Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
abdcb8e1
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
abdcb8e1
编写于
12月 06, 2016
作者:
H
hedaoyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
format some files
上级
d04c206f
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
365 addition
and
346 deletion
+365
-346
paddle/cuda/include/hl_matrix_type.cuh
paddle/cuda/include/hl_matrix_type.cuh
+0
-1
paddle/cuda/include/hl_tensor_ops.h
paddle/cuda/include/hl_tensor_ops.h
+59
-45
paddle/math/TensorApply.h
paddle/math/TensorApply.h
+50
-69
paddle/math/TensorAssign.h
paddle/math/TensorAssign.h
+34
-30
paddle/math/TensorEvaluate.h
paddle/math/TensorEvaluate.h
+12
-13
paddle/math/TensorExpression.h
paddle/math/TensorExpression.h
+169
-151
paddle/math/TrainingAlgorithmOp.cu
paddle/math/TrainingAlgorithmOp.cu
+0
-1
paddle/math/TrainingAlgorithmOp.h
paddle/math/TrainingAlgorithmOp.h
+0
-1
paddle/math/tests/OriginalOptimizerApi.h
paddle/math/tests/OriginalOptimizerApi.h
+41
-35
未找到文件。
paddle/cuda/include/hl_matrix_type.cuh
浏览文件 @
abdcb8e1
...
...
@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef HL_MATRIX_TYPE_CUH_
#define HL_MATRIX_TYPE_CUH_
...
...
paddle/cuda/include/hl_tensor_ops.h
浏览文件 @
abdcb8e1
...
...
@@ -21,194 +21,210 @@ limitations under the License. */
namespace
hppl
{
namespace
unary
{
template
<
class
T
>
class
add_scale
{
template
<
class
T
>
class
add_scale
{
private:
const
T
p
;
public:
INLINE
add_scale
(
const
T
s
)
:
p
(
s
)
{}
INLINE
T
operator
()(
const
T
a
)
const
{
return
a
+
p
;
}
};
template
<
class
T
>
template
<
class
T
>
class
sub_scale
{
private:
const
T
p
;
public:
INLINE
sub_scale
(
const
T
s
)
:
p
(
s
)
{}
INLINE
T
operator
()(
const
T
a
)
const
{
return
a
-
p
;
}
};
template
<
class
T
>
template
<
class
T
>
class
mul_scale
{
private:
const
T
p
;
public:
INLINE
mul_scale
(
const
T
s
)
:
p
(
s
)
{}
INLINE
T
operator
()(
const
T
a
)
const
{
return
a
*
p
;
}
};
template
<
class
T
>
template
<
class
T
>
class
div_scale
{
private:
const
T
p
;
public:
INLINE
div_scale
(
const
T
s
)
:
p
(
s
)
{}
INLINE
T
operator
()(
const
T
a
)
const
{
return
a
/
p
;
}
};
template
<
class
T
>
template
<
class
T
>
class
neg
{
public:
INLINE
T
operator
()(
const
T
a
)
const
{
return
-
a
;
}
};
template
<
class
T
>
template
<
class
T
>
class
exp_op
{
public:
INLINE
T
operator
()(
const
T
a
)
const
{
return
std
::
exp
(
a
);
}
};
template
<
class
T
>
template
<
class
T
>
class
log_op
{
public:
INLINE
T
operator
()(
const
T
a
)
const
{
return
std
::
log
(
a
);
}
};
template
<
class
T
>
template
<
class
T
>
class
sqrt_op
{
public:
INLINE
T
operator
()(
const
T
a
)
const
{
return
std
::
sqrt
(
a
);
}
};
template
<
class
T
>
template
<
class
T
>
class
square
{
public:
INLINE
T
operator
()(
const
T
a
)
const
{
return
a
*
a
;
}
};
template
<
class
T
>
template
<
class
T
>
class
reciprocal
{
public:
INLINE
T
operator
()(
const
T
a
)
const
{
return
T
(
1
)
/
a
;
}
};
template
<
class
T
>
template
<
class
T
>
class
abs
{
public:
INLINE
T
operator
()(
const
T
a
)
const
{
return
a
>
0
?
a
:
-
a
;
}
};
template
<
class
T
>
template
<
class
T
>
class
sign
{
public:
INLINE
T
operator
()(
const
T
a
)
const
{
return
(
a
>
0
)
-
(
a
<
0
);
}
};
template
<
class
T
>
template
<
class
T
>
class
min
{
private:
const
T
p
;
public:
INLINE
min
(
const
T
s
)
:
p
(
s
)
{}
INLINE
T
operator
()(
const
T
a
)
const
{
return
a
>
p
?
p
:
a
;
}
};
template
<
class
T
>
template
<
class
T
>
class
max
{
private:
const
T
p
;
public:
INLINE
max
(
const
T
s
)
:
p
(
s
)
{}
INLINE
T
operator
()(
const
T
a
)
const
{
return
a
<
p
?
p
:
a
;
}
};
template
<
class
T
>
template
<
class
T
>
class
pow_op
{
private:
const
T
p
;
public:
INLINE
pow_op
(
const
T
s
)
:
p
(
s
)
{}
INLINE
T
operator
()(
const
T
a
)
const
{
return
std
::
pow
(
a
,
p
);
}
};
template
<
class
T
>
template
<
class
T
>
class
constant
{
private:
const
T
p
;
public:
INLINE
constant
(
const
T
s
)
:
p
(
s
)
{}
INLINE
T
operator
()(
int
i
)
const
{
return
p
;
}
INLINE
T
operator
()(
int
i
,
int
j
)
const
{
return
p
;
}
};
template
<
class
T
>
template
<
class
T
>
class
cmp_eq
{
private:
const
T
p
;
public:
INLINE
cmp_eq
(
const
T
s
)
:
p
(
s
)
{}
INLINE
bool
operator
()(
const
T
a
)
const
{
return
a
==
p
;
}
};
template
<
class
T
>
template
<
class
T
>
class
cmp_ne
{
private:
const
T
p
;
public:
INLINE
cmp_ne
(
const
T
s
)
:
p
(
s
)
{}
INLINE
bool
operator
()(
const
T
a
)
const
{
return
a
!=
p
;
}
};
template
<
class
T
>
template
<
class
T
>
class
cmp_le
{
private:
const
T
p
;
public:
INLINE
cmp_le
(
const
T
s
)
:
p
(
s
)
{}
INLINE
bool
operator
()(
const
T
a
)
const
{
return
a
<=
p
;
}
};
template
<
class
T
>
template
<
class
T
>
class
cmp_lt
{
private:
const
T
p
;
public:
INLINE
cmp_lt
(
const
T
s
)
:
p
(
s
)
{}
INLINE
bool
operator
()(
const
T
a
)
const
{
return
a
<
p
;
}
};
template
<
class
T
>
template
<
class
T
>
class
cmp_ge
{
private:
const
T
p
;
public:
INLINE
cmp_ge
(
const
T
s
)
:
p
(
s
)
{}
INLINE
bool
operator
()(
const
T
a
)
const
{
return
a
>=
p
;
}
};
template
<
class
T
>
template
<
class
T
>
class
cmp_gt
{
private:
const
T
p
;
public:
INLINE
cmp_gt
(
const
T
s
)
:
p
(
s
)
{}
INLINE
bool
operator
()(
const
T
a
)
const
{
return
a
>
p
;
}
};
template
<
class
T
>
template
<
class
T
>
class
and_op
{
private:
const
T
p
;
public:
INLINE
and_op
(
const
T
s
)
:
p
(
s
)
{}
INLINE
bool
operator
()(
const
T
a
)
const
{
return
a
&&
p
;
}
};
template
<
class
T
>
template
<
class
T
>
class
or_op
{
private:
const
T
p
;
public:
INLINE
or_op
(
const
T
s
)
:
p
(
s
)
{}
INLINE
bool
operator
()(
const
T
a
)
const
{
return
a
||
p
;
}
...
...
@@ -217,97 +233,96 @@ public:
}
// namespace unary
namespace
binary
{
template
<
class
T
>
template
<
class
T
>
class
add
{
public:
INLINE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
+
b
;
}
};
template
<
class
T
>
template
<
class
T
>
class
add_scale
{
private:
const
T
p1
;
const
T
p2
;
public:
INLINE
add_scale
(
const
T
s1
,
const
T
s2
)
:
p1
(
s1
),
p2
(
s2
)
{}
INLINE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
p1
*
a
+
p2
*
b
;
}
INLINE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
p1
*
a
+
p2
*
b
;
}
};
template
<
class
T
>
template
<
class
T
>
class
sub
{
public:
INLINE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
-
b
;
}
};
template
<
class
T
>
template
<
class
T
>
class
mul
{
public:
INLINE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
*
b
;
}
};
template
<
class
T
>
template
<
class
T
>
class
div
{
public:
INLINE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
/
b
;
}
INLINE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
/
b
;
}
};
template
<
class
T
>
template
<
class
T
>
class
cmp_eq
{
public:
INLINE
bool
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
==
b
;
}
};
template
<
class
T
>
template
<
class
T
>
class
cmp_ne
{
public:
INLINE
bool
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
!=
b
;
}
};
template
<
class
T
>
template
<
class
T
>
class
cmp_le
{
public:
INLINE
bool
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
<=
b
;
}
};
template
<
class
T
>
template
<
class
T
>
class
cmp_lt
{
public:
INLINE
bool
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
<
b
;
}
};
template
<
class
T
>
template
<
class
T
>
class
cmp_ge
{
public:
INLINE
bool
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
>=
b
;
}
};
template
<
class
T
>
template
<
class
T
>
class
cmp_gt
{
public:
INLINE
bool
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
>
b
;
}
};
template
<
class
T
>
template
<
class
T
>
class
and_op
{
public:
INLINE
bool
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
&&
b
;
}
};
template
<
class
T
>
template
<
class
T
>
class
or_op
{
public:
INLINE
bool
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
||
b
;
}
};
template
<
class
T
>
template
<
class
T
>
class
min
{
public:
INLINE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
>
b
?
b
:
a
;
}
};
template
<
class
T
>
template
<
class
T
>
class
max
{
public:
INLINE
T
operator
()(
const
T
a
,
const
T
b
)
const
{
return
a
<
b
?
b
:
a
;
}
...
...
@@ -317,4 +332,3 @@ public:
}
// namespace hppl
#endif // HL_TENSOR_OPS_H_
paddle/math/TensorApply.h
浏览文件 @
abdcb8e1
...
...
@@ -19,25 +19,20 @@ namespace paddle {
/**
* \brief The tensor evaluator classes.
*/
template
<
typename
Derived
,
class
T
>
template
<
typename
Derived
,
class
T
>
class
TensorApply
{
public:
explicit
INLINE
TensorApply
(
const
Derived
&
p
)
:
data_
(
p
.
data_
),
stride_
(
p
.
stride_
),
height_
(
p
.
height_
),
width_
(
p
.
width_
),
useGpu_
(
p
.
useGpu_
)
{}
:
data_
(
p
.
data_
),
stride_
(
p
.
stride_
),
height_
(
p
.
height_
),
width_
(
p
.
width_
),
useGpu_
(
p
.
useGpu_
)
{}
INLINE
T
apply
(
int
i
,
int
j
)
const
{
return
data_
[
i
*
stride_
+
j
];
}
INLINE
T
apply
(
int
index
)
const
{
return
data_
[
index
];
}
INLINE
T
&
applyRef
(
int
i
,
int
j
)
{
return
data_
[
i
*
stride_
+
j
];
}
INLINE
T
&
applyRef
(
int
index
)
{
return
data_
[
index
];
}
INLINE
T
apply
(
int
i
,
int
j
)
const
{
return
data_
[
i
*
stride_
+
j
];
}
INLINE
T
apply
(
int
index
)
const
{
return
data_
[
index
];
}
INLINE
T
&
applyRef
(
int
i
,
int
j
)
{
return
data_
[
i
*
stride_
+
j
];
}
INLINE
T
&
applyRef
(
int
index
)
{
return
data_
[
index
];
}
INLINE
size_t
getWidth
()
const
{
return
width_
;
}
INLINE
size_t
getHeight
()
const
{
return
height_
;
}
...
...
@@ -53,22 +48,20 @@ public:
/**
* \brief The tensor evaluator classes.
*
* evaluator for rvalues
*/
template
<
typename
Derived
,
class
T
>
template
<
typename
Derived
,
class
T
>
class
TensorApply
<
const
Derived
,
T
>
{
public:
explicit
INLINE
TensorApply
(
const
Derived
&
p
)
:
data_
(
p
.
data_
),
stride_
(
p
.
stride_
),
height_
(
p
.
height_
),
width_
(
p
.
width_
),
useGpu_
(
p
.
useGpu_
)
{}
:
data_
(
p
.
data_
),
stride_
(
p
.
stride_
),
height_
(
p
.
height_
),
width_
(
p
.
width_
),
useGpu_
(
p
.
useGpu_
)
{}
INLINE
T
apply
(
int
i
,
int
j
)
const
{
return
data_
[
i
*
stride_
+
j
];
}
INLINE
T
apply
(
int
index
)
const
{
return
data_
[
index
];
}
INLINE
T
apply
(
int
i
,
int
j
)
const
{
return
data_
[
i
*
stride_
+
j
];
}
INLINE
T
apply
(
int
index
)
const
{
return
data_
[
index
];
}
INLINE
size_t
getWidth
()
const
{
return
width_
;
}
INLINE
size_t
getHeight
()
const
{
return
height_
;
}
...
...
@@ -82,18 +75,14 @@ public:
bool
useGpu_
;
};
template
<
typename
Derived
,
class
T
>
template
<
typename
Derived
,
class
T
>
class
TensorApply
<
const
TensorExpression
<
Derived
,
T
>
,
T
>
{
public:
explicit
TensorApply
(
const
TensorExpression
<
Derived
,
T
>&
expr
)
:
expr_
(
expr
.
derived
())
{}
:
expr_
(
expr
.
derived
())
{}
INLINE
T
apply
(
int
i
,
int
j
)
const
{
return
expr_
.
apply
(
i
,
j
);
}
INLINE
T
apply
(
int
index
)
const
{
return
expr_
.
apply
(
index
);
}
INLINE
T
apply
(
int
i
,
int
j
)
const
{
return
expr_
.
apply
(
i
,
j
);
}
INLINE
T
apply
(
int
index
)
const
{
return
expr_
.
apply
(
index
);
}
INLINE
size_t
getWidth
()
const
{
return
expr_
.
getWidth
();
}
INLINE
size_t
getHeight
()
const
{
return
expr_
.
getHeight
();
}
...
...
@@ -106,18 +95,14 @@ public:
/**
* \brief The unary expression evaluator classes.
*/
template
<
class
OP
,
typename
ArgType
,
class
T
>
template
<
class
OP
,
typename
ArgType
,
class
T
>
class
TensorApply
<
const
TensorUnaryOp
<
OP
,
ArgType
,
T
>
,
T
>
{
public:
explicit
INLINE
TensorApply
(
const
TensorUnaryOp
<
OP
,
ArgType
,
T
>&
expr
)
:
op_
(
expr
.
op_
),
expr_
(
expr
.
expr_
)
{}
:
op_
(
expr
.
op_
),
expr_
(
expr
.
expr_
)
{}
INLINE
T
apply
(
int
i
,
int
j
)
const
{
return
op_
(
expr_
.
apply
(
i
,
j
));
}
INLINE
T
apply
(
int
index
)
const
{
return
op_
(
expr_
.
apply
(
index
));
}
INLINE
T
apply
(
int
i
,
int
j
)
const
{
return
op_
(
expr_
.
apply
(
i
,
j
));
}
INLINE
T
apply
(
int
index
)
const
{
return
op_
(
expr_
.
apply
(
index
));
}
INLINE
size_t
getWidth
()
const
{
return
expr_
.
getWidth
();
}
INLINE
size_t
getHeight
()
const
{
return
expr_
.
getHeight
();
}
...
...
@@ -131,17 +116,17 @@ public:
/**
* \brief The binary expression evaluator classes.
*/
template
<
class
OP
,
typename
LhsType
,
typename
RhsType
,
class
T
>
template
<
class
OP
,
typename
LhsType
,
typename
RhsType
,
class
T
>
class
TensorApply
<
const
TensorBinaryOp
<
OP
,
LhsType
,
RhsType
,
T
>
,
T
>
{
public:
explicit
INLINE
TensorApply
(
const
TensorBinaryOp
<
OP
,
LhsType
,
RhsType
,
T
>&
expr
)
const
TensorBinaryOp
<
OP
,
LhsType
,
RhsType
,
T
>&
expr
)
:
op_
(
expr
.
op_
),
lhs_
(
expr
.
lhs_
),
rhs_
(
expr
.
rhs_
)
{
#ifndef __CUDA_ARCH__
CHECK_EQ
(
lhs_
.
getWidth
(),
rhs_
.
getWidth
());
CHECK_EQ
(
lhs_
.
getHeight
(),
rhs_
.
getHeight
());
CHECK_EQ
(
lhs_
.
useGpu
(),
rhs_
.
useGpu
());
#endif
#ifndef __CUDA_ARCH__
CHECK_EQ
(
lhs_
.
getWidth
(),
rhs_
.
getWidth
());
CHECK_EQ
(
lhs_
.
getHeight
(),
rhs_
.
getHeight
());
CHECK_EQ
(
lhs_
.
useGpu
(),
rhs_
.
useGpu
());
#endif
}
INLINE
T
apply
(
int
i
,
int
j
)
const
{
...
...
@@ -166,20 +151,20 @@ public:
/**
* \brief The ternary expression evaluator classes.
*/
template
<
typename
ArgType1
,
typename
ArgType2
,
typename
ArgType3
,
class
T
>
template
<
typename
ArgType1
,
typename
ArgType2
,
typename
ArgType3
,
class
T
>
class
TensorApply
<
const
TensorTernaryOp
<
ArgType1
,
ArgType2
,
ArgType3
,
T
>
,
T
>
{
public:
explicit
INLINE
TensorApply
(
const
TensorTernaryOp
<
ArgType1
,
ArgType2
,
ArgType3
,
T
>&
expr
)
:
expr1_
(
expr
.
expr1_
),
expr2_
(
expr
.
expr2_
),
expr3_
(
expr
.
expr3_
)
{
#ifndef __CUDA_ARCH__
CHECK_EQ
(
expr1_
.
getWidth
(),
expr2_
.
getWidth
());
CHECK_EQ
(
expr1_
.
getWidth
(),
expr3_
.
getWidth
());
CHECK_EQ
(
expr1_
.
getHeight
(),
expr2_
.
getHeight
());
CHECK_EQ
(
expr1_
.
getHeight
(),
expr3_
.
getHeight
());
CHECK_EQ
(
expr1_
.
useGpu
(),
expr2_
.
useGpu
());
CHECK_EQ
(
expr1_
.
useGpu
(),
expr3_
.
useGpu
());
#endif
const
TensorTernaryOp
<
ArgType1
,
ArgType2
,
ArgType3
,
T
>&
expr
)
:
expr1_
(
expr
.
expr1_
),
expr2_
(
expr
.
expr2_
),
expr3_
(
expr
.
expr3_
)
{
#ifndef __CUDA_ARCH__
CHECK_EQ
(
expr1_
.
getWidth
(),
expr2_
.
getWidth
());
CHECK_EQ
(
expr1_
.
getWidth
(),
expr3_
.
getWidth
());
CHECK_EQ
(
expr1_
.
getHeight
(),
expr2_
.
getHeight
());
CHECK_EQ
(
expr1_
.
getHeight
(),
expr3_
.
getHeight
());
CHECK_EQ
(
expr1_
.
useGpu
(),
expr2_
.
useGpu
());
CHECK_EQ
(
expr1_
.
useGpu
(),
expr3_
.
useGpu
());
#endif
}
INLINE
T
apply
(
int
i
,
int
j
)
const
{
...
...
@@ -192,8 +177,8 @@ public:
INLINE
size_t
getWidth
()
const
{
return
expr1_
.
getWidth
();
}
INLINE
size_t
getHeight
()
const
{
return
expr1_
.
getHeight
();
}
INLINE
bool
isContiguous
()
const
{
return
expr1_
.
isContiguous
()
&&
expr2_
.
isContiguous
()
&&
expr3_
.
isContiguous
();
return
expr1_
.
isContiguous
()
&&
expr2_
.
isContiguous
()
&&
expr3_
.
isContiguous
();
}
INLINE
bool
useGpu
()
const
{
return
expr1_
.
useGpu
();
}
...
...
@@ -205,18 +190,14 @@ public:
/**
* \brief The const expression evaluator classes.
*/
template
<
class
OP
,
typename
ArgType
,
class
T
>
template
<
class
OP
,
typename
ArgType
,
class
T
>
class
TensorApply
<
const
TensorConstant
<
OP
,
ArgType
,
T
>
,
T
>
{
public:
explicit
INLINE
TensorApply
(
const
TensorConstant
<
OP
,
ArgType
,
T
>&
expr
)
:
op_
(
expr
.
op_
),
expr_
(
expr
.
expr_
)
{}
:
op_
(
expr
.
op_
),
expr_
(
expr
.
expr_
)
{}
INLINE
T
apply
(
int
i
,
int
j
)
const
{
return
op_
(
i
,
j
);
}
INLINE
T
apply
(
int
index
)
const
{
return
op_
(
index
);
}
INLINE
T
apply
(
int
i
,
int
j
)
const
{
return
op_
(
i
,
j
);
}
INLINE
T
apply
(
int
index
)
const
{
return
op_
(
index
);
}
INLINE
size_t
getWidth
()
const
{
return
expr_
.
getWidth
();
}
INLINE
size_t
getHeight
()
const
{
return
expr_
.
getHeight
();
}
...
...
paddle/math/TensorAssign.h
浏览文件 @
abdcb8e1
...
...
@@ -21,18 +21,18 @@ namespace paddle {
/**
* \brief Tensor Assign Expression(return by lazyAssign,
* and evaluated by AssignEvaluate)
* and evaluated by AssignEvaluate)
*/
template
<
typename
LhsType
,
typename
RhsType
,
class
T
>
template
<
typename
LhsType
,
typename
RhsType
,
class
T
>
class
TensorAssignOp
{
public:
explicit
TensorAssignOp
(
const
LhsType
&
lhs
,
const
RhsType
&
rhs
)
:
lhs_
(
lhs
),
rhs_
(
rhs
)
{
#ifndef __CUDA_ARCH__
CHECK_EQ
(
lhs_
.
getWidth
(),
rhs_
.
getWidth
());
CHECK_EQ
(
lhs_
.
getHeight
(),
rhs_
.
getHeight
());
CHECK_EQ
(
lhs_
.
useGpu
(),
rhs_
.
useGpu
());
#endif
:
lhs_
(
lhs
),
rhs_
(
rhs
)
{
#ifndef __CUDA_ARCH__
CHECK_EQ
(
lhs_
.
getWidth
(),
rhs_
.
getWidth
());
CHECK_EQ
(
lhs_
.
getHeight
(),
rhs_
.
getHeight
());
CHECK_EQ
(
lhs_
.
useGpu
(),
rhs_
.
useGpu
());
#endif
}
INLINE
void
apply
(
const
int
i
,
const
int
j
)
{
...
...
@@ -55,19 +55,22 @@ private:
};
template
<
typename
Assign
,
typename
...
AssignOp
>
void
AssignCpuEvaluate
(
int
height
,
int
width
,
bool
isContiguous
,
Assign
&&
assign
,
AssignOp
&&
...
args
)
{
void
AssignCpuEvaluate
(
int
height
,
int
width
,
bool
isContiguous
,
Assign
&&
assign
,
AssignOp
&&
...
args
)
{
if
(
isContiguous
)
{
int
size
=
height
*
width
;
for
(
int
index
=
0
;
index
<
size
;
index
++
)
{
assign
.
apply
(
index
);
__attribute__
((
unused
))
int
dummy
[]
=
{
(((
args
)).
apply
(
index
),
0
)...
};
__attribute__
((
unused
))
int
dummy
[]
=
{
(((
args
)).
apply
(
index
),
0
)...
};
}
}
else
{
for
(
int
i
=
0
;
i
<
height
;
i
++
)
{
for
(
int
j
=
0
;
j
<
width
;
j
++
)
{
assign
.
apply
(
i
,
j
);
__attribute__
((
unused
))
int
dummy
[]
=
{
(((
args
)).
apply
(
i
,
j
),
0
)...
};
__attribute__
((
unused
))
int
dummy
[]
=
{
(((
args
)).
apply
(
i
,
j
),
0
)...
};
}
}
}
...
...
@@ -75,25 +78,27 @@ void AssignCpuEvaluate(int height, int width, bool isContiguous,
#ifdef __NVCC__
template
<
typename
Assign
,
typename
...
AssignOp
>
__global__
void
AssignGpuEvaluate1
(
const
int
border
,
Assign
assign
,
AssignOp
...
args
)
{
__global__
void
AssignGpuEvaluate1
(
const
int
border
,
Assign
assign
,
AssignOp
...
args
)
{
const
int
idx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
idx
<
border
)
{
assign
.
apply
(
idx
);
__attribute__
((
unused
))
int
dummy
[]
=
{
(((
args
)).
apply
(
idx
),
0
)...
};
__attribute__
((
unused
))
int
dummy
[]
=
{
(((
args
)).
apply
(
idx
),
0
)...
};
}
}
template
<
typename
Assign
,
typename
...
AssignOp
>
__global__
void
AssignGpuEvaluate2
(
const
int
height
,
const
int
width
,
Assign
assign
,
AssignOp
...
args
)
{
__global__
void
AssignGpuEvaluate2
(
const
int
height
,
const
int
width
,
Assign
assign
,
AssignOp
...
args
)
{
const
int
colIdx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
const
int
rowIdx
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
for
(
int
i
=
rowIdx
;
i
<
height
;
i
+=
gridDim
.
y
*
blockDim
.
y
)
{
for
(
int
j
=
colIdx
;
j
<
width
;
j
+=
gridDim
.
x
*
blockDim
.
x
)
{
assign
.
apply
(
i
,
j
);
__attribute__
((
unused
))
int
dummy
[]
=
{
(((
args
)).
apply
(
i
,
j
),
0
)...
};
__attribute__
((
unused
))
int
dummy
[]
=
{
(((
args
)).
apply
(
i
,
j
),
0
)...
};
}
}
}
...
...
@@ -105,23 +110,23 @@ void AssignGpuEvaluate2(const int height, const int width,
* \note At least one assignment expression is required
*/
template
<
typename
Assign
,
typename
...
AssignOp
>
void
AssignEvaluate
(
Assign
&&
assign
,
AssignOp
&&
...
args
)
{
void
AssignEvaluate
(
Assign
&&
assign
,
AssignOp
&&
...
args
)
{
const
bool
useGpu_
=
assign
.
useGpu
();
bool
isContiguous_
=
assign
.
isContiguous
();
const
size_t
height
=
assign
.
getHeight
();
const
size_t
width
=
assign
.
getWidth
();
const
int
packSize
=
sizeof
...(
args
);
const
bool
packUseGpu
[]
=
{
((
args
)).
useGpu
()...
};
const
bool
packIsContiguous
[]
=
{
((
args
)).
isContiguous
()...
};
const
size_t
packHeight
[]
=
{
((
args
)).
getHeight
()...
};
const
size_t
packWidth
[]
=
{
((
args
)).
getWidth
()...
};
const
bool
packUseGpu
[]
=
{
((
args
)).
useGpu
()...
};
const
bool
packIsContiguous
[]
=
{
((
args
)).
isContiguous
()...
};
const
size_t
packHeight
[]
=
{
((
args
)).
getHeight
()...
};
const
size_t
packWidth
[]
=
{
((
args
)).
getWidth
()...
};
for
(
int
i
=
0
;
i
<
packSize
;
i
++
)
{
CHECK_EQ
(
useGpu_
,
packUseGpu
[
i
]);
CHECK_EQ
(
height
,
packHeight
[
i
]);
CHECK_EQ
(
width
,
packWidth
[
i
]);
isContiguous_
=
isContiguous_
&&
packIsContiguous
[
i
];
isContiguous_
=
isContiguous_
&&
packIsContiguous
[
i
];
}
if
(
useGpu_
)
{
...
...
@@ -130,8 +135,8 @@ void AssignEvaluate(Assign&& assign, AssignOp&& ... args) {
int
size
=
height
*
width
;
int
blockSize
=
size
<=
1024
?
size
:
1024
;
int
gridSize
=
(
size
+
1024
-
1
)
/
1024
;
AssignGpuEvaluate1
<<<
gridSize
,
blockSize
,
0
,
STREAM_DEFAULT
>>>
(
size
,
assign
,
args
...);
AssignGpuEvaluate1
<<<
gridSize
,
blockSize
,
0
,
STREAM_DEFAULT
>>>
(
size
,
assign
,
args
...);
}
else
{
int
blockSizeY
=
std
::
min
(
32
,
(
int
)
height
);
int
blockSizeX
=
(
32
/
blockSizeY
)
*
32
;
...
...
@@ -139,8 +144,8 @@ void AssignEvaluate(Assign&& assign, AssignOp&& ... args) {
int
gridSizeY
=
std
::
min
(
32
,
(
int
)(
height
+
blockSizeY
-
1
)
/
blockSizeY
);
dim3
threads
(
blockSizeX
,
blockSizeY
);
dim3
grid
(
gridSizeX
,
gridSizeY
);
AssignGpuEvaluate2
<<<
grid
,
threads
,
0
,
STREAM_DEFAULT
>>>
(
height
,
width
,
assign
,
args
...);
AssignGpuEvaluate2
<<<
grid
,
threads
,
0
,
STREAM_DEFAULT
>>>
(
height
,
width
,
assign
,
args
...);
}
CHECK_SYNC
(
"AssignEvaluate failed"
);
...
...
@@ -151,4 +156,3 @@ void AssignEvaluate(Assign&& assign, AssignOp&& ... args) {
}
}
// namespace paddle
paddle/math/TensorEvaluate.h
浏览文件 @
abdcb8e1
...
...
@@ -23,7 +23,7 @@ namespace paddle {
/**
* \brief The tensor cpu evaluate api.
*/
template
<
class
T
,
typename
LeftType
,
typename
RightType
>
template
<
class
T
,
typename
LeftType
,
typename
RightType
>
inline
void
TensorCpuApply
(
LeftType
&
lhs
,
const
RightType
&
rhs
)
{
TensorApply
<
LeftType
,
T
>
lhs_
(
lhs
);
TensorApply
<
const
RightType
,
T
>
rhs_
(
rhs
);
...
...
@@ -48,16 +48,17 @@ inline void TensorCpuApply(LeftType& lhs, const RightType& rhs) {
}
#ifdef __NVCC__
template
<
typename
LeftType
,
typename
RightType
>
__global__
void
TensorElementWiseOp
(
LeftType
lhs
,
RightType
rhs
,
const
int
border
)
{
template
<
typename
LeftType
,
typename
RightType
>
__global__
void
TensorElementWiseOp
(
LeftType
lhs
,
RightType
rhs
,
const
int
border
)
{
const
int
idx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
idx
<
border
)
{
lhs
.
applyRef
(
idx
)
=
rhs
.
apply
(
idx
);
}
}
template
<
typename
LeftType
,
typename
RightType
>
template
<
typename
LeftType
,
typename
RightType
>
__global__
void
TensorElementWiseOp
(
LeftType
lhs
,
RightType
rhs
)
{
const
int
colIdx
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
const
int
rowIdx
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
...
...
@@ -71,7 +72,7 @@ __global__ void TensorElementWiseOp(LeftType lhs, RightType rhs) {
/**
* \brief The tensor gpu evaluate api.
*/
template
<
class
T
,
typename
LeftType
,
typename
RightType
>
template
<
class
T
,
typename
LeftType
,
typename
RightType
>
inline
void
TensorGpuApply
(
LeftType
&
lhs
,
const
RightType
&
rhs
)
{
TensorApply
<
LeftType
,
T
>
lhs_
(
lhs
);
TensorApply
<
const
RightType
,
T
>
rhs_
(
rhs
);
...
...
@@ -86,8 +87,8 @@ inline void TensorGpuApply(LeftType& lhs, const RightType& rhs) {
int
size
=
dimM
*
dimN
;
int
blockSize
=
size
<=
1024
?
size
:
1024
;
int
gridSize
=
(
size
+
1024
-
1
)
/
1024
;
TensorElementWiseOp
<<<
gridSize
,
blockSize
,
0
,
STREAM_DEFAULT
>>>
(
lhs_
,
rhs_
,
size
);
TensorElementWiseOp
<<<
gridSize
,
blockSize
,
0
,
STREAM_DEFAULT
>>>
(
lhs_
,
rhs_
,
size
);
}
else
{
int
blockSizeY
=
std
::
min
(
32
,
dimM
);
int
blockSizeX
=
(
32
/
blockSizeY
)
*
32
;
...
...
@@ -95,16 +96,14 @@ inline void TensorGpuApply(LeftType& lhs, const RightType& rhs) {
int
gridSizeY
=
std
::
min
(
32
,
(
dimM
+
blockSizeY
-
1
)
/
blockSizeY
);
dim3
threads
(
blockSizeX
,
blockSizeY
);
dim3
grid
(
gridSizeX
,
gridSizeY
);
TensorElementWiseOp
<<<
grid
,
threads
,
0
,
STREAM_DEFAULT
>>>
(
lhs_
,
rhs_
);
TensorElementWiseOp
<<<
grid
,
threads
,
0
,
STREAM_DEFAULT
>>>
(
lhs_
,
rhs_
);
}
CHECK_SYNC
(
"TensorGpuApply failed"
);
}
#else
template
<
class
T
,
typename
LeftType
,
typename
RightType
>
inline
void
TensorGpuApply
(
LeftType
&
lhs
,
RightType
&
rhs
)
{
}
template
<
class
T
,
typename
LeftType
,
typename
RightType
>
inline
void
TensorGpuApply
(
LeftType
&
lhs
,
RightType
&
rhs
)
{}
#endif
}
// namespace paddle
paddle/math/TensorExpression.h
浏览文件 @
abdcb8e1
...
...
@@ -21,254 +21,272 @@ limitations under the License. */
namespace
paddle
{
template
<
class
OP
,
typename
ExprType
,
class
T
>
class
TensorConstant
;
template
<
class
OP
,
typename
ExprType
,
class
T
>
class
TensorUnaryOp
;
template
<
class
OP
,
typename
LhsType
,
typename
RhsType
,
class
T
>
class
TensorBi
naryOp
;
template
<
typename
ExprType1
,
t
ypename
ExprType2
,
typename
ExprType3
,
class
T
>
class
TensorTernaryOp
;
template
<
typename
LhsType
,
typename
RhsType
,
class
T
>
class
TensorAssignOp
;
template
<
class
OP
,
typename
ExprType
,
class
T
>
class
TensorConstant
;
template
<
class
OP
,
typename
ExprType
,
class
T
>
class
TensorU
naryOp
;
template
<
class
OP
,
typename
LhsType
,
typename
RhsType
,
class
T
>
class
TensorBinaryOp
;
t
emplate
<
typename
ExprType1
,
typename
ExprType2
,
typename
ExprType3
,
class
T
>
class
TensorTernaryOp
;
template
<
typename
LhsType
,
typename
RhsType
,
class
T
>
class
TensorAssignOp
;
/**
* \brief Tensor base class.
*
*
* This is the base class of all Tensor and Expression class.
*/
template
<
typename
Derived
,
class
T
>
template
<
typename
Derived
,
class
T
>
class
TensorExpression
{
public:
/**
* Element wise unary expression.
*/
template
<
typename
UnaryOp
>
const
TensorUnaryOp
<
UnaryOp
,
const
Derived
,
T
>
unaryExpression
(
const
UnaryOp
&
op
)
const
{
template
<
typename
UnaryOp
>
const
TensorUnaryOp
<
UnaryOp
,
const
Derived
,
T
>
unaryExpression
(
const
UnaryOp
&
op
)
const
{
return
TensorUnaryOp
<
UnaryOp
,
const
Derived
,
T
>
(
op
,
derived
());
}
const
TensorUnaryOp
<
hppl
::
unary
::
add_scale
<
T
>
,
const
Derived
,
T
>
operator
+
(
T
p
)
const
{
const
TensorUnaryOp
<
hppl
::
unary
::
add_scale
<
T
>
,
const
Derived
,
T
>
operator
+
(
T
p
)
const
{
return
unaryExpression
(
hppl
::
unary
::
add_scale
<
T
>
(
p
));
}
const
TensorUnaryOp
<
hppl
::
unary
::
sub_scale
<
T
>
,
const
Derived
,
T
>
operator
-
(
T
p
)
const
{
const
TensorUnaryOp
<
hppl
::
unary
::
sub_scale
<
T
>
,
const
Derived
,
T
>
operator
-
(
T
p
)
const
{
return
unaryExpression
(
hppl
::
unary
::
sub_scale
<
T
>
(
p
));
}
const
TensorUnaryOp
<
hppl
::
unary
::
mul_scale
<
T
>
,
const
Derived
,
T
>
operator
*
(
T
p
)
const
{
const
TensorUnaryOp
<
hppl
::
unary
::
mul_scale
<
T
>
,
const
Derived
,
T
>
operator
*
(
T
p
)
const
{
return
unaryExpression
(
hppl
::
unary
::
mul_scale
<
T
>
(
p
));
}
const
TensorUnaryOp
<
hppl
::
unary
::
div_scale
<
T
>
,
const
Derived
,
T
>
operator
/
(
T
p
)
const
{
const
TensorUnaryOp
<
hppl
::
unary
::
div_scale
<
T
>
,
const
Derived
,
T
>
operator
/
(
T
p
)
const
{
return
unaryExpression
(
hppl
::
unary
::
div_scale
<
T
>
(
p
));
}
const
TensorUnaryOp
<
hppl
::
unary
::
neg
<
T
>
,
const
Derived
,
T
>
operator
-
()
const
{
const
TensorUnaryOp
<
hppl
::
unary
::
neg
<
T
>
,
const
Derived
,
T
>
operator
-
()
const
{
return
unaryExpression
(
hppl
::
unary
::
neg
<
T
>
());
}
const
TensorUnaryOp
<
hppl
::
unary
::
exp_op
<
T
>
,
const
Derived
,
T
>
exp
()
const
{
const
TensorUnaryOp
<
hppl
::
unary
::
exp_op
<
T
>
,
const
Derived
,
T
>
exp
()
const
{
return
unaryExpression
(
hppl
::
unary
::
exp_op
<
T
>
());
}
const
TensorUnaryOp
<
hppl
::
unary
::
log_op
<
T
>
,
const
Derived
,
T
>
log
()
const
{
const
TensorUnaryOp
<
hppl
::
unary
::
log_op
<
T
>
,
const
Derived
,
T
>
log
()
const
{
return
unaryExpression
(
hppl
::
unary
::
log_op
<
T
>
());
}
const
TensorUnaryOp
<
hppl
::
unary
::
sqrt_op
<
T
>
,
const
Derived
,
T
>
sqrt
()
const
{
const
TensorUnaryOp
<
hppl
::
unary
::
sqrt_op
<
T
>
,
const
Derived
,
T
>
sqrt
()
const
{
return
unaryExpression
(
hppl
::
unary
::
sqrt_op
<
T
>
());
}
const
TensorUnaryOp
<
hppl
::
unary
::
square
<
T
>
,
const
Derived
,
T
>
square
()
const
{
const
TensorUnaryOp
<
hppl
::
unary
::
square
<
T
>
,
const
Derived
,
T
>
square
()
const
{
return
unaryExpression
(
hppl
::
unary
::
square
<
T
>
());
}
const
TensorUnaryOp
<
hppl
::
unary
::
reciprocal
<
T
>
,
const
Derived
,
T
>
reciprocal
()
const
{
const
TensorUnaryOp
<
hppl
::
unary
::
reciprocal
<
T
>
,
const
Derived
,
T
>
reciprocal
()
const
{
return
unaryExpression
(
hppl
::
unary
::
reciprocal
<
T
>
());
}
const
TensorUnaryOp
<
hppl
::
unary
::
abs
<
T
>
,
const
Derived
,
T
>
abs
()
const
{
const
TensorUnaryOp
<
hppl
::
unary
::
abs
<
T
>
,
const
Derived
,
T
>
abs
()
const
{
return
unaryExpression
(
hppl
::
unary
::
abs
<
T
>
());
}
const
TensorUnaryOp
<
hppl
::
unary
::
sign
<
T
>
,
const
Derived
,
T
>
sign
()
const
{
const
TensorUnaryOp
<
hppl
::
unary
::
sign
<
T
>
,
const
Derived
,
T
>
sign
()
const
{
return
unaryExpression
(
hppl
::
unary
::
sign
<
T
>
());
}
const
TensorUnaryOp
<
hppl
::
unary
::
pow_op
<
T
>
,
const
Derived
,
T
>
pow
(
T
p
)
const
{
const
TensorUnaryOp
<
hppl
::
unary
::
pow_op
<
T
>
,
const
Derived
,
T
>
pow
(
T
p
)
const
{
return
unaryExpression
(
hppl
::
unary
::
pow_op
<
T
>
(
p
));
}
const
TensorUnaryOp
<
hppl
::
unary
::
min
<
T
>
,
const
Derived
,
T
>
min
(
T
p
)
const
{
const
TensorUnaryOp
<
hppl
::
unary
::
min
<
T
>
,
const
Derived
,
T
>
min
(
T
p
)
const
{
return
unaryExpression
(
hppl
::
unary
::
min
<
T
>
(
p
));
}
const
TensorUnaryOp
<
hppl
::
unary
::
max
<
T
>
,
const
Derived
,
T
>
max
(
T
p
)
const
{
const
TensorUnaryOp
<
hppl
::
unary
::
max
<
T
>
,
const
Derived
,
T
>
max
(
T
p
)
const
{
return
unaryExpression
(
hppl
::
unary
::
max
<
T
>
(
p
));
}
const
TensorUnaryOp
<
hppl
::
unary
::
cmp_eq
<
T
>
,
const
Derived
,
T
>
operator
==
(
T
p
)
const
{
const
TensorUnaryOp
<
hppl
::
unary
::
cmp_eq
<
T
>
,
const
Derived
,
T
>
operator
==
(
T
p
)
const
{
return
unaryExpression
(
hppl
::
unary
::
cmp_eq
<
T
>
(
p
));
}
const
TensorUnaryOp
<
hppl
::
unary
::
cmp_ne
<
T
>
,
const
Derived
,
T
>
operator
!=
(
T
p
)
const
{
const
TensorUnaryOp
<
hppl
::
unary
::
cmp_ne
<
T
>
,
const
Derived
,
T
>
operator
!=
(
T
p
)
const
{
return
unaryExpression
(
hppl
::
unary
::
cmp_ne
<
T
>
(
p
));
}
const
TensorUnaryOp
<
hppl
::
unary
::
cmp_le
<
T
>
,
const
Derived
,
T
>
operator
<=
(
T
p
)
const
{
const
TensorUnaryOp
<
hppl
::
unary
::
cmp_le
<
T
>
,
const
Derived
,
T
>
operator
<=
(
T
p
)
const
{
return
unaryExpression
(
hppl
::
unary
::
cmp_le
<
T
>
(
p
));
}
const
TensorUnaryOp
<
hppl
::
unary
::
cmp_lt
<
T
>
,
const
Derived
,
T
>
operator
<
(
T
p
)
const
{
const
TensorUnaryOp
<
hppl
::
unary
::
cmp_lt
<
T
>
,
const
Derived
,
T
>
operator
<
(
T
p
)
const
{
return
unaryExpression
(
hppl
::
unary
::
cmp_lt
<
T
>
(
p
));
}
const
TensorUnaryOp
<
hppl
::
unary
::
cmp_ge
<
T
>
,
const
Derived
,
T
>
operator
>=
(
T
p
)
const
{
const
TensorUnaryOp
<
hppl
::
unary
::
cmp_ge
<
T
>
,
const
Derived
,
T
>
operator
>=
(
T
p
)
const
{
return
unaryExpression
(
hppl
::
unary
::
cmp_ge
<
T
>
(
p
));
}
const
TensorUnaryOp
<
hppl
::
unary
::
cmp_gt
<
T
>
,
const
Derived
,
T
>
operator
>
(
T
p
)
const
{
const
TensorUnaryOp
<
hppl
::
unary
::
cmp_gt
<
T
>
,
const
Derived
,
T
>
operator
>
(
T
p
)
const
{
return
unaryExpression
(
hppl
::
unary
::
cmp_gt
<
T
>
(
p
));
}
const
TensorUnaryOp
<
hppl
::
unary
::
and_op
<
T
>
,
const
Derived
,
T
>
operator
&&
(
T
p
)
const
{
const
TensorUnaryOp
<
hppl
::
unary
::
and_op
<
T
>
,
const
Derived
,
T
>
operator
&&
(
T
p
)
const
{
return
unaryExpression
(
hppl
::
unary
::
and_op
<
T
>
(
p
));
}
const
TensorUnaryOp
<
hppl
::
unary
::
or_op
<
T
>
,
const
Derived
,
T
>
operator
||
(
T
p
)
const
{
const
TensorUnaryOp
<
hppl
::
unary
::
or_op
<
T
>
,
const
Derived
,
T
>
operator
||
(
T
p
)
const
{
return
unaryExpression
(
hppl
::
unary
::
or_op
<
T
>
(
p
));
}
/**
* Element wise binary expression.
*/
template
<
typename
BinaryOp
,
typename
ExpressionType
>
template
<
typename
BinaryOp
,
typename
ExpressionType
>
const
TensorBinaryOp
<
BinaryOp
,
const
Derived
,
const
ExpressionType
,
T
>
binaryExpression
(
const
BinaryOp
&
op
,
const
ExpressionType
&
expr
)
const
{
return
TensorBinaryOp
<
BinaryOp
,
const
Derived
,
const
ExpressionType
,
T
>
(
op
,
derived
(),
expr
);
op
,
derived
(),
expr
);
}
template
<
typename
ExpressionType
>
const
TensorBinaryOp
<
hppl
::
binary
::
cmp_eq
<
T
>
,
const
Derived
,
const
ExpressionType
,
T
>
template
<
typename
ExpressionType
>
const
TensorBinaryOp
<
hppl
::
binary
::
cmp_eq
<
T
>
,
const
Derived
,
const
ExpressionType
,
T
>
operator
==
(
const
ExpressionType
&
expr
)
const
{
return
binaryExpression
(
hppl
::
binary
::
cmp_eq
<
T
>
(),
expr
);
}
template
<
typename
ExpressionType
>
const
TensorBinaryOp
<
hppl
::
binary
::
cmp_ne
<
T
>
,
const
Derived
,
const
ExpressionType
,
T
>
template
<
typename
ExpressionType
>
const
TensorBinaryOp
<
hppl
::
binary
::
cmp_ne
<
T
>
,
const
Derived
,
const
ExpressionType
,
T
>
operator
!=
(
const
ExpressionType
&
expr
)
const
{
return
binaryExpression
(
hppl
::
binary
::
cmp_ne
<
T
>
(),
expr
);
}
template
<
typename
ExpressionType
>
const
TensorBinaryOp
<
hppl
::
binary
::
cmp_le
<
T
>
,
const
Derived
,
const
ExpressionType
,
T
>
template
<
typename
ExpressionType
>
const
TensorBinaryOp
<
hppl
::
binary
::
cmp_le
<
T
>
,
const
Derived
,
const
ExpressionType
,
T
>
operator
<=
(
const
ExpressionType
&
expr
)
const
{
return
binaryExpression
(
hppl
::
binary
::
cmp_le
<
T
>
(),
expr
);
}
template
<
typename
ExpressionType
>
const
TensorBinaryOp
<
hppl
::
binary
::
cmp_lt
<
T
>
,
const
Derived
,
const
ExpressionType
,
T
>
template
<
typename
ExpressionType
>
const
TensorBinaryOp
<
hppl
::
binary
::
cmp_lt
<
T
>
,
const
Derived
,
const
ExpressionType
,
T
>
operator
<
(
const
ExpressionType
&
expr
)
const
{
return
binaryExpression
(
hppl
::
binary
::
cmp_lt
<
T
>
(),
expr
);
}
template
<
typename
ExpressionType
>
const
TensorBinaryOp
<
hppl
::
binary
::
cmp_ge
<
T
>
,
const
Derived
,
const
ExpressionType
,
T
>
template
<
typename
ExpressionType
>
const
TensorBinaryOp
<
hppl
::
binary
::
cmp_ge
<
T
>
,
const
Derived
,
const
ExpressionType
,
T
>
operator
>=
(
const
ExpressionType
&
expr
)
const
{
return
binaryExpression
(
hppl
::
binary
::
cmp_ge
<
T
>
(),
expr
);
}
template
<
typename
ExpressionType
>
const
TensorBinaryOp
<
hppl
::
binary
::
cmp_gt
<
T
>
,
const
Derived
,
const
ExpressionType
,
T
>
template
<
typename
ExpressionType
>
const
TensorBinaryOp
<
hppl
::
binary
::
cmp_gt
<
T
>
,
const
Derived
,
const
ExpressionType
,
T
>
operator
>
(
const
ExpressionType
&
expr
)
const
{
return
binaryExpression
(
hppl
::
binary
::
cmp_gt
<
T
>
(),
expr
);
}
template
<
typename
ExpressionType
>
const
TensorBinaryOp
<
hppl
::
binary
::
and_op
<
T
>
,
const
Derived
,
const
ExpressionType
,
T
>
template
<
typename
ExpressionType
>
const
TensorBinaryOp
<
hppl
::
binary
::
and_op
<
T
>
,
const
Derived
,
const
ExpressionType
,
T
>
operator
&&
(
const
ExpressionType
&
expr
)
const
{
return
binaryExpression
(
hppl
::
binary
::
and_op
<
T
>
(),
expr
);
}
template
<
typename
ExpressionType
>
const
TensorBinaryOp
<
hppl
::
binary
::
or_op
<
T
>
,
const
Derived
,
const
ExpressionType
,
T
>
template
<
typename
ExpressionType
>
const
TensorBinaryOp
<
hppl
::
binary
::
or_op
<
T
>
,
const
Derived
,
const
ExpressionType
,
T
>
operator
||
(
const
ExpressionType
&
expr
)
const
{
return
binaryExpression
(
hppl
::
binary
::
or_op
<
T
>
(),
expr
);
}
template
<
typename
ExpressionType
>
const
TensorBinaryOp
<
hppl
::
binary
::
add
<
T
>
,
const
Derived
,
const
ExpressionType
,
T
>
template
<
typename
ExpressionType
>
const
TensorBinaryOp
<
hppl
::
binary
::
add
<
T
>
,
const
Derived
,
const
ExpressionType
,
T
>
operator
+
(
const
ExpressionType
&
expr
)
const
{
return
binaryExpression
(
hppl
::
binary
::
add
<
T
>
(),
expr
);
}
template
<
typename
ExpressionType
>
const
TensorBinaryOp
<
hppl
::
binary
::
sub
<
T
>
,
const
Derived
,
const
ExpressionType
,
T
>
template
<
typename
ExpressionType
>
const
TensorBinaryOp
<
hppl
::
binary
::
sub
<
T
>
,
const
Derived
,
const
ExpressionType
,
T
>
operator
-
(
const
ExpressionType
&
expr
)
const
{
return
binaryExpression
(
hppl
::
binary
::
sub
<
T
>
(),
expr
);
}
template
<
typename
ExpressionType
>
const
TensorBinaryOp
<
hppl
::
binary
::
mul
<
T
>
,
const
Derived
,
const
ExpressionType
,
T
>
template
<
typename
ExpressionType
>
const
TensorBinaryOp
<
hppl
::
binary
::
mul
<
T
>
,
const
Derived
,
const
ExpressionType
,
T
>
operator
*
(
const
ExpressionType
&
expr
)
const
{
return
binaryExpression
(
hppl
::
binary
::
mul
<
T
>
(),
expr
);
}
template
<
typename
ExpressionType
>
const
TensorBinaryOp
<
hppl
::
binary
::
div
<
T
>
,
const
Derived
,
const
ExpressionType
,
T
>
template
<
typename
ExpressionType
>
const
TensorBinaryOp
<
hppl
::
binary
::
div
<
T
>
,
const
Derived
,
const
ExpressionType
,
T
>
operator
/
(
const
ExpressionType
&
expr
)
const
{
return
binaryExpression
(
hppl
::
binary
::
div
<
T
>
(),
expr
);
}
template
<
typename
ExpressionType
>
const
TensorBinaryOp
<
hppl
::
binary
::
min
<
T
>
,
const
Derived
,
const
ExpressionType
,
T
>
template
<
typename
ExpressionType
>
const
TensorBinaryOp
<
hppl
::
binary
::
min
<
T
>
,
const
Derived
,
const
ExpressionType
,
T
>
min
(
const
ExpressionType
&
expr
)
const
{
return
binaryExpression
(
hppl
::
binary
::
min
<
T
>
(),
expr
);
}
template
<
typename
ExpressionType
>
const
TensorBinaryOp
<
hppl
::
binary
::
max
<
T
>
,
const
Derived
,
const
ExpressionType
,
T
>
template
<
typename
ExpressionType
>
const
TensorBinaryOp
<
hppl
::
binary
::
max
<
T
>
,
const
Derived
,
const
ExpressionType
,
T
>
max
(
const
ExpressionType
&
expr
)
const
{
return
binaryExpression
(
hppl
::
binary
::
max
<
T
>
(),
expr
);
}
...
...
@@ -282,38 +300,38 @@ public:
* If derived expression evaluates to true, then expression1 is evaluated.
* If derived expression evaluates to false, then expression2 is evaluated.
*/
template
<
typename
ExprType1
,
typename
ExprType2
>
template
<
typename
ExprType1
,
typename
ExprType2
>
const
TensorTernaryOp
<
const
Derived
,
const
ExprType1
,
const
ExprType2
,
T
>
condition
(
const
ExprType1
&
expr1
,
const
ExprType2
&
expr2
)
const
{
return
TensorTernaryOp
<
const
Derived
,
const
ExprType1
,
const
ExprType2
,
T
>
(
derived
(),
expr1
,
expr2
);
return
TensorTernaryOp
<
const
Derived
,
const
ExprType1
,
const
ExprType2
,
T
>
(
derived
(),
expr1
,
expr2
);
}
template
<
typename
ExprType
>
template
<
typename
ExprType
>
const
TensorTernaryOp
<
const
Derived
,
const
TensorConstant
<
hppl
::
unary
::
constant
<
T
>
,
const
Derived
,
T
>
,
const
ExprType
,
T
>
const
Derived
,
const
TensorConstant
<
hppl
::
unary
::
constant
<
T
>
,
const
Derived
,
T
>
,
const
ExprType
,
T
>
condition
(
T
p
,
const
ExprType
&
expr
)
const
{
return
condition
(
constant
(
p
),
expr
);
}
template
<
typename
ExprType
>
template
<
typename
ExprType
>
const
TensorTernaryOp
<
const
Derived
,
const
ExprType
,
const
TensorConstant
<
hppl
::
unary
::
constant
<
T
>
,
const
Derived
,
T
>
,
T
>
const
Derived
,
const
ExprType
,
const
TensorConstant
<
hppl
::
unary
::
constant
<
T
>
,
const
Derived
,
T
>
,
T
>
condition
(
const
ExprType
&
expr
,
T
p
)
const
{
return
condition
(
expr
,
constant
(
p
));
}
const
TensorTernaryOp
<
const
Derived
,
const
TensorConstant
<
hppl
::
unary
::
constant
<
T
>
,
const
Derived
,
T
>
,
const
TensorConstant
<
hppl
::
unary
::
constant
<
T
>
,
const
Derived
,
T
>
,
T
>
const
Derived
,
const
TensorConstant
<
hppl
::
unary
::
constant
<
T
>
,
const
Derived
,
T
>
,
const
TensorConstant
<
hppl
::
unary
::
constant
<
T
>
,
const
Derived
,
T
>
,
T
>
condition
(
T
p1
,
T
p2
)
const
{
return
condition
(
constant
(
p1
),
constant
(
p2
));
}
...
...
@@ -321,20 +339,20 @@ public:
/**
* return a TensorConstant. A TensorConstant object hold a constant value.
*/
const
TensorConstant
<
hppl
::
unary
::
constant
<
T
>
,
const
Derived
,
T
>
constant
(
T
p
)
const
{
return
TensorConstant
<
hppl
::
unary
::
constant
<
T
>
,
const
Derived
,
T
>
(
hppl
::
unary
::
constant
<
T
>
(
p
),
derived
());
const
TensorConstant
<
hppl
::
unary
::
constant
<
T
>
,
const
Derived
,
T
>
constant
(
T
p
)
const
{
return
TensorConstant
<
hppl
::
unary
::
constant
<
T
>
,
const
Derived
,
T
>
(
hppl
::
unary
::
constant
<
T
>
(
p
),
derived
());
}
/**
* return a TensorAssignOp, and use AssignEvaluate to evaluate one or more
* TensorAssignOp objects.
*/
template
<
typename
ExpressionType
>
TensorAssignOp
<
Derived
,
ExpressionType
,
T
>
lazyAssign
(
const
ExpressionType
&
expr
)
const
{
return
TensorAssignOp
<
Derived
,
ExpressionType
,
T
>
(
derived
(),
expr
);
template
<
typename
ExpressionType
>
TensorAssignOp
<
Derived
,
ExpressionType
,
T
>
lazyAssign
(
const
ExpressionType
&
expr
)
const
{
return
TensorAssignOp
<
Derived
,
ExpressionType
,
T
>
(
derived
(),
expr
);
}
protected:
...
...
@@ -344,12 +362,12 @@ protected:
/**
* \brief Unary Operator Expression
*/
template
<
class
OP
,
typename
ExprType
,
class
T
>
template
<
class
OP
,
typename
ExprType
,
class
T
>
class
TensorUnaryOp
:
public
TensorExpression
<
TensorUnaryOp
<
OP
,
ExprType
,
T
>
,
T
>
{
public:
explicit
TensorUnaryOp
(
const
OP
op
,
const
ExprType
&
expr
)
:
op_
(
op
),
expr_
(
expr
)
{}
:
op_
(
op
),
expr_
(
expr
)
{}
const
OP
op_
;
const
ExprType
expr_
;
...
...
@@ -358,12 +376,12 @@ public:
/**
* \brief Binary Operator Expression
*/
template
<
class
OP
,
typename
LhsType
,
typename
RhsType
,
class
T
>
template
<
class
OP
,
typename
LhsType
,
typename
RhsType
,
class
T
>
class
TensorBinaryOp
:
public
TensorExpression
<
TensorBinaryOp
<
OP
,
LhsType
,
RhsType
,
T
>
,
T
>
{
public:
explicit
TensorBinaryOp
(
const
OP
op
,
const
LhsType
&
lhs
,
const
RhsType
&
rhs
)
:
op_
(
op
),
lhs_
(
lhs
),
rhs_
(
rhs
)
{}
:
op_
(
op
),
lhs_
(
lhs
),
rhs_
(
rhs
)
{}
const
OP
op_
;
const
LhsType
lhs_
;
...
...
@@ -373,14 +391,15 @@ public:
/**
* \brief Ternary Operator Expression
*/
template
<
typename
ExprType1
,
typename
ExprType2
,
typename
ExprType3
,
class
T
>
class
TensorTernaryOp
:
public
TensorExpression
<
TensorTernaryOp
<
ExprType1
,
ExprType2
,
ExprType3
,
T
>
,
T
>
{
template
<
typename
ExprType1
,
typename
ExprType2
,
typename
ExprType3
,
class
T
>
class
TensorTernaryOp
:
public
TensorExpression
<
TensorTernaryOp
<
ExprType1
,
ExprType2
,
ExprType3
,
T
>
,
T
>
{
public:
explicit
TensorTernaryOp
(
const
ExprType1
&
expr1
,
const
ExprType2
&
expr2
,
const
ExprType3
&
expr3
)
:
expr1_
(
expr1
),
expr2_
(
expr2
),
expr3_
(
expr3
)
{}
explicit
TensorTernaryOp
(
const
ExprType1
&
expr1
,
const
ExprType2
&
expr2
,
const
ExprType3
&
expr3
)
:
expr1_
(
expr1
),
expr2_
(
expr2
),
expr3_
(
expr3
)
{}
const
ExprType1
expr1_
;
const
ExprType2
expr2_
;
...
...
@@ -390,12 +409,12 @@ public:
/**
* \brief Constant Expression
*/
template
<
class
OP
,
typename
ExprType
,
class
T
>
template
<
class
OP
,
typename
ExprType
,
class
T
>
class
TensorConstant
:
public
TensorExpression
<
TensorConstant
<
OP
,
ExprType
,
T
>
,
T
>
{
public:
explicit
TensorConstant
(
const
OP
op
,
const
ExprType
&
expr
)
:
op_
(
op
),
expr_
(
expr
)
{}
:
op_
(
op
),
expr_
(
expr
)
{}
const
OP
op_
;
const
ExprType
expr_
;
...
...
@@ -405,9 +424,9 @@ public:
* \brief operator+ overload
* \return a unary operator expression
*/
template
<
typename
Derived
,
class
T
>
const
TensorUnaryOp
<
hppl
::
unary
::
add_scale
<
T
>
,
const
Derived
,
T
>
operator
+
(
T
p
,
const
TensorExpression
<
Derived
,
T
>&
expr
)
{
template
<
typename
Derived
,
class
T
>
const
TensorUnaryOp
<
hppl
::
unary
::
add_scale
<
T
>
,
const
Derived
,
T
>
operator
+
(
T
p
,
const
TensorExpression
<
Derived
,
T
>&
expr
)
{
return
expr
+
p
;
}
...
...
@@ -415,9 +434,9 @@ operator+(T p, const TensorExpression<Derived, T>& expr) {
* \brief operator* overload
* \return a unary operator expression
*/
template
<
typename
Derived
,
class
T
>
const
TensorUnaryOp
<
hppl
::
unary
::
mul_scale
<
T
>
,
const
Derived
,
T
>
operator
*
(
T
p
,
const
TensorExpression
<
Derived
,
T
>&
expr
)
{
template
<
typename
Derived
,
class
T
>
const
TensorUnaryOp
<
hppl
::
unary
::
mul_scale
<
T
>
,
const
Derived
,
T
>
operator
*
(
T
p
,
const
TensorExpression
<
Derived
,
T
>&
expr
)
{
return
expr
*
p
;
}
...
...
@@ -425,4 +444,3 @@ operator*(T p, const TensorExpression<Derived, T>& expr) {
#include "TensorApply.h"
#include "TensorEvaluate.h"
paddle/math/TrainingAlgorithmOp.cu
浏览文件 @
abdcb8e1
...
...
@@ -355,4 +355,3 @@ void adamaxApply(BaseMatrix& value,
}
// namespace paddle
#endif
paddle/math/TrainingAlgorithmOp.h
浏览文件 @
abdcb8e1
...
...
@@ -119,5 +119,4 @@ extern void adamaxApply(BaseMatrix& value,
real
beta2
,
int64_t
step
,
real
alpha
);
}
// namespace paddle
paddle/math/tests/OriginalOptimizerApi.h
浏览文件 @
abdcb8e1
...
...
@@ -31,7 +31,8 @@ void SparseMomentumParameterOptimizer(const VectorPtr vecs[],
tau
*
alpha
*
gamma
*
learningRate
);
vecs
[
PARAMETER_VALUE
]
->
add
(
*
vecs
[
PARAMETER_MOMENTUM_UT
],
tau
/
beta
+
1.0
/
alpha
,
*
vecs
[
PARAMETER_MOMENTUM_VT
],
1.0
/
beta
);
*
vecs
[
PARAMETER_MOMENTUM_VT
],
1.0
/
beta
);
}
void
AdagradParameterOptimizer
(
const
VectorPtr
vecs
[],
...
...
@@ -46,10 +47,12 @@ void AdagradParameterOptimizer(const VectorPtr vecs[],
vecs
[
PARAMETER_LEARNING_RATE
]
->
add
(
epsilon
);
vecs
[
PARAMETER_LEARNING_RATE
]
->
invSqrt
(
*
vecs
[
PARAMETER_LEARNING_RATE
]);
vecs
[
PARAMETER_VALUE
]
->
sgdUpdate
(
*
vecs
[
PARAMETER_GRADIENT
],
*
vecs
[
PARAMETER_MOMENTUM
],
*
vecs
[
PARAMETER_LEARNING_RATE
],
learningRate
,
momentum
,
decayRate
);
vecs
[
PARAMETER_VALUE
]
->
sgdUpdate
(
*
vecs
[
PARAMETER_GRADIENT
],
*
vecs
[
PARAMETER_MOMENTUM
],
*
vecs
[
PARAMETER_LEARNING_RATE
],
learningRate
,
momentum
,
decayRate
);
}
void
AdaDeltaParameterOptimizer
(
const
VectorPtr
vecs
[],
...
...
@@ -59,24 +62,29 @@ void AdaDeltaParameterOptimizer(const VectorPtr vecs[],
real
momentum
,
real
decayRate
)
{
// E(g_t^2) = \rou * E(g_{t-1}^2) + (1-\rou) * g^2
vecs
[
PARAMETER_GRADIENT_SQURESUM
]
->
decayAddSquare
(
*
vecs
[
PARAMETER_GRADIENT
],
rou
,
1.0
f
-
rou
);
vecs
[
PARAMETER_GRADIENT_SQURESUM
]
->
decayAddSquare
(
*
vecs
[
PARAMETER_GRADIENT
],
rou
,
1.0
f
-
rou
);
// learn_rate = sqrt( ( E(dx_{t-1}^2) + epsilon ) / ( E(g_t^2) + epsilon ) )
vecs
[
PARAMETER_LEARNING_RATE
]
->
dotDiv
(
*
vecs
[
PARAMETER_GRADIENT_SQURESUM1
],
*
vecs
[
PARAMETER_GRADIENT_SQURESUM
],
epsilon
,
epsilon
);
epsilon
,
epsilon
);
vecs
[
PARAMETER_LEARNING_RATE
]
->
sqrt2
();
// E(dx_t^2) = \rou * E(dx_{t-1}^2) + (1-\rou) * (-g*learn_rate)^2
vecs
[
PARAMETER_GRADIENT_SQURESUM1
]
->
decayAddSquareMul
(
*
vecs
[
PARAMETER_GRADIENT
],
*
vecs
[
PARAMETER_LEARNING_RATE
],
rou
,
*
vecs
[
PARAMETER_GRADIENT
],
*
vecs
[
PARAMETER_LEARNING_RATE
],
rou
,
1.0
f
-
rou
);
vecs
[
PARAMETER_VALUE
]
->
sgdUpdate
(
*
vecs
[
PARAMETER_GRADIENT
],
*
vecs
[
PARAMETER_MOMENTUM
],
*
vecs
[
PARAMETER_LEARNING_RATE
],
learningRate
,
momentum
,
decayRate
);
vecs
[
PARAMETER_VALUE
]
->
sgdUpdate
(
*
vecs
[
PARAMETER_GRADIENT
],
*
vecs
[
PARAMETER_MOMENTUM
],
*
vecs
[
PARAMETER_LEARNING_RATE
],
learningRate
,
momentum
,
decayRate
);
}
void
RMSPropParameterOptimizer
(
const
VectorPtr
vecs
[],
...
...
@@ -91,12 +99,11 @@ void RMSPropParameterOptimizer(const VectorPtr vecs[],
// For the first time update, make the sum be the current square
// so that the initial estimation of E(g_t^2) will not be too small.
vecs
[
PARAMETER_GRADIENT_SQURESUM
]
->
decayAddSquare
(
*
vecs
[
PARAMETER_GRADIENT
],
accumulatedRou
,
firstTime
?
1.0
f
:
1.0
f
-
rou
);
*
vecs
[
PARAMETER_GRADIENT
],
accumulatedRou
,
firstTime
?
1.0
f
:
1.0
f
-
rou
);
// E(g_t) = \rou * E(g_{t-1}) + (1-\rou) * g
vecs
[
PARAMETER_GRADIENT_SQURESUM1
]
->
add
(
*
vecs
[
PARAMETER_GRADIENT
],
accumulatedRou
,
1.0
f
-
rou
);
vecs
[
PARAMETER_GRADIENT_SQURESUM1
]
->
add
(
*
vecs
[
PARAMETER_GRADIENT
],
accumulatedRou
,
1.0
f
-
rou
);
// learn_rate = 1/sqrt( ( E(g_t^2) - (E(g_t))^2 + epsilon )
// Basiclly if the sign of the gradient changes more often,
...
...
@@ -107,10 +114,12 @@ void RMSPropParameterOptimizer(const VectorPtr vecs[],
vecs
[
PARAMETER_LEARNING_RATE
]
->
add
(
epsilon
);
vecs
[
PARAMETER_LEARNING_RATE
]
->
invSqrt
(
*
vecs
[
PARAMETER_LEARNING_RATE
]);
vecs
[
PARAMETER_VALUE
]
->
sgdUpdate
(
*
vecs
[
PARAMETER_GRADIENT
],
*
vecs
[
PARAMETER_MOMENTUM
],
*
vecs
[
PARAMETER_LEARNING_RATE
],
learningRate
,
momentum
,
decayRate
);
vecs
[
PARAMETER_VALUE
]
->
sgdUpdate
(
*
vecs
[
PARAMETER_GRADIENT
],
*
vecs
[
PARAMETER_MOMENTUM
],
*
vecs
[
PARAMETER_LEARNING_RATE
],
learningRate
,
momentum
,
decayRate
);
}
void
DecayedAdagradParameterOptimizer
(
const
VectorPtr
vecs
[],
...
...
@@ -125,8 +134,7 @@ void DecayedAdagradParameterOptimizer(const VectorPtr vecs[],
// For the first time update, make the sum be the current square
// so that the initial estimation of E(g_t^2) will not be too small.
vecs
[
PARAMETER_GRADIENT_SQURESUM
]
->
decayAddSquare
(
*
vecs
[
PARAMETER_GRADIENT
],
accumulatedRou
,
firstTime
?
1.0
f
:
1.0
f
-
rou
);
*
vecs
[
PARAMETER_GRADIENT
],
accumulatedRou
,
firstTime
?
1.0
f
:
1.0
f
-
rou
);
// learn_rate = 1/sqrt( ( E(g_t^2) + epsilon )
// Basiclly if the bigger the magnitude gradient is,
...
...
@@ -135,10 +143,12 @@ void DecayedAdagradParameterOptimizer(const VectorPtr vecs[],
vecs
[
PARAMETER_LEARNING_RATE
]
->
add
(
*
vecs
[
PARAMETER_GRADIENT_SQURESUM
]);
vecs
[
PARAMETER_LEARNING_RATE
]
->
invSqrt
(
*
vecs
[
PARAMETER_LEARNING_RATE
]);
vecs
[
PARAMETER_VALUE
]
->
sgdUpdate
(
*
vecs
[
PARAMETER_GRADIENT
],
*
vecs
[
PARAMETER_MOMENTUM
],
*
vecs
[
PARAMETER_LEARNING_RATE
],
learningRate
,
momentum
,
decayRate
);
vecs
[
PARAMETER_VALUE
]
->
sgdUpdate
(
*
vecs
[
PARAMETER_GRADIENT
],
*
vecs
[
PARAMETER_MOMENTUM
],
*
vecs
[
PARAMETER_LEARNING_RATE
],
learningRate
,
momentum
,
decayRate
);
}
void
AdamParameterOptimizer
(
const
VectorPtr
vecs
[],
...
...
@@ -164,16 +174,13 @@ void AdamParameterOptimizer(const VectorPtr vecs[],
// \theta_t = \theta_{t-1} - \alpha * \sqrt(1-\beta_2^t) / (1-\beta_1^t) * tmp
g
->
sqrt2
(
*
v
);
g
->
dotDiv
(
*
m
,
*
g
,
0.
,
epsilon
);
real
alpha
=
learningRate
*
std
::
sqrt
((
real
)
1
-
beta2_power
)
/
((
real
)
1
-
beta1_power
);
real
alpha
=
learningRate
*
std
::
sqrt
((
real
)
1
-
beta2_power
)
/
((
real
)
1
-
beta1_power
);
theta
->
add
(
*
theta
,
1.0
,
*
g
,
-
alpha
);
}
void
AdamaxParameterOptimizer
(
const
VectorPtr
vecs
[],
real
beta1
,
real
beta2
,
int64_t
step
,
real
alpha
)
{
void
AdamaxParameterOptimizer
(
const
VectorPtr
vecs
[],
real
beta1
,
real
beta2
,
int64_t
step
,
real
alpha
)
{
Vector
*
m
=
vecs
[
PARAMETER_MOMENTUM
].
get
();
Vector
*
g
=
vecs
[
PARAMETER_GRADIENT
].
get
();
Vector
*
u
=
vecs
[
PARAMETER_WEIGHTED_INFINITY_NORM
].
get
();
...
...
@@ -192,4 +199,3 @@ void AdamaxParameterOptimizer(const VectorPtr vecs[],
real
learningRate
=
alpha
/
(
1
-
std
::
pow
(
beta1
,
step
));
theta
->
add
(
*
theta
,
1.0
,
*
g
,
-
learningRate
);
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录