提交 aaf8401f 编写于 作者: H hedaoyuan 提交者: GitHub

Merge pull request #3126 from hedaoyuan/slice

Slice Layer
......@@ -198,6 +198,10 @@ identity_projection
.. autoclass:: paddle.v2.layer.identity_projection
:noindex:
slice_projection
-------------------
.. autoclass:: paddle.v2.layer.slice_projection
:noindex:
table_projection
----------------
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "Projection.h"
namespace paddle {
/**
* SliceProjection can slice the input value into multiple parts,
* and then select some of them to merge into a new output.
*
* First, calculate the slices that need to be merged into the output.
* slices = input.slices().for_output()
*
* Second, merge each slice into the output.
* for(auto slice: slices) {
* out.addAtOffset(slice, offset);
* }
*
* Input slices as output: s0, s1, ...:
* -----------------------
* |///| |//////| |
* |/s0| |//s1//| |
* |///| |//////| |
* -----------------------
* Output, merge s0, s1, ... into one output:
* ----------------
* |///|//////| |
* |/s0|//s1//|...|
* |///|//////| |
* ----------------
*
* The config file api is slice_projection.
*/
class SliceProjection : public Projection {
public:
SliceProjection(const ProjectionConfig& config,
const ParameterPtr& parameter,
bool useGpu);
virtual void forward();
virtual void backward(const UpdateCallback& callback);
protected:
std::vector<std::pair<size_t, size_t>> slices_;
};
REGISTER_PROJECTION(slice, SliceProjection);
/**
* Constructed function.
* @note SliceProjection should not have any parameter.
*/
SliceProjection::SliceProjection(const ProjectionConfig& config,
const ParameterPtr& parameter,
bool useGpu)
: Projection(config, parameter, useGpu) {
CHECK(!parameter) << "'slice' projection should not have any parameter";
slices_.reserve(config.slices_size());
for (const auto& slice : config.slices()) {
slices_.push_back(std::make_pair(slice.start(), slice.end()));
}
}
void SliceProjection::forward() {
size_t offset = 0;
for (auto& slice : slices_) {
auto slice_out = in_->value->subColMatrix(slice.first, slice.second);
out_->value->addAtOffset(*slice_out, offset);
offset += slice_out->getWidth();
}
}
void SliceProjection::backward(const UpdateCallback& callback) {
if (in_->grad) {
size_t offset = 0;
for (auto& slice : slices_) {
auto slice_out = in_->grad->subColMatrix(slice.first, slice.second);
slice_out->addAtOffset(*out_->grad, offset);
offset += slice_out->getWidth();
}
}
}
} // namespace paddle
#edit-mode: -*- python -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
settings(batch_size=10)
data = data_layer(name ="input", size=8*16*16)
conv1 = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
num_channels=8,
num_filters=16, stride=1,
bias_attr=False,
act=ReluActivation())
conv2 = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
num_channels=8,
num_filters=16, stride=1,
bias_attr=False,
act=ReluActivation())
proj1 = slice_projection(input=conv1, slices=[(0, 4), (4, 12)])
proj2 = slice_projection(input=conv2, slices=[(1, 5), (5, 15)])
concat = concat_layer(input=[proj1, proj2])
outputs(concat)
#edit-mode: -*- python -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
settings(batch_size=10)
data = data_layer(name ="input", size=8*16*16)
conv1 = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
num_channels=8,
num_filters=16, stride=1,
bias_attr=False,
act=ReluActivation())
conv2 = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
num_channels=8,
num_filters=16, stride=1,
bias_attr=False,
act=ReluActivation())
proj1 = slice_projection(input=conv1, slices=[(0, 12)])
proj2 = slice_projection(input=conv2, slices=[(1, 15)])
concat = concat_layer(input=[proj1, proj2])
outputs(concat)
......@@ -152,6 +152,26 @@ TEST(Projection, identity) {
}
}
TEST(Projection, slice) {
ProjectionConfig conf;
conf.set_type("slice");
conf.set_input_size(100);
SliceConfig& slice1 = *conf.add_slices();
slice1.set_start(10);
slice1.set_end(20);
SliceConfig& slice2 = *conf.add_slices();
slice2.set_start(50);
slice2.set_end(70);
conf.set_output_size(30);
for (auto useGpu : {false, true}) {
testProjectionGrad(conf,
INPUT_DATA,
/* parameterSize */ 0,
/* batchSize */ 10,
useGpu);
}
}
TEST(Projection, scaling) {
ProjectionConfig conf;
conf.set_type("scaling");
......
......@@ -237,6 +237,12 @@ TEST(Compare, concat_table) {
compareNetwork(config_file_a, config_file_b);
}
TEST(Compare, concat_slice) {
std::string config_file_a = "./gserver/tests/concat_slice_a.conf";
std::string config_file_b = "./gserver/tests/concat_slice_b.conf";
compareNetwork(config_file_a, config_file_b);
}
#ifndef PADDLE_ONLY_CPU
TEST(Compare, img_pool) {
std::string config_file_a = "./gserver/tests/img_pool_a.conf";
......
......@@ -198,6 +198,11 @@ message RowConvConfig {
required uint32 context_length = 1;
}
message SliceConfig {
required uint32 start = 1;
required uint32 end = 2;
}
message ProjectionConfig {
required string type = 1;
required string name = 2;
......@@ -218,6 +223,10 @@ message ProjectionConfig {
// For pool
optional PoolConfig pool_conf = 12;
// For slice
// Each slice output is the input[start, end)
repeated SliceConfig slices = 13;
}
message OperatorConfig {
......
......@@ -565,6 +565,35 @@ class IdentityOffsetProjection(Projection):
return []
@config_class
class SliceProjection(Projection):
type = 'slice'
def __init__(self, input_layer_name, slices, **xargs):
super(SliceProjection, self).__init__(input_layer_name, **xargs)
input = g_layer_map[input_layer_name]
if input.type in ["exconv", "cudnn_conv"]:
# the slice operator is for the channel dimension
assert input.num_filters is not None
channels = input.num_filters
image_size = input.size / channels
assert slices[len(slices) - 1][1] <= channels
for i in xrange(len(slices)):
slice = self.proj_conf.slices.add()
slice.start = slices[i][0] * image_size
slice.end = slices[i][1] * image_size
self.size += slice.end - slice.start
else:
config_assert(False,
'Currently the input should be convolution layer')
def calc_parameter_size(self, input_size, output_size):
return 0
def calc_parameter_dims(self, input_size, output_size):
return []
# DotMulProjection performs element-wise multiplication with weight
@config_class
class DotMulProjection(Projection):
......
......@@ -128,6 +128,7 @@ __all__ = [
'prelu_layer',
'gated_unit_layer',
'crop_layer',
'slice_projection',
]
......@@ -536,6 +537,45 @@ def identity_projection(input, offset=None, size=None):
return proj
def slice_projection(input, slices):
"""
slice_projection can slice the input value into multiple parts,
and then select some of them to merge into a new output.
.. math::
output = [input.slices()]
The example usage is:
.. code-block:: python
proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])
Note that slice_projection should not have any parameter.
:param input: Input Layer.
:type input: LayerOutput
:param slices: An array of slice parameters.
Each slice contains the start and end offsets based
on the input.
:type slices: pair of int
:return: A SliceProjection object
:rtype: SliceProjection
"""
assert len(slices) >= 1
start = 0
for i in xrange(len(slices)):
assert len(slices[i]) == 2
# The start position of the next slice needs to be greater than
# or equal to the end position of the previous slice.
assert slices[i][0] >= start
assert slices[i][1] >= slices[i][0]
start = slices[i][1]
proj = SliceProjection(input_layer_name=input.name, slices=slices)
proj.origin = input
return proj
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
"""
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册