
self
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
1000
],
dtype
=
'float32'
)
y_predict
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
1000
,
act
=
None
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'fc_w'
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
'fc_b'
))
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
dtype
=
'float32'
)
cost
=
fluid
.
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
y
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.1
)
sgd_optimizer
.
minimize
(
avg_cost
)
return
def
get_main_program
(
self
):
main
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
):
self
.
net_conf
()
self
.
origin_prog
=
main
.
clone
()
return
main
def
get_trainer
(
self
):
t
=
self
.
_transpiler_instance
()
return
t
.
get_trainer_program
()
def
get_pserver
(
self
,
ep
):
t
=
self
.
_transpiler_instance
()
pserver
=
t
.
get_pserver_program
(
ep
)
startup
=
t
.
get_startup_program
(
ep
,
pserver
)
return
pserver
,
startup
def
_transpiler_instance
(
self
):
if
not
self
.
transpiler
:
main
=
self
.
get_main_program
()
self
.
transpiler
=
fluid
.
DistributeTranspiler
()
self
.
transpiler
.
transpile
(
self
.
trainer_id
,
program
=
main
,
pservers
=
self
.
pserver_eps
,
trainers
=
self
.
trainers
,
slice_var_up
=
self
.
slice_var_up
,
sync_mode
=
self
.
sync_mode
)
return
self
.
transpiler
class
TestBasicModel
(
TranspilerTest
):
def
test_transpiler
(
self
):
pserver
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
)
pserver2
,
startup2
=
self
.
get_pserver
(
self
.
pserver2_ep
)
trainer
=
self
.
get_trainer
()
pserver
,
startup
=
self
.
get_pserver
(
self
.
current_pserver_ep
)
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
global_block
().
ops
],
self
.
get_expect_trainer_ops
())
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
global_block
().
ops
],
[
'mul'
,
'elementwise_add'
,
'elementwise_sub'
,
'square'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'square_grad'
,
'elementwise_sub_grad'
,
'elementwise_add_grad'
,
'send'
,
'mul_grad'
,
'split_byref'
,
'send'
,
'send_barrier'
,
'recv'
,
'recv'
,
'fetch_barrier'
,
'concat'
])
self
.
assertEqual
(
len
(
pserver
.
blocks
),
3
)
# block0: listen_and_serv
self
.
assertEqual
([
op
.
type
for
op
in
pserver
.
blocks
[
0
].
ops
],
[
"listen_and_serv"
])
# block2: optimize pass
# block
1~
2: optimize pass
self
.
assertEqual
([
op
.
type
for
op
in
pserver
.
blocks
[
1
].
ops
],
[
"sum"
,
"scale"
,
"sgd"
])
# confirm startup program
self
.
assertEqual
([
op
.
type
for
op
in
startup
.
global_block
().
ops
],
[
"fill_constant"
,
"fill_constant"
,
"uniform_random"
,
"uniform_random"
])
self
.
assertEqual
([
op
.
type
for
op
in
startup
.
global_block
().
ops
],
[
"fill_constant"
,
"fill_constant"
,
"uniform_random"
])
# the variable #fc_w will be split into two blocks
fc_w_var
=
startup
.
global_block
().
var
(
"fc_w.block1"
)
self
.
assertEqual
(
fc_w_var
.
shape
,
(
500
,
1000
))
# all parameters should be optimized on pserver
pserver_params
=
[]
for
prog
in
[
pserver
,
pserver2
]:
for
blk
in
prog
.
blocks
:
for
op
in
blk
.
ops
:
if
"Param"
in
op
.
input_names
:
param_name
=
op
.
input
(
"Param"
)[
0
]
is_block_idx
=
param_name
.
find
(
".block"
)
if
is_block_idx
!=
-
1
:
origin_param_name
=
param_name
[:
is_block_idx
]
else
:
origin_param_name
=
param_name
pserver_params
.
append
(
origin_param_name
)
trainer_params
=
[]
for
op
in
self
.
origin_prog
.
global_block
().
ops
:
if
"Param"
in
op
.
input_names
:
trainer_params
.
append
(
op
.
input
(
"Param"
)[
0
])
self
.
assertEqual
(
set
(
pserver_params
),
set
(
trainer_params
))
class
TestNoSliceVar
(
TranspilerTest
):
def
setUp
(
self
):
super
(
TestNoSliceVar
,
self
).
setUp
()
self
.
slice_var_up
=
False
def
test_transpiler
(
self
):
_
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
)
_
,
startup2
=
self
.
get_pserver
(
self
.
pserver2_ep
)
if
startup
.
global_block
().
vars
.
has_key
(
"fc_w"
):
fc_w_var
=
startup
.
global_block
().
vars
[
"fc_w"
]
elif
startup2
.
global_block
().
vars
.
has_key
(
"fc_w"
):
fc_w_var
=
startup2
.
global_block
().
vars
[
"fc_w"
]
self
.
assertEqual
(
fc_w_var
.
shape
,
(
1000
,
1000
))
def
get_expect_trainer_ops
(
self
):
trainer
=
fluid
.
Program
()
with
fluid
.
program_guard
(
trainer
):
optimize_ops
,
params_grads
=
self
.
net_conf
()
class
TestLRDecay
(
TranspilerTest
):
def
net_conf
(
self
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
1000
],
dtype
=
'float32'
)
y_predict
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
1000
,
act
=
None
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'fc_w'
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
'fc_b'
))
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
dtype
=
'float32'
)
cost
=
fluid
.
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
y
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
fluid
.
layers
.
exponential_decay
(
learning_rate
=
1.0
,
decay_steps
=
2100
,
decay_rate
=
0.1
,
staircase
=
True
))
sgd_optimizer
.
minimize
(
avg_cost
)
return
def
test_transpiler
(
self
):
pserver
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
)
trainer
=
self
.
get_trainer
()
self
.
assertEqual
(
len
(
pserver
.
blocks
),
4
)
lr_decay_ops
=
[
op
.
type
for
op
in
pserver
.
blocks
[
1
].
ops
]
self
.
assertEqual
(
lr_decay_ops
,
[
"increment"
,
"cast"
,
"fill_constant"
,
"elementwise_div"
,
"floor"
,
"fill_constant"
,
"elementwise_pow"
,
"fill_constant"
,
"elementwise_mul"
])
class
TestLRDecayConditional
(
TranspilerTest
):
def
net_conf
(
self
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
1000
],
dtype
=
'float32'
)
y_predict
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
1000
,
act
=
None
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'fc_w'
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
'fc_b'
))
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
dtype
=
'float32'
)
cost
=
fluid
.
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
y
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
([
10000
,
20000
],
[
1.0
,
0.5
,
1.0
]))
sgd_optimizer
.
minimize
(
avg_cost
)
return
def
test_transpiler
(
self
):
pserver
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
)
trainer
=
self
.
get_trainer
()
serv_op
=
pserver
.
blocks
[
0
].
ops
[
0
]
sub_blocks
=
[]
optimize_blocks
=
[]
for
b
in
serv_op
.
attrs
[
"optimize_blocks"
]:
optimize_blocks
.
append
(
b
.
idx
)
for
b
in
pserver
.
blocks
:
if
b
.
idx
not
in
optimize_blocks
:
sub_blocks
.
append
(
b
.
idx
)
self
.
assertEqual
(
len
(
pserver
.
blocks
),
7
)
lr_decay_ops
=
[
op
.
type
for
op
in
pserver
.
blocks
[
1
].
ops
]
self
.
assertEqual
(
lr_decay_ops
,
[
"increment"
,
"cast"
,
"fill_constant"
,
"fill_constant"
,
"less_than"
,
"logical_not"
,
"conditional_block"
,
"fill_constant"
,
"fill_constant"
,
"less_than"
,
"logical_not"
,
"logical_and"
,
"logical_and"
,
"conditional_block"
,
"fill_constant"
,
"conditional_block"
])
# test the condition blocks
for
b
in
sub_blocks
:
if
b
==
0
:
continue
block
=
pserver
.
blocks
[
b
]
self
.
assertEqual
([
op
.
type
for
op
in
block
.
ops
],
[
"assign"
])
class
TestL2Decay
(
TranspilerTest
):
def
net_conf
(
self
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
1000
],
dtype
=
'float32'
)
y_predict
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
1000
,
act
=
None
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'fc_w'
,
regularizer
=
fluid
.
regularizer
.
L2Decay
(),
gradient_clip
=
fluid
.
clip
.
GradientClipByValue
(
0.1
)),
bias_attr
=
fluid
.
ParamAttr
(
name
=
'fc_b'
))
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
dtype
=
'float32'
)
cost
=
fluid
.
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
y
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.1
)
sgd_optimizer
.
minimize
(
avg_cost
)
return
def
test_transpiler
(
self
):
pserver
,
startup
=
self
.
get_pserver
(
self
.
pserver1_ep
)
trainer
=
self
.
get_trainer
()
self
.
assertEqual
(
len
(
pserver
.
blocks
),
3
)
self
.
assertEqual
([
op
.
type
for
op
in
pserver
.
blocks
[
1
].
ops
],
[
"sum"
,
"scale"
,
"clip"
,
"sgd"
])
self
.
assertEqual
(
[
op
.
type
for
op
in
pserver
.
blocks
[
2
].
ops
],
[
"sum"
,
"scale"
,
"clip"
,
"scale"
,
"elementwise_add"
,
"sgd"
])
# TODO(typhoonzero): test clipping and L2Decay ops are removed from trainer
delete_ops
(
trainer
.
global_block
(),
optimize_ops
)
ops
=
[
op
.
type
for
op
in
trainer
.
global_block
().
ops
]
+
[
"split_byref"
,
"send"
,
"send_barrier"
,
"recv"
,
"recv"
,
"fetch_barrier"
,
"concat"
]
ops
.
insert
(
ops
.
index
(
"elementwise_add_grad"
)
+
1
,
"send"
)
return
ops
# FIXME(typhoonzero): need to add test for async case:
# see https://github.com/PaddlePaddle/Paddle/issues/11691
class
TestAsyncSGD
(
TranspilerTest
):
pass
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/test_simple_dist_transpiler.py
已删除
100644 → 0
浏览文件 @
58560622
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddle.fluid.transpiler.distribute_transpiler
import
delete_ops
from
transpiler_test
import
TranspilerTest
class
TestSimpleDistTranspiler
(
TranspilerTest
):
def
setUp
(
self
):
self
.
current_pserver_ep
=
"127.0.0.1:6175"
def
test_simple_transpiler
(
self
):
np
.
random
.
seed
(
1
)
trainer
=
self
.
get_trainer
()
pserver
,
startup
=
self
.
get_pserver
(
self
.
current_pserver_ep
)
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
global_block
().
ops
],
self
.
get_expect_trainer_ops
())
self
.
assertEqual
(
len
(
pserver
.
blocks
),
2
)
# block0: listen_and_serv
self
.
assertEqual
([
op
.
type
for
op
in
pserver
.
blocks
[
0
].
ops
],
[
"listen_and_serv"
])
# block1: optimize pass
self
.
assertEqual
([
op
.
type
for
op
in
pserver
.
blocks
[
1
].
ops
],
[
"sum"
,
"scale"
,
"sgd"
])
# confirm startup program
self
.
assertEqual
([
op
.
type
for
op
in
startup
.
global_block
().
ops
],
[
"fill_constant"
,
"uniform_random"
,
"uniform_random"
])
# the variable #fc_w will NOT be splited
fc_w_var
=
startup
.
global_block
().
var
(
"fc_w@GRAD"
)
self
.
assertEqual
(
fc_w_var
.
shape
,
(
1000
,
1000
))
fc_w_var
=
startup
.
global_block
().
var
(
"fc_w@GRAD.trainer_0"
)
self
.
assertEqual
(
fc_w_var
.
shape
,
(
1000
,
1000
))
def
get_expect_trainer_ops
(
self
):
trainer
=
fluid
.
Program
()
with
fluid
.
program_guard
(
trainer
):
optimize_ops
,
params_grads
=
self
.
net_conf
()
delete_ops
(
trainer
.
global_block
(),
optimize_ops
)
ops
=
[
op
.
type
for
op
in
trainer
.
global_block
().
ops
]
+
[
"send"
,
"send_barrier"
,
"recv"
,
"recv"
,
"fetch_barrier"
]
ops
.
insert
(
ops
.
index
(
"elementwise_add_grad"
)
+
1
,
"send"
)
return
ops
def
_transpiler_instance
(
self
):
main
=
self
.
get_main_program
()
t
=
fluid
.
DistributeTranspiler
()
t
.
transpile
(
self
.
trainer_id
,
program
=
main
,
pservers
=
self
.
pserver_eps
,
trainers
=
self
.
trainers
,
slice_var_up
=
False
)
return
t
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/transpiler_test.py
已删除
100644 → 0
浏览文件 @
58560622
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
paddle.fluid.layers
as
layers
class
TranspilerTest
(
unittest
.
TestCase
):
@
classmethod
def
setUpClass
(
self
):
self
.
trainer_id
=
0
self
.
trainers
=
2
self
.
pservers
=
2
self
.
pserver_eps
=
"127.0.0.1:6174,127.0.0.1:6175"
def
net_conf
(
self
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
1000
],
dtype
=
'float32'
)
y_predict
=
fluid
.
layers
.
fc
(
input
=
x
,
size
=
1000
,
act
=
None
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'fc_w'
))
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
1
],
dtype
=
'float32'
)
cost
=
fluid
.
layers
.
square_error_cost
(
input
=
y_predict
,
label
=
y
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.1
)
optimize_ops
,
params_grads
=
sgd_optimizer
.
minimize
(
avg_cost
)
return
optimize_ops
,
params_grads
def
get_main_program
(
self
):
main
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
):
self
.
net_conf
()
return
main
def
get_trainer
(
self
):
return
self
.
_transpiler_instance
().
get_trainer_program
()
def
get_pserver
(
self
,
ep
):
t
=
self
.
_transpiler_instance
()
pserver
=
t
.
get_pserver_program
(
ep
)
startup
=
t
.
get_startup_program
(
ep
,
pserver
)
return
pserver
,
startup
def
_transpiler_instance
(
self
):
main
=
self
.
get_main_program
()
t
=
fluid
.
DistributeTranspiler
()
t
.
transpile
(
self
.
trainer_id
,
program
=
main
,
pservers
=
self
.
pserver_eps
,
trainers
=
self
.
trainers
)
return
t
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
adfaf9a6
...
...
@@ -455,6 +455,8 @@ class DistributeTranspiler(object):
__append_optimize_op__
(
op
,
per_opt_block
,
grad_to_block_id
,
merged_var
,
lr_ops
)
# dedup grad to ids list
grad_to_block_id
=
list
(
set
(
grad_to_block_id
))
# append global ops
if
global_ops
:
opt_state_block
=
pserver_program
.
create_block
(
...
...
@@ -960,8 +962,6 @@ class DistributeTranspiler(object):
if
not
block_map
.
has_key
(
varname
):
block_map
[
varname
]
=
[]
block_map
[
varname
].
append
((
long
(
offset
),
long
(
size
)))
# Do not remove this important debug message:
print
(
"block map: %s"
%
block_map
)
for
varname
,
splited
in
block_map
.
iteritems
():
orig_var
=
program
.
global_block
().
var
(
varname
)
...
...
@@ -1401,6 +1401,16 @@ class DistributeTranspiler(object):
break
return
lr_ops
def
_is_opt_role_op
(
self
,
op
):
# NOTE: depend on oprole to find out whether this op is for
# optimize
op_maker
=
core
.
op_proto_and_checker_maker
optimize_role
=
core
.
op_proto_and_checker_maker
.
OpRole
.
Optimize
if
op_maker
.
kOpRoleAttrName
()
in
op
.
attrs
and
\
int
(
op
.
attrs
[
op_maker
.
kOpRoleAttrName
()])
==
int
(
optimize_role
):
return
True
return
False
def
_get_optimize_pass
(
self
):
"""
Get optimizer operators, paramters and gradients from origin_program
...
...
@@ -1413,10 +1423,7 @@ class DistributeTranspiler(object):
params_grads
=
[]
origin_var_dict
=
self
.
origin_program
.
global_block
().
vars
for
op
in
block
.
ops
:
# NOTE(Yancey1989): we can not use op role to distinguish an optimizer op
# or not, because all ops in optimizer sub-graph would
# sign the optimizer op role
if
self
.
_is_optimizer_op
(
op
):
if
self
.
_is_opt_role_op
(
op
):
opt_ops
.
append
(
op
)
# HACK(wuyi): if we find grad vars from input of optimize
# ops, we may get the output of clip op. Use syntax "@GRAD"
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录