未验证 提交 ab5cc042 编写于 作者: C Chen Weihang 提交者: GitHub

[Cherry-pick] Add complex api conj, real and imag (#29750)

* Add complex dtype op (add) test example (#29603)


* add op test case for complex

* polish code details

* add xpu set constant support

* fix argument rror

* remove useless pyc file

* [Complex] Add real & imag op and api for complex tensor (#29672)

* add complex real op & api & unittest

* add imag op & api & unittest

* refactor op impl

* revert simplify writing due to complile failed

* polish details

* polish grad op code

* add conj op for complex types (#29527)

* add conj op for complex types

* add conj for complex types

* add more test case

* add conj_op test

* modify conj api and impl

* add complex type for fill_constant_op xpu

* add setConstant for complex type

* remove complex conj test file

* user define grad for test_conj_op

* add test case for static mode of conj api

* modify conj doc

* change input args name to x

* remove useless codes

* conj support real types

* add conj test case for real number
Co-authored-by: Nchentianyu03 <chentianyu03@baidu.com>
上级 cc2edc5e
...@@ -150,5 +150,19 @@ extern inline bool IsComplexType(const proto::VarType::Type type) { ...@@ -150,5 +150,19 @@ extern inline bool IsComplexType(const proto::VarType::Type type) {
extern proto::VarType::Type PromoteTypesIfComplexExists( extern proto::VarType::Type PromoteTypesIfComplexExists(
const proto::VarType::Type type_a, const proto::VarType::Type type_b); const proto::VarType::Type type_a, const proto::VarType::Type type_b);
extern inline proto::VarType::Type ToComplexType(proto::VarType::Type t) {
switch (t) {
case proto::VarType::FP32:
return proto::VarType::COMPLEX64;
case proto::VarType::FP64:
return proto::VarType::COMPLEX128;
default:
PADDLE_THROW(platform::errors::Unimplemented(
"Unknown complex value data type (%s), now only support float32 and "
"float64.",
DataTypeToString(t)));
}
}
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -60,7 +60,7 @@ void* Tensor::mutable_data(const platform::Place& place, ...@@ -60,7 +60,7 @@ void* Tensor::mutable_data(const platform::Place& place,
requested_size, size, requested_size, size,
platform::errors::InvalidArgument( platform::errors::InvalidArgument(
"The requested memory size is less than the memory size of Tensor. " "The requested memory size is less than the memory size of Tensor. "
"But received requested memory size is d%, " "But received requested memory size is %d, "
"memory size of Tensor is %d.", "memory size of Tensor is %d.",
requested_size, size)); requested_size, size));
size = requested_size; size = requested_size;
......
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/conj_op.h"
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace paddle {
namespace operators {
class ConjOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "conj");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "conj");
auto in_dims = ctx->GetInputDim("X");
ctx->SetOutputDim("Out", in_dims);
ctx->ShareLoD("X", /*->*/ "Out");
}
};
class ConjOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(Tensor), The input tensor of conj op.");
AddOutput("Out", "(Tensor), The output tensor of conj op.");
AddComment(R"DOC(
Conj Operator.
This operator is used to perform elementwise conjugate for input $X$.
)DOC");
}
};
template <typename T>
class ConjGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
void Apply(GradOpPtr<T> retv) const override {
retv->SetType("conj");
retv->SetInput("X", this->OutputGrad("Out"));
retv->SetAttrMap(this->Attrs());
retv->SetOutput("Out", this->InputGrad("X"));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(conj, ops::ConjOp, ops::ConjOpMaker,
ops::ConjGradMaker<paddle::framework::OpDesc>,
ops::ConjGradMaker<paddle::imperative::OpBase>);
REGISTER_OP_CPU_KERNEL(
conj, ops::ConjKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex64>,
ops::ConjKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex128>,
ops::ConjKernel<paddle::platform::CPUDeviceContext, float>,
ops::ConjKernel<paddle::platform::CPUDeviceContext, double>,
ops::ConjKernel<paddle::platform::CPUDeviceContext, int>,
ops::ConjKernel<paddle::platform::CPUDeviceContext, int64_t>);
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/conj_op.h"
#include "paddle/fluid/platform/complex128.h"
#include "paddle/fluid/platform/complex64.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
conj, ops::ConjKernel<paddle::platform::CUDADeviceContext,
paddle::platform::complex64>,
ops::ConjKernel<paddle::platform::CUDADeviceContext,
paddle::platform::complex128>,
ops::ConjKernel<paddle::platform::CUDADeviceContext, float>,
ops::ConjKernel<paddle::platform::CUDADeviceContext, double>,
ops::ConjKernel<paddle::platform::CUDADeviceContext, int>,
ops::ConjKernel<paddle::platform::CUDADeviceContext, int64_t>);
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/for_range.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
using EnableComplex =
typename std::enable_if<std::is_same<T, platform::complex64>::value ||
std::is_same<T, platform::complex128>::value>::type;
template <typename T>
using DisableComplex = typename std::enable_if<
!std::is_same<T, platform::complex64>::value &&
!std::is_same<T, platform::complex128>::value>::type;
template <typename T, typename Enable = void>
struct ConjFunctor;
template <typename T>
struct ConjFunctor<T, EnableComplex<T>> {
ConjFunctor(const T* input, int64_t numel, T* output)
: input_(input), numel_(numel), output_(output) {}
HOSTDEVICE void operator()(size_t idx) const {
output_[idx] = T(input_[idx].real, -input_[idx].imag);
}
const T* input_;
int64_t numel_;
T* output_;
};
template <typename T>
struct ConjFunctor<T, DisableComplex<T>> {
ConjFunctor(const T* input, int64_t numel, T* output)
: input_(input), numel_(numel), output_(output) {}
HOSTDEVICE void operator()(size_t idx) const { output_[idx] = input_[idx]; }
const T* input_;
int64_t numel_;
T* output_;
};
template <typename DeviceContext, typename T>
class ConjKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* x = context.Input<Tensor>("X");
Tensor* out = context.Output<Tensor>("Out");
auto numel = x->numel();
auto* x_data = x->data<T>();
auto* out_data = out->mutable_data<T>(context.GetPlace(),
size_t(x->numel() * sizeof(T)));
auto& dev_ctx = context.template device_context<DeviceContext>();
platform::ForRange<DeviceContext> for_range(dev_ctx, numel);
ConjFunctor<T> functor(x_data, numel, out_data);
for_range(functor);
}
};
DECLARE_INPLACE_OP_INFERER(ConjOpInplaceInferer, {"X", "Out"});
} // namespace operators
} // namespace paddle
...@@ -143,7 +143,9 @@ REGISTER_OP_CPU_KERNEL(fill_constant, ops::FillConstantKernel<float>, ...@@ -143,7 +143,9 @@ REGISTER_OP_CPU_KERNEL(fill_constant, ops::FillConstantKernel<float>,
ops::FillConstantKernel<int64_t>, ops::FillConstantKernel<int64_t>,
ops::FillConstantKernel<int>, ops::FillConstantKernel<int>,
ops::FillConstantKernel<bool>, ops::FillConstantKernel<bool>,
ops::FillConstantKernel<paddle::platform::float16>); ops::FillConstantKernel<paddle::platform::float16>,
ops::FillConstantKernel<paddle::platform::complex64>,
ops::FillConstantKernel<paddle::platform::complex128>);
REGISTER_OP_VERSION(fill_constant) REGISTER_OP_VERSION(fill_constant)
.AddCheckpoint( .AddCheckpoint(
......
...@@ -20,4 +20,6 @@ REGISTER_OP_CUDA_KERNEL(fill_constant, ops::FillConstantKernel<float>, ...@@ -20,4 +20,6 @@ REGISTER_OP_CUDA_KERNEL(fill_constant, ops::FillConstantKernel<float>,
ops::FillConstantKernel<int64_t>, ops::FillConstantKernel<int64_t>,
ops::FillConstantKernel<int>, ops::FillConstantKernel<int>,
ops::FillConstantKernel<bool>, ops::FillConstantKernel<bool>,
ops::FillConstantKernel<paddle::platform::float16>); ops::FillConstantKernel<paddle::platform::float16>,
ops::FillConstantKernel<paddle::platform::complex64>,
ops::FillConstantKernel<paddle::platform::complex128>);
...@@ -19,5 +19,7 @@ REGISTER_OP_XPU_KERNEL(fill_constant, ops::FillConstantKernel<float>, ...@@ -19,5 +19,7 @@ REGISTER_OP_XPU_KERNEL(fill_constant, ops::FillConstantKernel<float>,
ops::FillConstantKernel<int64_t>, ops::FillConstantKernel<int64_t>,
ops::FillConstantKernel<double>, ops::FillConstantKernel<double>,
ops::FillConstantKernel<bool>, ops::FillConstantKernel<bool>,
ops::FillConstantKernel<int>); ops::FillConstantKernel<int>,
ops::FillConstantKernel<paddle::platform::complex64>,
ops::FillConstantKernel<paddle::platform::complex128>);
#endif #endif
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/imag_op.h"
namespace paddle {
namespace operators {
class ImagOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Imag");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Imag");
auto x_dims = ctx->GetInputDim("X");
ctx->SetOutputDim("Out", x_dims);
ctx->ShareLoD("X", "Out");
}
};
class ImagOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(Tensor), The input tensor of imag op.");
AddOutput("Out", "(Tensor), The output tensor of imag op.");
AddComment(R"DOC(
Imag Operator.
This operator is used to get a new tensor containing imaginary values
from a tensor with complex data type.
)DOC");
}
};
class ImagGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
"Out@Grad", "ImagGrad");
OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
"X@Grad", "ImagGrad");
auto dout_dims = ctx->GetInputDim(framework::GradVarName("Out"));
ctx->SetOutputDim(framework::GradVarName("X"), dout_dims);
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto dtype = OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out"));
auto complex_dtype = framework::ToComplexType(dtype);
return framework::OpKernelType(complex_dtype, ctx.GetPlace());
}
};
template <typename T>
class ImagGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
void Apply(GradOpPtr<T> grad_op) const override {
grad_op->SetType("imag_grad");
grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
}
};
DECLARE_INPLACE_OP_INFERER(ImagOpInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ImagGradOpInplaceInferer,
{framework::GradVarName("Out"),
framework::GradVarName("X")});
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(imag, ops::ImagOp, ops::ImagOpMaker,
ops::ImagGradOpMaker<paddle::framework::OpDesc>,
ops::ImagGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(imag_grad, ops::ImagGradOp);
REGISTER_OP_CPU_KERNEL(imag, ops::ImagKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex64>,
ops::ImagKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex128>);
REGISTER_OP_CPU_KERNEL(imag_grad,
ops::ImagGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex64>,
ops::ImagGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex128>);
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/imag_op.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(imag,
ops::ImagKernel<paddle::platform::CUDADeviceContext,
paddle::platform::complex64>,
ops::ImagKernel<paddle::platform::CUDADeviceContext,
paddle::platform::complex128>);
REGISTER_OP_CUDA_KERNEL(imag_grad,
ops::ImagGradKernel<paddle::platform::CUDADeviceContext,
paddle::platform::complex64>,
ops::ImagGradKernel<paddle::platform::CUDADeviceContext,
paddle::platform::complex128>);
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/platform/for_range.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class ImagKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const {
const framework::Tensor* x = ctx.Input<framework::Tensor>("X");
framework::Tensor* out = ctx.Output<framework::Tensor>("Out");
auto numel = x->numel();
auto* x_data = x->data<T>();
auto* out_data = out->mutable_data<math::Real<T>>(
ctx.GetPlace(), static_cast<size_t>(numel * sizeof(math::Real<T>)));
auto& dev_ctx = ctx.template device_context<DeviceContext>();
platform::ForRange<DeviceContext> for_range(dev_ctx, numel);
math::ImagFunctor<T> functor(x_data, out_data, numel);
for_range(functor);
}
};
template <typename DeviceContext, typename T>
class ImagGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const {
const framework::Tensor* d_out =
ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
framework::Tensor* d_x =
ctx.Output<framework::Tensor>(framework::GradVarName("X"));
auto numel = d_out->numel();
auto* dout_data = d_out->data<math::Real<T>>();
auto* dx_data = d_x->mutable_data<T>(
ctx.GetPlace(), static_cast<size_t>(numel * sizeof(T)));
auto& dev_ctx = ctx.template device_context<DeviceContext>();
platform::ForRange<DeviceContext> for_range(dev_ctx, numel);
math::ImagToComplexFunctor<T> functor(dout_data, dx_data, numel);
for_range(functor);
}
};
} // namespace operators
} // namespace paddle
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <type_traits>
#include "paddle/fluid/platform/complex128.h"
#include "paddle/fluid/platform/complex64.h"
#include "paddle/fluid/platform/hostdevice.h"
namespace paddle {
namespace operators {
namespace math {
template <bool B, typename T>
struct cond {
static constexpr bool value = B;
using type = T;
};
template <bool B, typename TrueF, typename FalseF>
struct eval_if {
using type = typename TrueF::type;
};
template <typename TrueF, typename FalseF>
struct eval_if<false, TrueF, FalseF> {
using type = typename FalseF::type;
};
template <bool B, typename T, typename F>
using eval_if_t = typename eval_if<B, T, F>::type;
template <typename Head, typename... Tail>
struct select {
using type = eval_if_t<Head::value, Head, select<Tail...>>;
};
template <typename Head, typename... Tail>
using select_t = typename select<Head, Tail...>::type;
template <typename T>
using Real =
select_t<cond<std::is_same<T, platform::complex64>::value, float>,
cond<std::is_same<T, platform::complex128>::value, double>, T>;
template <typename T, typename RealT>
using Complex = typename std::enable_if<!std::is_same<T, RealT>::value>::type;
// There are no NoComplex cases now, implement later if needed
template <typename T, typename RealT>
using NoComplex = typename std::enable_if<std::is_same<T, RealT>::value>::type;
template <typename T, typename Enable = void>
struct RealFunctor;
template <typename T>
struct RealFunctor<T, Complex<T, Real<T>>> {
public:
RealFunctor(const T* input, Real<T>* output, int64_t numel)
: input_(input), output_(output), numel_(numel) {}
HOSTDEVICE void operator()(int64_t idx) const {
output_[idx] = input_[idx].real;
}
private:
const T* input_;
Real<T>* output_;
int64_t numel_;
};
template <typename T, typename Enable = void>
struct ImagFunctor;
template <typename T>
struct ImagFunctor<T, Complex<T, Real<T>>> {
ImagFunctor(const T* input, Real<T>* output, int64_t numel)
: input_(input), output_(output), numel_(numel) {}
HOSTDEVICE void operator()(int64_t idx) const {
output_[idx] = input_[idx].imag;
}
const T* input_;
Real<T>* output_;
int64_t numel_;
};
template <typename T, typename Enable = void>
struct RealToComplexFunctor;
template <typename T>
struct RealToComplexFunctor<T, Complex<T, Real<T>>> {
RealToComplexFunctor(const Real<T>* input, T* output, int64_t numel)
: input_(input), output_(output), numel_(numel) {}
HOSTDEVICE void operator()(int64_t idx) const {
output_[idx].real = input_[idx];
output_[idx].imag = 0;
}
const Real<T>* input_;
T* output_;
int64_t numel_;
};
template <typename T, typename Enable = void>
struct ImagToComplexFunctor;
template <typename T>
struct ImagToComplexFunctor<T, Complex<T, Real<T>>> {
ImagToComplexFunctor(const Real<T>* input, T* output, int64_t numel)
: input_(input), output_(output), numel_(numel) {}
HOSTDEVICE void operator()(int64_t idx) const {
output_[idx].real = 0;
output_[idx].imag = input_[idx];
}
const Real<T>* input_;
T* output_;
int64_t numel_;
};
} // namespace math
} // namespace operators
} // namespace paddle
...@@ -54,6 +54,8 @@ template struct SetConstant<platform::XPUDeviceContext, double>; ...@@ -54,6 +54,8 @@ template struct SetConstant<platform::XPUDeviceContext, double>;
template struct SetConstant<platform::XPUDeviceContext, int>; template struct SetConstant<platform::XPUDeviceContext, int>;
template struct SetConstant<platform::XPUDeviceContext, int64_t>; template struct SetConstant<platform::XPUDeviceContext, int64_t>;
template struct SetConstant<platform::XPUDeviceContext, bool>; template struct SetConstant<platform::XPUDeviceContext, bool>;
template struct SetConstant<platform::XPUDeviceContext, platform::complex64>;
template struct SetConstant<platform::XPUDeviceContext, platform::complex128>;
#endif #endif
#define DEFINE_CPU_TRANS(RANK) \ #define DEFINE_CPU_TRANS(RANK) \
......
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/real_op.h"
namespace paddle {
namespace operators {
class RealOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Real");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Real");
auto x_dims = ctx->GetInputDim("X");
ctx->SetOutputDim("Out", x_dims);
ctx->ShareLoD("X", "Out");
}
};
class RealOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(Tensor), The input tensor of real op.");
AddOutput("Out", "(Tensor), The output tensor of real op.");
AddComment(R"DOC(
Real Operator.
This operator is used to get a new tensor containing real values
from a tensor with complex data type.
)DOC");
}
};
class RealGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
"Out@Grad", "RealGrad");
OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
"X@Grad", "RealGrad");
auto dout_dims = ctx->GetInputDim(framework::GradVarName("Out"));
ctx->SetOutputDim(framework::GradVarName("X"), dout_dims);
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto dtype = OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out"));
auto complex_dtype = framework::ToComplexType(dtype);
return framework::OpKernelType(complex_dtype, ctx.GetPlace());
}
};
template <typename T>
class RealGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
void Apply(GradOpPtr<T> grad_op) const override {
grad_op->SetType("real_grad");
grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
}
};
DECLARE_INPLACE_OP_INFERER(RealOpInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(RealGradOpInplaceInferer,
{framework::GradVarName("Out"),
framework::GradVarName("X")});
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(real, ops::RealOp, ops::RealOpMaker,
ops::RealGradOpMaker<::paddle::framework::OpDesc>,
ops::RealGradOpMaker<::paddle::imperative::OpBase>);
REGISTER_OPERATOR(real_grad, ops::RealGradOp);
REGISTER_OP_CPU_KERNEL(real, ops::RealKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex64>,
ops::RealKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex128>);
REGISTER_OP_CPU_KERNEL(real_grad,
ops::RealGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex64>,
ops::RealGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex128>);
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/real_op.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(real,
ops::RealKernel<paddle::platform::CUDADeviceContext,
paddle::platform::complex64>,
ops::RealKernel<paddle::platform::CUDADeviceContext,
paddle::platform::complex128>);
REGISTER_OP_CUDA_KERNEL(real_grad,
ops::RealGradKernel<paddle::platform::CUDADeviceContext,
paddle::platform::complex64>,
ops::RealGradKernel<paddle::platform::CUDADeviceContext,
paddle::platform::complex128>);
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/complex_functors.h"
#include "paddle/fluid/platform/for_range.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class RealKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const {
const framework::Tensor* x = ctx.Input<framework::Tensor>("X");
framework::Tensor* out = ctx.Output<framework::Tensor>("Out");
auto numel = x->numel();
auto* x_data = x->data<T>();
auto* out_data = out->mutable_data<math::Real<T>>(
ctx.GetPlace(), static_cast<size_t>(numel * sizeof(math::Real<T>)));
auto& dev_ctx = ctx.template device_context<DeviceContext>();
platform::ForRange<DeviceContext> for_range(dev_ctx, numel);
math::RealFunctor<T> functor(x_data, out_data, numel);
for_range(functor);
}
};
template <typename DeviceContext, typename T>
class RealGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const {
const framework::Tensor* d_out =
ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
framework::Tensor* d_x =
ctx.Output<framework::Tensor>(framework::GradVarName("X"));
auto numel = d_out->numel();
auto* dout_data = d_out->data<math::Real<T>>();
auto* dx_data = d_x->mutable_data<T>(
ctx.GetPlace(), static_cast<size_t>(numel * sizeof(T)));
auto& dev_ctx = ctx.template device_context<DeviceContext>();
platform::ForRange<DeviceContext> for_range(dev_ctx, numel);
math::RealToComplexFunctor<T> functor(dout_data, dx_data, numel);
for_range(functor);
}
};
} // namespace operators
} // namespace paddle
...@@ -51,6 +51,8 @@ from .tensor.random import bernoulli ...@@ -51,6 +51,8 @@ from .tensor.random import bernoulli
from .tensor.attribute import rank #DEFINE_ALIAS from .tensor.attribute import rank #DEFINE_ALIAS
from .tensor.attribute import shape #DEFINE_ALIAS from .tensor.attribute import shape #DEFINE_ALIAS
from .tensor.attribute import real #DEFINE_ALIAS
from .tensor.attribute import imag #DEFINE_ALIAS
from .tensor.creation import to_tensor #DEFINE_ALIAS from .tensor.creation import to_tensor #DEFINE_ALIAS
from .tensor.creation import diag #DEFINE_ALIAS from .tensor.creation import diag #DEFINE_ALIAS
from .tensor.creation import eye #DEFINE_ALIAS from .tensor.creation import eye #DEFINE_ALIAS
...@@ -196,6 +198,7 @@ from .tensor.math import isinf #DEFINE_ALIAS ...@@ -196,6 +198,7 @@ from .tensor.math import isinf #DEFINE_ALIAS
from .tensor.math import isnan #DEFINE_ALIAS from .tensor.math import isnan #DEFINE_ALIAS
from .tensor.math import prod #DEFINE_ALIAS from .tensor.math import prod #DEFINE_ALIAS
from .tensor.math import broadcast_shape #DEFINE_ALIAS from .tensor.math import broadcast_shape #DEFINE_ALIAS
from .tensor.math import conj #DEFINE_ALIAS
from .tensor.random import multinomial #DEFINE_ALIAS from .tensor.random import multinomial #DEFINE_ALIAS
from .tensor.random import standard_normal from .tensor.random import standard_normal
......
...@@ -145,8 +145,11 @@ def get_numeric_gradient(place, ...@@ -145,8 +145,11 @@ def get_numeric_gradient(place,
return numpy_tensor[i] return numpy_tensor[i]
elif tensor_to_check_dtype == np.float32: elif tensor_to_check_dtype == np.float32:
return tensor._get_float_element(i) return tensor._get_float_element(i)
else: elif tensor_to_check_dtype == np.float64:
return tensor._get_double_element(i) return tensor._get_double_element(i)
else:
raise TypeError("Unsupported test data type %s." %
tensor_to_check_dtype)
def __set_elem__(tensor, i, e): def __set_elem__(tensor, i, e):
if tensor_to_check_dtype == np.float16: if tensor_to_check_dtype == np.float16:
...@@ -158,8 +161,11 @@ def get_numeric_gradient(place, ...@@ -158,8 +161,11 @@ def get_numeric_gradient(place,
tensor.set(numpy_tensor, place) tensor.set(numpy_tensor, place)
elif tensor_to_check_dtype == np.float32: elif tensor_to_check_dtype == np.float32:
tensor._set_float_element(i, e) tensor._set_float_element(i, e)
else: elif tensor_to_check_dtype == np.float64:
tensor._set_double_element(i, e) tensor._set_double_element(i, e)
else:
raise TypeError("Unsupported test data type %s." %
tensor_to_check_dtype)
# we only compute gradient of one element each time. # we only compute gradient of one element each time.
# we use a for loop to compute the gradient of every element. # we use a for loop to compute the gradient of every element.
...@@ -1329,14 +1335,15 @@ class OpTest(unittest.TestCase): ...@@ -1329,14 +1335,15 @@ class OpTest(unittest.TestCase):
in_place=False, in_place=False,
max_relative_error=0.005, max_relative_error=0.005,
user_defined_grads=None, user_defined_grads=None,
user_defined_grad_outputs=None,
check_dygraph=True): check_dygraph=True):
self._check_grad_helper() self._check_grad_helper()
places = self._get_places() places = self._get_places()
for place in places: for place in places:
self.check_grad_with_place(place, inputs_to_check, output_names, self.check_grad_with_place(
no_grad_set, numeric_grad_delta, place, inputs_to_check, output_names, no_grad_set,
in_place, max_relative_error, numeric_grad_delta, in_place, max_relative_error,
user_defined_grads, check_dygraph) user_defined_grads, user_defined_grad_outputs, check_dygraph)
def check_grad_with_place(self, def check_grad_with_place(self,
place, place,
...@@ -1347,6 +1354,7 @@ class OpTest(unittest.TestCase): ...@@ -1347,6 +1354,7 @@ class OpTest(unittest.TestCase):
in_place=False, in_place=False,
max_relative_error=0.005, max_relative_error=0.005,
user_defined_grads=None, user_defined_grads=None,
user_defined_grad_outputs=None,
check_dygraph=True): check_dygraph=True):
self.scope = core.Scope() self.scope = core.Scope()
op_inputs = self.inputs if hasattr(self, "inputs") else dict() op_inputs = self.inputs if hasattr(self, "inputs") else dict()
...@@ -1412,15 +1420,18 @@ class OpTest(unittest.TestCase): ...@@ -1412,15 +1420,18 @@ class OpTest(unittest.TestCase):
delta=numeric_grad_delta, delta=numeric_grad_delta,
in_place=in_place) for input_to_check in inputs_to_check in_place=in_place) for input_to_check in inputs_to_check
] ]
analytic_grads = self._get_gradient(inputs_to_check, place, analytic_grads = self._get_gradient(inputs_to_check, place,
output_names, no_grad_set) output_names, no_grad_set,
user_defined_grad_outputs)
self._assert_is_close(numeric_grads, analytic_grads, inputs_to_check, self._assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
max_relative_error, max_relative_error,
"Gradient Check On %s" % str(place)) "Gradient Check On %s" % str(place))
if check_dygraph: if check_dygraph:
dygraph_grad = self._get_dygraph_grad(inputs_to_check, place, dygraph_grad = self._get_dygraph_grad(
output_names, no_grad_set) inputs_to_check, place, output_names, user_defined_grad_outputs,
no_grad_set)
self._assert_is_close(numeric_grads, dygraph_grad, inputs_to_check, self._assert_is_close(numeric_grads, dygraph_grad, inputs_to_check,
max_relative_error, max_relative_error,
"Gradient Check On %s" % str(place)) "Gradient Check On %s" % str(place))
...@@ -1438,6 +1449,7 @@ class OpTest(unittest.TestCase): ...@@ -1438,6 +1449,7 @@ class OpTest(unittest.TestCase):
inputs_to_check, inputs_to_check,
place, place,
output_names, output_names,
user_defined_grad_outputs=None,
no_grad_set=None): no_grad_set=None):
with fluid.dygraph.base.guard(place=place): with fluid.dygraph.base.guard(place=place):
block = fluid.default_main_program().global_block() block = fluid.default_main_program().global_block()
...@@ -1469,62 +1481,74 @@ class OpTest(unittest.TestCase): ...@@ -1469,62 +1481,74 @@ class OpTest(unittest.TestCase):
outputs_valid[output_name] = self._find_var_in_dygraph( outputs_valid[output_name] = self._find_var_in_dygraph(
outputs, output_name) outputs, output_name)
if len(outputs_valid) == 1: if user_defined_grad_outputs is None:
loss = block.create_var( if len(outputs_valid) == 1:
dtype=self.dtype, loss = block.create_var(
type=core.VarDesc.VarType.LOD_TENSOR, dtype=self.dtype,
persistable=False, type=core.VarDesc.VarType.LOD_TENSOR,
stop_gradient=False, persistable=False,
shape=[1]) stop_gradient=False,
for outputs_valid_key in outputs_valid: shape=[1])
for outputs_valid_key in outputs_valid:
block.append_op(
type="mean",
inputs={"X": outputs_valid[outputs_valid_key]},
outputs={"Out": [loss]},
attrs=None)
else:
avg_sum = []
for cur_loss in outputs_valid:
cur_avg_loss = block.create_var(
dtype=self.dtype,
type=core.VarDesc.VarType.LOD_TENSOR,
persistable=False,
stop_gradient=False)
block.append_op(
type="mean",
inputs={"X": outputs_valid[cur_loss]},
outputs={"Out": [cur_avg_loss]},
attrs=None)
avg_sum.append(cur_avg_loss)
loss_sum = block.create_var(
dtype=self.dtype,
type=core.VarDesc.VarType.LOD_TENSOR,
persistable=False,
stop_gradient=False,
shape=[1])
block.append_op( block.append_op(
type="mean", type='sum',
inputs={"X": outputs_valid[outputs_valid_key]}, inputs={"X": avg_sum},
outputs={"Out": [loss]}, outputs={"Out": loss_sum},
attrs=None) attrs=None)
else: loss = block.create_var(
avg_sum = []
for cur_loss in outputs_valid:
cur_avg_loss = block.create_var(
dtype=self.dtype, dtype=self.dtype,
type=core.VarDesc.VarType.LOD_TENSOR, type=core.VarDesc.VarType.LOD_TENSOR,
persistable=False, persistable=False,
stop_gradient=False) stop_gradient=False,
shape=[1])
block.append_op( block.append_op(
type="mean", type='scale',
inputs={"X": outputs_valid[cur_loss]}, inputs={"X": loss_sum},
outputs={"Out": [cur_avg_loss]}, outputs={"Out": loss},
attrs=None) attrs={'scale': 1.0 / float(len(avg_sum))})
avg_sum.append(cur_avg_loss) loss.backward()
loss_sum = block.create_var( fetch_list_grad = []
dtype=self.dtype, for inputs_to_check_name in inputs_to_check:
type=core.VarDesc.VarType.LOD_TENSOR, a = inputs_grad_dict[inputs_to_check_name].gradient()
persistable=False, fetch_list_grad.append(a)
stop_gradient=False, return fetch_list_grad
shape=[1]) else:
block.append_op( # user_defined_grad_outputs here are numpy arrays
type='sum', if not isinstance(user_defined_grad_outputs, list):
inputs={"X": avg_sum}, user_defined_grad_outputs = [user_defined_grad_outputs]
outputs={"Out": loss_sum}, grad_outputs = []
attrs=None) for grad_out_value in user_defined_grad_outputs:
loss = block.create_var( grad_outputs.append(paddle.to_tensor(grad_out_value))
dtype=self.dtype, grad_inputs = paddle.grad(
type=core.VarDesc.VarType.LOD_TENSOR, outputs=fluid.layers.utils.flatten(outputs),
persistable=False, inputs=fluid.layers.utils.flatten(inputs),
stop_gradient=False, grad_outputs=grad_outputs)
shape=[1]) return [grad.numpy() for grad in grad_inputs]
block.append_op(
type='scale',
inputs={"X": loss_sum},
outputs={"Out": loss},
attrs={'scale': 1.0 / float(len(avg_sum))})
loss.backward()
fetch_list_grad = []
for inputs_to_check_name in inputs_to_check:
a = inputs_grad_dict[inputs_to_check_name].gradient()
fetch_list_grad.append(a)
return fetch_list_grad
@staticmethod @staticmethod
def _numpy_to_lod_tensor(np_value, lod, place): def _numpy_to_lod_tensor(np_value, lod, place):
...@@ -1551,18 +1575,48 @@ class OpTest(unittest.TestCase): ...@@ -1551,18 +1575,48 @@ class OpTest(unittest.TestCase):
place, place,
output_names, output_names,
no_grad_set, no_grad_set,
user_defined_grad_outputs=None,
parallel=False): parallel=False):
prog = Program() prog = Program()
scope = core.Scope()
block = prog.global_block() block = prog.global_block()
self._append_ops(block) self._append_ops(block)
loss = append_loss_ops(block, output_names)
param_grad_list = append_backward(
loss=loss, parameter_list=input_to_check, no_grad_set=no_grad_set)
inputs = self._get_inputs(block) inputs = self._get_inputs(block)
outputs = self._get_outputs(block)
feed_dict = self.feed_var(inputs, place) feed_dict = self.feed_var(inputs, place)
fetch_list = [g for p, g in param_grad_list] if user_defined_grad_outputs is None:
loss = append_loss_ops(block, output_names)
param_grad_list = append_backward(
loss=loss,
parameter_list=input_to_check,
no_grad_set=no_grad_set)
fetch_list = [g for p, g in param_grad_list]
else:
assert parallel is False, "unsupported parallel mode when giving custom grad outputs."
# user_defined_grad_outputs here are numpy arrays
if not isinstance(user_defined_grad_outputs, list):
user_defined_grad_outputs = [user_defined_grad_outputs]
grad_outputs = []
for grad_out_value in user_defined_grad_outputs:
# `presistable` is used to avoid executor create new var in local scope
var = block.create_var(
shape=grad_out_value.shape,
dtype=grad_out_value.dtype,
persistable=True)
true_var = scope.var(var.name)
tensor = true_var.get_tensor()
tensor.set(grad_out_value, place)
grad_outputs.append(var)
targets = [
outputs[name] for name in outputs if name in output_names
]
inputs = [inputs[name] for name in inputs if name in input_to_check]
grad_inputs = paddle.static.gradients(targets, inputs, grad_outputs,
no_grad_set)
fetch_list = grad_inputs
if parallel: if parallel:
use_cuda = False use_cuda = False
if isinstance(place, fluid.CUDAPlace): if isinstance(place, fluid.CUDAPlace):
...@@ -1573,4 +1627,8 @@ class OpTest(unittest.TestCase): ...@@ -1573,4 +1627,8 @@ class OpTest(unittest.TestCase):
executor = fluid.Executor(place) executor = fluid.Executor(place)
return list( return list(
map(np.array, map(np.array,
executor.run(prog, feed_dict, fetch_list, return_numpy=False))) executor.run(prog,
feed_dict,
fetch_list,
scope=scope,
return_numpy=False)))
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid.core as core
import sys
sys.path.append("..")
from op_test import OpTest
from paddle.fluid import Program, program_guard
import paddle.fluid.dygraph as dg
import paddle.static as static
from numpy.random import random as rand
paddle.enable_static()
class TestConjOp(OpTest):
def setUp(self):
self.op_type = "conj"
self.init_dtype_type()
self.init_input_output()
self.init_grad_input_output()
def init_dtype_type(self):
self.dtype = np.complex64
def init_input_output(self):
x = (np.random.random((12, 14)) + 1j * np.random.random(
(12, 14))).astype(self.dtype)
out = np.conj(x)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.outputs = {'Out': out}
def init_grad_input_output(self):
self.grad_out = (np.ones((12, 14)) + 1j * np.ones(
(12, 14))).astype(self.dtype)
self.grad_in = np.conj(self.grad_out)
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(
['X'],
'Out',
user_defined_grads=[self.grad_in],
user_defined_grad_outputs=[self.grad_out])
class TestComplexConjOp(unittest.TestCase):
def setUp(self):
self._dtypes = ["float32", "float64"]
self._places = [paddle.CPUPlace()]
if paddle.is_compiled_with_cuda():
self._places.append(paddle.CUDAPlace(0))
def test_conj_api(self):
for dtype in self._dtypes:
input = rand([2, 20, 2, 3]).astype(dtype) + 1j * rand(
[2, 20, 2, 3]).astype(dtype)
for place in self._places:
with dg.guard(place):
var_x = paddle.to_tensor(input)
result = paddle.conj(var_x).numpy()
target = np.conj(input)
self.assertTrue(np.array_equal(result, target))
def test_conj_operator(self):
for dtype in self._dtypes:
input = rand([2, 20, 2, 3]).astype(dtype) + 1j * rand(
[2, 20, 2, 3]).astype(dtype)
for place in self._places:
with dg.guard(place):
var_x = paddle.to_tensor(input)
result = var_x.conj().numpy()
target = np.conj(input)
self.assertTrue(np.array_equal(result, target))
def test_conj_static_mode(self):
def init_input_output(dtype):
input = rand([2, 20, 2, 3]).astype(dtype) + 1j * rand(
[2, 20, 2, 3]).astype(dtype)
return {'x': input}, np.conj(input)
for dtype in self._dtypes:
input_dict, np_res = init_input_output(dtype)
for place in self._places:
with static.program_guard(static.Program()):
x_dtype = np.complex64 if dtype == "float32" else np.complex128
x = static.data(
name="x", shape=[2, 20, 2, 3], dtype=x_dtype)
out = paddle.conj(x)
exe = static.Executor(place)
out_value = exe.run(feed=input_dict, fetch_list=[out.name])
self.assertTrue(np.array_equal(np_res, out_value[0]))
def test_conj_api_real_number(self):
for dtype in self._dtypes:
input = rand([2, 20, 2, 3]).astype(dtype)
for place in self._places:
with dg.guard(place):
var_x = paddle.to_tensor(input)
result = paddle.conj(var_x).numpy()
target = np.conj(input)
self.assertTrue(np.array_equal(result, target))
if __name__ == "__main__":
unittest.main()
...@@ -428,5 +428,64 @@ class TestAddOp(unittest.TestCase): ...@@ -428,5 +428,64 @@ class TestAddOp(unittest.TestCase):
self.assertEqual((np_z == z_expected).all(), True) self.assertEqual((np_z == z_expected).all(), True)
class TestComplexElementwiseAddOp(OpTest):
def setUp(self):
self.op_type = "elementwise_add"
self.init_base_dtype()
self.init_input_output()
self.init_grad_input_output()
self.inputs = {
'X': OpTest.np_dtype_to_fluid_dtype(self.x),
'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
}
self.attrs = {'axis': -1, 'use_mkldnn': False}
self.outputs = {'Out': self.out}
def init_base_dtype(self):
self.dtype = np.float64
def init_input_output(self):
self.x = np.random.random(
(2, 3, 4, 5)).astype(self.dtype) + 1J * np.random.random(
(2, 3, 4, 5)).astype(self.dtype)
self.y = np.random.random(
(2, 3, 4, 5)).astype(self.dtype) + 1J * np.random.random(
(2, 3, 4, 5)).astype(self.dtype)
self.out = self.x + self.y
def init_grad_input_output(self):
self.grad_out = np.ones((2, 3, 4, 5), self.dtype) + 1J * np.ones(
(2, 3, 4, 5), self.dtype)
self.grad_x = self.grad_out
self.grad_y = self.grad_out
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(
['X', 'Y'],
'Out',
user_defined_grads=[self.grad_x, self.grad_y],
user_defined_grad_outputs=[self.grad_out])
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'],
'Out',
no_grad_set=set("X"),
user_defined_grads=[self.grad_y],
user_defined_grad_outputs=[self.grad_out])
def test_check_grad_ingore_y(self):
self.check_grad(
['X'],
'Out',
no_grad_set=set('Y'),
user_defined_grads=[self.grad_x],
user_defined_grad_outputs=[self.grad_out])
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.static as static
from op_test import OpTest
numpy_apis = {
"real": np.real,
"imag": np.imag,
}
paddle_apis = {
"real": paddle.real,
"imag": paddle.imag,
}
class TestRealOp(OpTest):
def setUp(self):
# switch to static
paddle.enable_static()
# op test attrs
self.op_type = "real"
self.dtype = np.float64
self.init_input_output()
# backward attrs
self.init_grad_input_output()
def init_input_output(self):
self.inputs = {
'X': np.random.random(
(20, 5)).astype(self.dtype) + 1j * np.random.random(
(20, 5)).astype(self.dtype)
}
self.outputs = {'Out': numpy_apis[self.op_type](self.inputs['X'])}
def init_grad_input_output(self):
self.grad_out = np.ones((20, 5), self.dtype)
self.grad_x = np.real(self.grad_out) + 1j * np.zeros(
self.grad_out.shape)
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(
['X'],
'Out',
user_defined_grads=[self.grad_x],
user_defined_grad_outputs=[self.grad_out])
class TestImagOp(TestRealOp):
def setUp(self):
# switch to static
paddle.enable_static()
# op test attrs
self.op_type = "imag"
self.dtype = np.float64
self.init_input_output()
# backward attrs
self.init_grad_input_output()
def init_grad_input_output(self):
self.grad_out = np.ones((20, 5), self.dtype)
self.grad_x = np.zeros(self.grad_out.shape) + 1j * np.real(
self.grad_out)
class TestRealAPI(unittest.TestCase):
def setUp(self):
# switch to static
paddle.enable_static()
# prepare test attrs
self.api = "real"
self.dtypes = ["complex64", "complex128"]
self.places = [paddle.CPUPlace()]
if paddle.is_compiled_with_cuda():
self.places.append(paddle.CUDAPlace(0))
self._shape = [2, 20, 2, 3]
def test_in_static_mode(self):
def init_input_output(dtype):
input = np.random.random(self._shape).astype(
dtype) + 1j * np.random.random(self._shape).astype(dtype)
return {'x': input}, numpy_apis[self.api](input)
for dtype in self.dtypes:
input_dict, np_res = init_input_output(dtype)
for place in self.places:
with static.program_guard(static.Program()):
x = static.data(name="x", shape=self._shape, dtype=dtype)
out = paddle_apis[self.api](x)
exe = static.Executor(place)
out_value = exe.run(feed=input_dict, fetch_list=[out.name])
self.assertTrue(np.array_equal(np_res, out_value[0]))
def test_in_dynamic_mode(self):
for dtype in self.dtypes:
input = np.random.random(self._shape).astype(
dtype) + 1j * np.random.random(self._shape).astype(dtype)
np_res = numpy_apis[self.api](input)
for place in self.places:
# it is more convenient to use `guard` than `enable/disable_**` here
with fluid.dygraph.guard(place):
input_t = paddle.to_tensor(input)
res = paddle_apis[self.api](input_t).numpy()
self.assertTrue(np.array_equal(np_res, res))
res_t = input_t.real().numpy(
) if self.api is "real" else input_t.imag().numpy()
self.assertTrue(np.array_equal(np_res, res_t))
def test_name_argument(self):
with static.program_guard(static.Program()):
x = static.data(name="x", shape=self._shape, dtype=self.dtypes[0])
out = paddle_apis[self.api](x, name="real_res")
self.assertTrue("real_res" in out.name)
def test_dtype_error(self):
# in static mode
with self.assertRaises(TypeError):
with static.program_guard(static.Program()):
x = static.data(name="x", shape=self._shape, dtype="float32")
out = paddle_apis[self.api](x, name="real_res")
# in dynamic mode
with self.assertRaises(RuntimeError):
with fluid.dygraph.guard():
input = np.random.random(self._shape).astype("float32")
input_t = paddle.to_tensor(input)
res = paddle_apis[self.api](input_t)
class TestImagAPI(TestRealAPI):
def setUp(self):
# switch to static
paddle.enable_static()
# prepare test attrs
self.api = "imag"
self.dtypes = ["complex64", "complex128"]
self.places = [paddle.CPUPlace()]
if paddle.is_compiled_with_cuda():
self.places.append(paddle.CUDAPlace(0))
self._shape = [2, 20, 2, 3]
if __name__ == "__main__":
unittest.main()
...@@ -22,6 +22,8 @@ from __future__ import print_function ...@@ -22,6 +22,8 @@ from __future__ import print_function
from .random import randperm from .random import randperm
from .attribute import rank #DEFINE_ALIAS from .attribute import rank #DEFINE_ALIAS
from .attribute import shape #DEFINE_ALIAS from .attribute import shape #DEFINE_ALIAS
from .attribute import real #DEFINE_ALIAS
from .attribute import imag #DEFINE_ALIAS
from .creation import to_tensor #DEFINE_ALIAS from .creation import to_tensor #DEFINE_ALIAS
from .creation import diag #DEFINE_ALIAS from .creation import diag #DEFINE_ALIAS
from .creation import eye #DEFINE_ALIAS from .creation import eye #DEFINE_ALIAS
...@@ -167,6 +169,7 @@ from .math import prod #DEFINE_ALIAS ...@@ -167,6 +169,7 @@ from .math import prod #DEFINE_ALIAS
from .math import all #DEFINE_ALIAS from .math import all #DEFINE_ALIAS
from .math import any #DEFINE_ALIAS from .math import any #DEFINE_ALIAS
from .math import broadcast_shape #DEFINE_ALIAS from .math import broadcast_shape #DEFINE_ALIAS
from .math import conj #DEFINE_ALIAS
from .random import multinomial #DEFINE_ALIAS from .random import multinomial #DEFINE_ALIAS
from .random import standard_normal from .random import standard_normal
......
...@@ -12,8 +12,111 @@ ...@@ -12,8 +12,111 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from __future__ import print_function
from ..fluid.framework import core, in_dygraph_mode, Variable
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype
# TODO: define functions to get tensor attributes # TODO: define functions to get tensor attributes
from ..fluid.layers import rank #DEFINE_ALIAS from ..fluid.layers import rank #DEFINE_ALIAS
from ..fluid.layers import shape #DEFINE_ALIAS from ..fluid.layers import shape #DEFINE_ALIAS
__all__ = ['rank', 'shape'] __all__ = ['rank', 'shape', 'real', 'imag']
def _complex_to_real_dtype(dtype):
if dtype == core.VarDesc.VarType.COMPLEX64:
return core.VarDesc.VarType.FP32
elif dtype == core.VarDesc.VarType.COMPLEX128:
return core.VarDesc.VarType.FP64
else:
return dtype
def real(x, name=None):
"""
Returns a new tensor containing real values of the input tensor.
Args:
x (Tensor): the input tensor, its data type could be complex64 or complex128.
name (str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name` .
Returns:
Tensor: a tensor containing real values of the input tensor.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor(
[[1 + 6j, 2 + 5j, 3 + 4j], [4 + 3j, 5 + 2j, 6 + 1j]])
# Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
# [[(1+6j), (2+5j), (3+4j)],
# [(4+3j), (5+2j), (6+1j)]])
real_res = paddle.real(x)
# Tensor(shape=[2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
# [[1., 2., 3.],
# [4., 5., 6.]])
real_t = x.real()
# Tensor(shape=[2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
# [[1., 2., 3.],
# [4., 5., 6.]])
"""
if in_dygraph_mode():
return core.ops.real(x)
check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'real')
helper = LayerHelper('real', **locals())
out = helper.create_variable_for_type_inference(
dtype=_complex_to_real_dtype(helper.input_dtype()))
helper.append_op(type='real', inputs={'X': x}, outputs={'Out': out})
return out
def imag(x, name=None):
"""
Returns a new tensor containing imaginary values of input tensor.
Args:
x (Tensor): the input tensor, its data type could be complex64 or complex128.
name (str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name` .
Returns:
Tensor: a tensor containing imaginary values of the input tensor.
Examples:
.. code-block:: python
import paddle
x = paddle.to_tensor(
[[1 + 6j, 2 + 5j, 3 + 4j], [4 + 3j, 5 + 2j, 6 + 1j]])
# Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
# [[(1+6j), (2+5j), (3+4j)],
# [(4+3j), (5+2j), (6+1j)]])
imag_res = paddle.imag(x)
# Tensor(shape=[2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
# [[6., 5., 4.],
# [3., 2., 1.]])
imag_t = x.imag()
# Tensor(shape=[2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
# [[6., 5., 4.],
# [3., 2., 1.]])
"""
if in_dygraph_mode():
return core.ops.imag(x)
check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], 'imag')
helper = LayerHelper('imag', **locals())
out = helper.create_variable_for_type_inference(
dtype=_complex_to_real_dtype(helper.input_dtype()))
helper.append_op(type='imag', inputs={'X': x}, outputs={'Out': out})
return out
...@@ -124,7 +124,8 @@ __all__ = [ ...@@ -124,7 +124,8 @@ __all__ = [
'isfinite', 'isfinite',
'isinf', 'isinf',
'isnan', 'isnan',
'broadcast_shape' 'broadcast_shape',
'conj'
] ]
# yapf: enable. # yapf: enable.
...@@ -2213,3 +2214,44 @@ def broadcast_shape(x_shape, y_shape): ...@@ -2213,3 +2214,44 @@ def broadcast_shape(x_shape, y_shape):
""" """
return core.broadcast_shape(x_shape, y_shape) return core.broadcast_shape(x_shape, y_shape)
def conj(x, name=None):
r"""
This function computes the conjugate of the Tensor elementwisely.
Args:
x (Tensor): The input tensor which hold the complex numbers.
Optional data types are: complex64, complex128, float32, float64, int32 or int64.
name (str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns:
out (Tensor): The conjugate of input. The shape and data type is the same with input.
If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.
Examples:
.. code-block:: python
import paddle
data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
#Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
# [[(1+1j), (2+2j), (3+3j)],
# [(4+4j), (5+5j), (6+6j)]])
conj_data=paddle.conj(data)
#Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
# [[(1-1j), (2-2j), (3-3j)],
# [(4-4j), (5-5j), (6-6j)]])
"""
if in_dygraph_mode():
return core.ops.conj(x)
check_variable_and_dtype(x, "x", ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'], 'conj')
helper = LayerHelper('conj', **locals())
out = helper.create_variable_for_type_inference(
dtype=helper.input_dtype())
helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
return out
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册