Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
ac933235
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ac933235
编写于
1月 17, 2022
作者:
Z
Zhang Ting
提交者:
GitHub
1月 17, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[part 5]change type of function args (#38889)
上级
73742d36
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
58 addition
and
98 deletion
+58
-98
paddle/fluid/operators/elementwise/elementwise_functor.h
paddle/fluid/operators/elementwise/elementwise_functor.h
+28
-30
paddle/fluid/operators/elementwise/elementwise_mod_op.cu
paddle/fluid/operators/elementwise/elementwise_mod_op.cu
+1
-26
paddle/fluid/operators/elementwise/elementwise_mod_op.h
paddle/fluid/operators/elementwise/elementwise_mod_op.h
+19
-12
paddle/fluid/operators/elementwise/elementwise_pow_op.cu
paddle/fluid/operators/elementwise/elementwise_pow_op.cu
+1
-21
paddle/pten/kernels/funcs/elementwise_functor.h
paddle/pten/kernels/funcs/elementwise_functor.h
+9
-9
未找到文件。
paddle/fluid/operators/elementwise/elementwise_functor.h
浏览文件 @
ac933235
...
...
@@ -54,7 +54,7 @@ using InverseDivFunctor = pten::funcs::InverseDivideFunctor<T>;
// Floor Divide
template
<
typename
T
>
struct
FloorDivFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
PADDLE_ENFORCE
(
b
!=
0
,
DIV_ERROR_INFO
);
return
static_cast
<
T
>
(
std
::
trunc
(
a
/
b
));
}
...
...
@@ -62,7 +62,7 @@ struct FloorDivFunctor {
template
<
typename
T
>
struct
InverseFloorDivFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
PADDLE_ENFORCE
(
a
!=
0
,
DIV_ERROR_INFO
);
return
static_cast
<
T
>
(
std
::
trunc
(
b
/
a
));
}
...
...
@@ -73,7 +73,7 @@ struct InverseFloorDivFunctor {
// Maximum
template
<
typename
T
>
struct
MaxFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
>
b
?
a
:
b
;
}
};
...
...
@@ -81,7 +81,7 @@ struct MaxFunctor {
// Minmum
template
<
typename
T
>
struct
MinFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
<
b
?
a
:
b
;
}
};
...
...
@@ -119,14 +119,14 @@ struct DivGradXYFunctor<Complex<InT>, Complex<OutT>> {
// Float div grad
template
<
typename
T
>
struct
DivGradXFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
return
a
/
b
;
}
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
/
b
;
}
};
// Complex div grad
template
<
typename
T
>
struct
DivGradXFunctor
<
Complex
<
T
>>
{
inline
HOSTDEVICE
Complex
<
T
>
operator
()(
const
Complex
<
T
>
&
a
,
const
Complex
<
T
>
&
b
)
const
{
inline
HOSTDEVICE
Complex
<
T
>
operator
()(
const
Complex
<
T
>
a
,
const
Complex
<
T
>
b
)
const
{
Complex
<
T
>
b_conj
(
b
.
real
,
-
b
.
imag
);
return
a
/
b_conj
;
}
...
...
@@ -135,7 +135,7 @@ struct DivGradXFunctor<Complex<T>> {
// Float mul and div
template
<
typename
T
>
struct
DivGradYFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
,
const
T
&
c
)
const
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
,
const
T
c
)
const
{
return
-
a
*
b
/
c
;
}
};
...
...
@@ -143,9 +143,9 @@ struct DivGradYFunctor {
// Complex mul and div
template
<
typename
T
>
struct
DivGradYFunctor
<
Complex
<
T
>>
{
inline
HOSTDEVICE
Complex
<
T
>
operator
()(
const
Complex
<
T
>
&
a
,
const
Complex
<
T
>
&
b
,
const
Complex
<
T
>
&
c
)
const
{
inline
HOSTDEVICE
Complex
<
T
>
operator
()(
const
Complex
<
T
>
a
,
const
Complex
<
T
>
b
,
const
Complex
<
T
>
c
)
const
{
Complex
<
T
>
out_div_c_conj
((
b
/
c
).
real
,
-
(
b
/
c
).
imag
);
return
-
a
*
out_div_c_conj
;
}
...
...
@@ -154,7 +154,7 @@ struct DivGradYFunctor<Complex<T>> {
// Fmax
template
<
typename
T
>
struct
FMaxFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
std
::
fmax
(
a
,
b
);
}
};
...
...
@@ -162,8 +162,8 @@ struct FMaxFunctor {
template
<
>
struct
FMaxFunctor
<
paddle
::
platform
::
float16
>
{
inline
HOSTDEVICE
paddle
::
platform
::
float16
operator
()(
const
paddle
::
platform
::
float16
&
a
,
const
paddle
::
platform
::
float16
&
b
)
const
{
const
paddle
::
platform
::
float16
a
,
const
paddle
::
platform
::
float16
b
)
const
{
float
float_a
=
static_cast
<
float
>
(
a
);
float
float_b
=
static_cast
<
float
>
(
b
);
auto
result
=
std
::
fmax
(
float_a
,
float_b
);
...
...
@@ -173,7 +173,7 @@ struct FMaxFunctor<paddle::platform::float16> {
template
<
>
struct
FMaxFunctor
<
int
>
{
inline
HOSTDEVICE
int
operator
()(
const
int
&
a
,
const
int
&
b
)
const
{
inline
HOSTDEVICE
int
operator
()(
const
int
a
,
const
int
b
)
const
{
float
float_a
=
static_cast
<
float
>
(
a
);
float
float_b
=
static_cast
<
float
>
(
b
);
auto
result
=
std
::
fmax
(
float_a
,
float_b
);
...
...
@@ -183,8 +183,7 @@ struct FMaxFunctor<int> {
template
<
>
struct
FMaxFunctor
<
int64_t
>
{
inline
HOSTDEVICE
int64_t
operator
()(
const
int64_t
&
a
,
const
int64_t
&
b
)
const
{
inline
HOSTDEVICE
int64_t
operator
()(
const
int64_t
a
,
const
int64_t
b
)
const
{
double
double_a
=
static_cast
<
double
>
(
a
);
double
double_b
=
static_cast
<
double
>
(
b
);
auto
result
=
std
::
fmax
(
double_a
,
double_b
);
...
...
@@ -195,7 +194,7 @@ struct FMaxFunctor<int64_t> {
// Fmin
template
<
typename
T
>
struct
FMinFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
std
::
fmin
(
a
,
b
);
}
};
...
...
@@ -203,8 +202,8 @@ struct FMinFunctor {
template
<
>
struct
FMinFunctor
<
paddle
::
platform
::
float16
>
{
inline
HOSTDEVICE
paddle
::
platform
::
float16
operator
()(
const
paddle
::
platform
::
float16
&
a
,
const
paddle
::
platform
::
float16
&
b
)
const
{
const
paddle
::
platform
::
float16
a
,
const
paddle
::
platform
::
float16
b
)
const
{
float
float_a
=
static_cast
<
float
>
(
a
);
float
float_b
=
static_cast
<
float
>
(
b
);
auto
result
=
std
::
fmin
(
float_a
,
float_b
);
...
...
@@ -214,7 +213,7 @@ struct FMinFunctor<paddle::platform::float16> {
template
<
>
struct
FMinFunctor
<
int
>
{
inline
HOSTDEVICE
int
operator
()(
const
int
&
a
,
const
int
&
b
)
const
{
inline
HOSTDEVICE
int
operator
()(
const
int
a
,
const
int
b
)
const
{
float
float_a
=
static_cast
<
float
>
(
a
);
float
float_b
=
static_cast
<
float
>
(
b
);
auto
result
=
std
::
fmin
(
float_a
,
float_b
);
...
...
@@ -224,8 +223,7 @@ struct FMinFunctor<int> {
template
<
>
struct
FMinFunctor
<
int64_t
>
{
inline
HOSTDEVICE
int64_t
operator
()(
const
int64_t
&
a
,
const
int64_t
&
b
)
const
{
inline
HOSTDEVICE
int64_t
operator
()(
const
int64_t
a
,
const
int64_t
b
)
const
{
double
double_a
=
static_cast
<
double
>
(
a
);
double
double_b
=
static_cast
<
double
>
(
b
);
auto
result
=
std
::
fmin
(
double_a
,
double_b
);
...
...
@@ -261,12 +259,12 @@ struct MinGradXYFunctor {
template
<
typename
T
>
struct
MulGradFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
return
a
*
b
;
}
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
*
b
;
}
};
template
<
typename
T
>
struct
MulGradFunctor
<
Complex
<
T
>>
{
inline
HOSTDEVICE
Complex
<
T
>
operator
()(
const
Complex
<
T
>
&
a
,
const
Complex
<
T
>
&
b
)
const
{
inline
HOSTDEVICE
Complex
<
T
>
operator
()(
const
Complex
<
T
>
a
,
const
Complex
<
T
>
b
)
const
{
Complex
<
T
>
b_conj
(
b
.
real
,
-
b
.
imag
);
return
a
*
b_conj
;
}
...
...
@@ -274,9 +272,9 @@ struct MulGradFunctor<Complex<T>> {
template
<
typename
InT
,
typename
OutT
>
struct
MulGradXYFunctor
{
inline
HOSTDEVICE
paddle
::
framework
::
Array
<
OutT
,
2
>
operator
()(
const
InT
&
a
,
const
InT
&
b
,
const
InT
&
c
)
{
inline
HOSTDEVICE
paddle
::
framework
::
Array
<
OutT
,
2
>
operator
()(
const
InT
a
,
const
InT
b
,
const
InT
c
)
{
paddle
::
framework
::
Array
<
OutT
,
2
>
outs
;
// dx = dout * y
outs
[
0
]
=
a
*
b
;
...
...
@@ -289,7 +287,7 @@ struct MulGradXYFunctor {
template
<
typename
InT
,
typename
OutT
>
struct
MulGradXYFunctor
<
Complex
<
InT
>
,
Complex
<
OutT
>>
{
inline
HOSTDEVICE
paddle
::
framework
::
Array
<
Complex
<
OutT
>
,
2
>
operator
()(
const
Complex
<
InT
>
&
a
,
const
Complex
<
InT
>&
b
,
const
Complex
<
InT
>&
c
)
{
const
Complex
<
InT
>
a
,
const
Complex
<
InT
>
b
,
const
Complex
<
InT
>
c
)
{
paddle
::
framework
::
Array
<
Complex
<
OutT
>
,
2
>
outs
;
// dx = dout * y
Complex
<
InT
>
b_conj
(
b
.
real
,
-
b
.
imag
);
...
...
paddle/fluid/operators/elementwise/elementwise_mod_op.cu
浏览文件 @
ac933235
...
...
@@ -20,31 +20,6 @@ namespace plat = paddle::platform;
namespace
paddle
{
namespace
operators
{
template
<
typename
T
,
typename
Enable
=
void
>
struct
CudaModFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
*
args
)
const
{
T
res
=
args
[
0
]
%
args
[
1
];
// Accoding to #PR26732: in dividen % divsor
// remainder shall have the same sign as divsor.
if
((
res
!=
0
)
&&
((
args
[
1
]
^
res
)
<
0
))
res
+=
args
[
1
];
return
res
;
}
};
template
<
typename
T
>
struct
CudaModFunctor
<
T
,
typename
std
::
enable_if_t
<
std
::
is_floating_point
<
T
>::
value
>>
{
inline
HOSTDEVICE
T
operator
()(
const
T
*
args
)
const
{
T
res
=
fmod
(
args
[
0
],
args
[
1
]);
// Accoding to #PR26732: in dividen % divsor
// remainder shall have the same sign as divsor.
if
((
res
!=
0
)
&&
((
res
<
0
)
!=
(
args
[
1
]
<
0
)))
res
+=
args
[
1
];
return
res
;
}
};
template
<
typename
T
>
class
ElementwiseModKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
...
...
@@ -56,7 +31,7 @@ class ElementwiseModKernel<platform::CUDADeviceContext, T>
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
int
axis
=
PackTensorsIntoVector
<
T
>
(
ctx
,
&
ins
,
&
outs
);
LaunchElementwiseCudaKernel
<
ElementwiseType
::
kBinary
,
T
,
T
>
(
cuda_ctx
,
ins
,
&
outs
,
axis
,
Cuda
ModFunctor
<
T
>
());
cuda_ctx
,
ins
,
&
outs
,
axis
,
ModFunctor
<
T
>
());
}
};
...
...
paddle/fluid/operators/elementwise/elementwise_mod_op.h
浏览文件 @
ac933235
...
...
@@ -19,29 +19,36 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
template
<
typename
T
,
typename
Enable
=
void
>
struct
ModFunctor
{
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
T
res
=
a
%
b
;
if
((
res
!=
0
)
&&
((
res
<
0
)
!=
(
b
<
0
)))
res
+=
b
;
// Accoding to #PR26732: in dividen % divsor
// remainder shall have the same sign as divsor.
if
((
res
!=
0
)
&&
((
b
^
res
)
<
0
))
res
+=
b
;
return
res
;
}
};
template
<
typename
T
>
struct
InverseModFunctor
{
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
T
res
=
b
%
a
;
if
((
res
!=
0
)
&&
((
res
<
0
)
!=
(
a
<
0
)))
res
+=
a
;
struct
ModFunctor
<
T
,
typename
std
::
enable_if_t
<
std
::
is_floating_point
<
T
>::
value
>>
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
T
res
=
fmod
(
a
,
b
);
// Accoding to #PR26732: in dividen % divsor
// remainder shall have the same sign as divsor.
if
((
res
!=
0
)
&&
((
res
<
0
)
!=
(
b
<
0
)))
res
+=
b
;
return
res
;
}
};
template
<
typename
T
>
struct
ModFunctorFP
{
struct
InverseModFunctor
{
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
T
res
=
fmod
(
a
,
b
)
;
if
((
res
!=
0
)
&&
((
b
<
0
)
!=
(
res
<
0
)))
res
+=
b
;
T
res
=
b
%
a
;
if
((
res
!=
0
)
&&
((
res
<
0
)
!=
(
a
<
0
)))
res
+=
a
;
return
res
;
}
};
...
...
@@ -79,8 +86,8 @@ void elementwise_mod_fp(const framework::ExecutionContext &ctx,
auto
x_dims
=
x
->
dims
();
auto
y_dims
=
y
->
dims
();
if
(
x_dims
.
size
()
>=
y_dims
.
size
())
{
ElementwiseComputeEx
<
ModFunctor
FP
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
axis
,
ModFunctorFP
<
T
>
(),
z
);
ElementwiseComputeEx
<
ModFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
axis
,
ModFunctor
<
T
>
(),
z
);
}
else
{
ElementwiseComputeEx
<
InverseModFunctorFP
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
x
,
y
,
axis
,
InverseModFunctorFP
<
T
>
(),
z
);
...
...
paddle/fluid/operators/elementwise/elementwise_pow_op.cu
浏览文件 @
ac933235
...
...
@@ -16,26 +16,6 @@ namespace ops = paddle::operators;
namespace
paddle
{
namespace
operators
{
template
<
typename
T
,
typename
Enable
=
void
>
struct
CudaPowFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
args
[])
const
{
return
std
::
pow
(
args
[
0
],
args
[
1
]);
}
};
template
<
typename
T
>
struct
CudaPowFunctor
<
T
,
typename
std
::
enable_if
<
std
::
is_integral
<
T
>::
value
>::
type
>
{
// On CUDAPlace, std::pow(3, 1) calls pow(float, float), and
// it will return a float number like 2.99... , which floor to 2
// when cast to int by default and it is wrong.
// Use llrint to cast it to the nearest integer, which is 3.
inline
HOSTDEVICE
T
operator
()(
const
T
args
[])
const
{
return
std
::
llrint
(
std
::
pow
(
static_cast
<
double
>
(
args
[
0
]),
static_cast
<
double
>
(
args
[
1
])));
}
};
template
<
typename
T
>
class
ElementwisePowKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
...
...
@@ -48,7 +28,7 @@ class ElementwisePowKernel<platform::CUDADeviceContext, T>
int
axis
=
PackTensorsIntoVector
<
T
>
(
ctx
,
&
ins
,
&
outs
);
LaunchElementwiseCudaKernel
<
ElementwiseType
::
kBinary
,
T
,
T
>
(
cuda_ctx
,
ins
,
&
outs
,
axis
,
Cuda
PowFunctor
<
T
>
());
cuda_ctx
,
ins
,
&
outs
,
axis
,
PowFunctor
<
T
>
());
}
};
...
...
paddle/pten/kernels/funcs/elementwise_functor.h
浏览文件 @
ac933235
...
...
@@ -26,31 +26,31 @@ namespace funcs {
// Add
template
<
typename
T
>
struct
AddFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
return
a
+
b
;
}
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
+
b
;
}
};
template
<
typename
T
>
struct
InverseAddFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
return
b
+
a
;
}
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
b
+
a
;
}
};
// Subtract
template
<
typename
T
>
struct
SubtractFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
return
a
-
b
;
}
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
-
b
;
}
};
template
<
typename
T
>
struct
InverseSubtractFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
return
b
-
a
;
}
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
b
-
a
;
}
};
// Multiply
template
<
typename
T
>
struct
MultiplyFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
return
a
*
b
;
}
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
*
b
;
}
};
template
<
typename
T
>
struct
InverseMultiplyFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
return
b
*
a
;
}
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
b
*
a
;
}
};
// Divide
...
...
@@ -60,14 +60,14 @@ struct InverseMultiplyFunctor {
template
<
typename
T
,
typename
Enable
=
void
>
struct
DivideFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
return
a
/
b
;
}
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
/
b
;
}
};
template
<
typename
T
>
struct
DivideFunctor
<
T
,
typename
std
::
enable_if
<
std
::
is_integral
<
T
>::
value
>::
type
>
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
// For int32/int64, need to check whether the divison is zero.
PADDLE_ENFORCE
(
b
!=
0
,
DIV_ERROR_INFO
);
return
a
/
b
;
...
...
@@ -76,7 +76,7 @@ struct DivideFunctor<
template
<
typename
T
,
typename
Enable
=
void
>
struct
InverseDivideFunctor
{
inline
HOSTDEVICE
T
operator
()(
const
T
&
a
,
const
T
&
b
)
const
{
return
b
/
a
;
}
inline
HOSTDEVICE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
b
/
a
;
}
};
}
// namespace funcs
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录