Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
aa46caf3
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
aa46caf3
编写于
4月 11, 2019
作者:
G
guru4elephant
提交者:
GitHub
4月 11, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #16765 from guru4elephant/gpu_dataset_train
add gpu training for Executor.train_from_dataset
上级
b6150e1f
3c2d2368
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
56 addition
and
41 deletion
+56
-41
paddle/fluid/framework/data_feed.cc
paddle/fluid/framework/data_feed.cc
+25
-5
paddle/fluid/framework/data_feed.h
paddle/fluid/framework/data_feed.h
+1
-0
paddle/fluid/framework/data_feed.proto
paddle/fluid/framework/data_feed.proto
+1
-0
paddle/fluid/framework/downpour_worker.cc
paddle/fluid/framework/downpour_worker.cc
+25
-25
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+2
-2
paddle/fluid/framework/trainer_desc.proto
paddle/fluid/framework/trainer_desc.proto
+1
-1
python/paddle/fluid/dataset.py
python/paddle/fluid/dataset.py
+1
-0
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+0
-8
未找到文件。
paddle/fluid/framework/data_feed.cc
浏览文件 @
aa46caf3
...
@@ -72,7 +72,6 @@ bool DataFeed::PickOneFile(std::string* filename) {
...
@@ -72,7 +72,6 @@ bool DataFeed::PickOneFile(std::string* filename) {
}
}
VLOG
(
3
)
<<
"file_idx_="
<<
*
file_idx_
;
VLOG
(
3
)
<<
"file_idx_="
<<
*
file_idx_
;
*
filename
=
filelist_
[(
*
file_idx_
)
++
];
*
filename
=
filelist_
[(
*
file_idx_
)
++
];
// LOG(ERROR) << "pick file:" << *filename;
return
true
;
return
true
;
}
}
...
@@ -466,6 +465,17 @@ void MultiSlotDataFeed::Init(
...
@@ -466,6 +465,17 @@ void MultiSlotDataFeed::Init(
if
(
slot
.
is_used
())
{
if
(
slot
.
is_used
())
{
use_slots_
.
push_back
(
all_slots_
[
i
]);
use_slots_
.
push_back
(
all_slots_
[
i
]);
use_slots_is_dense_
.
push_back
(
slot
.
is_dense
());
use_slots_is_dense_
.
push_back
(
slot
.
is_dense
());
std
::
vector
<
int
>
local_shape
;
if
(
slot
.
is_dense
())
{
// for batch size holder if is_dense
if
(
slot
.
shape
(
0
)
>
0
)
{
local_shape
.
push_back
(
0
);
}
}
for
(
size_t
i
=
0
;
i
<
slot
.
shape_size
();
++
i
)
{
local_shape
.
push_back
(
slot
.
shape
(
i
));
}
use_slots_shape_
.
push_back
(
local_shape
);
}
}
}
}
feed_vec_
.
resize
(
use_slots_
.
size
());
feed_vec_
.
resize
(
use_slots_
.
size
());
...
@@ -752,8 +762,8 @@ void MultiSlotDataFeed::PutToFeedVec(
...
@@ -752,8 +762,8 @@ void MultiSlotDataFeed::PutToFeedVec(
LoD
data_lod
{
offset
};
LoD
data_lod
{
offset
};
feed_vec_
[
i
]
->
set_lod
(
data_lod
);
feed_vec_
[
i
]
->
set_lod
(
data_lod
);
if
(
use_slots_is_dense_
[
i
])
{
if
(
use_slots_is_dense_
[
i
])
{
int
dim
=
total_instance
/
batch_size_
;
use_slots_shape_
[
i
][
0
]
=
batch_size_
;
feed_vec_
[
i
]
->
Resize
(
{
batch_size_
,
dim
}
);
feed_vec_
[
i
]
->
Resize
(
framework
::
make_ddim
(
use_slots_shape_
[
i
])
);
}
}
}
}
#endif
#endif
...
@@ -785,6 +795,16 @@ void MultiSlotInMemoryDataFeed::Init(
...
@@ -785,6 +795,16 @@ void MultiSlotInMemoryDataFeed::Init(
if
(
slot
.
is_used
())
{
if
(
slot
.
is_used
())
{
use_slots_
.
push_back
(
all_slots_
[
i
]);
use_slots_
.
push_back
(
all_slots_
[
i
]);
use_slots_is_dense_
.
push_back
(
slot
.
is_dense
());
use_slots_is_dense_
.
push_back
(
slot
.
is_dense
());
std
::
vector
<
int
>
local_shape
;
if
(
slot
.
is_dense
())
{
if
(
slot
.
shape
(
0
)
>
0
)
{
local_shape
.
push_back
(
0
);
}
}
for
(
size_t
i
=
0
;
i
<
slot
.
shape_size
();
++
i
)
{
local_shape
.
push_back
(
slot
.
shape
(
i
));
}
use_slots_shape_
.
push_back
(
local_shape
);
}
}
}
}
feed_vec_
.
resize
(
use_slots_
.
size
());
feed_vec_
.
resize
(
use_slots_
.
size
());
...
@@ -940,8 +960,8 @@ void MultiSlotInMemoryDataFeed::PutToFeedVec(
...
@@ -940,8 +960,8 @@ void MultiSlotInMemoryDataFeed::PutToFeedVec(
LoD
data_lod
{
offset
};
LoD
data_lod
{
offset
};
feed_vec_
[
i
]
->
set_lod
(
data_lod
);
feed_vec_
[
i
]
->
set_lod
(
data_lod
);
if
(
use_slots_is_dense_
[
i
])
{
if
(
use_slots_is_dense_
[
i
])
{
int
dim
=
total_instance
/
batch_size_
;
use_slots_shape_
[
i
][
0
]
=
batch_size_
;
feed_vec_
[
i
]
->
Resize
(
{
batch_size_
,
dim
}
);
feed_vec_
[
i
]
->
Resize
(
framework
::
make_ddim
(
use_slots_shape_
[
i
])
);
}
}
}
}
#endif
#endif
...
...
paddle/fluid/framework/data_feed.h
浏览文件 @
aa46caf3
...
@@ -142,6 +142,7 @@ class DataFeed {
...
@@ -142,6 +142,7 @@ class DataFeed {
// object)
// object)
std
::
vector
<
std
::
string
>
all_slots_
;
std
::
vector
<
std
::
string
>
all_slots_
;
std
::
vector
<
std
::
string
>
all_slots_type_
;
std
::
vector
<
std
::
string
>
all_slots_type_
;
std
::
vector
<
std
::
vector
<
int
>>
use_slots_shape_
;
std
::
vector
<
int
>
std
::
vector
<
int
>
use_slots_index_
;
// -1: not used; >=0: the index of use_slots_
use_slots_index_
;
// -1: not used; >=0: the index of use_slots_
...
...
paddle/fluid/framework/data_feed.proto
浏览文件 @
aa46caf3
...
@@ -19,6 +19,7 @@ message Slot {
...
@@ -19,6 +19,7 @@ message Slot {
required
string
type
=
2
;
required
string
type
=
2
;
optional
bool
is_dense
=
3
[
default
=
false
];
optional
bool
is_dense
=
3
[
default
=
false
];
optional
bool
is_used
=
4
[
default
=
false
];
optional
bool
is_used
=
4
[
default
=
false
];
repeated
int32
shape
=
5
;
// we can define N-D Tensor
}
}
message
MultiSlotDesc
{
repeated
Slot
slots
=
1
;
}
message
MultiSlotDesc
{
repeated
Slot
slots
=
1
;
}
...
...
paddle/fluid/framework/downpour_worker.cc
浏览文件 @
aa46caf3
...
@@ -21,40 +21,40 @@ namespace framework {
...
@@ -21,40 +21,40 @@ namespace framework {
void
DownpourWorker
::
Initialize
(
const
TrainerDesc
&
desc
)
{
void
DownpourWorker
::
Initialize
(
const
TrainerDesc
&
desc
)
{
param_
=
desc
.
downpour_param
();
param_
=
desc
.
downpour_param
();
for
(
size_
t
i
=
0
;
i
<
param_
.
sparse_table_size
();
++
i
)
{
for
(
in
t
i
=
0
;
i
<
param_
.
sparse_table_size
();
++
i
)
{
uint64_t
table_id
=
uint64_t
table_id
=
static_cast
<
uint64_t
>
(
param_
.
sparse_table
(
i
).
table_id
());
static_cast
<
uint64_t
>
(
param_
.
sparse_table
(
i
).
table_id
());
TableParameter
table
=
param_
.
sparse_table
(
i
);
TableParameter
table
=
param_
.
sparse_table
(
i
);
sparse_key_names_
[
table_id
].
resize
(
table
.
sparse_key_name_size
());
sparse_key_names_
[
table_id
].
resize
(
table
.
sparse_key_name_size
());
for
(
size_
t
j
=
0
;
j
<
table
.
sparse_key_name_size
();
++
j
)
{
for
(
in
t
j
=
0
;
j
<
table
.
sparse_key_name_size
();
++
j
)
{
sparse_key_names_
[
table_id
][
j
]
=
table
.
sparse_key_name
(
j
);
sparse_key_names_
[
table_id
][
j
]
=
table
.
sparse_key_name
(
j
);
}
}
sparse_value_names_
[
table_id
].
resize
(
table
.
sparse_value_name_size
());
sparse_value_names_
[
table_id
].
resize
(
table
.
sparse_value_name_size
());
for
(
size_
t
j
=
0
;
j
<
table
.
sparse_value_name_size
();
++
j
)
{
for
(
in
t
j
=
0
;
j
<
table
.
sparse_value_name_size
();
++
j
)
{
sparse_value_names_
[
table_id
][
j
]
=
table
.
sparse_value_name
(
j
);
sparse_value_names_
[
table_id
][
j
]
=
table
.
sparse_value_name
(
j
);
}
}
sparse_grad_names_
[
table_id
].
resize
(
table
.
sparse_grad_name_size
());
sparse_grad_names_
[
table_id
].
resize
(
table
.
sparse_grad_name_size
());
for
(
size_
t
j
=
0
;
j
<
table
.
sparse_grad_name_size
();
++
j
)
{
for
(
in
t
j
=
0
;
j
<
table
.
sparse_grad_name_size
();
++
j
)
{
sparse_grad_names_
[
table_id
][
j
]
=
table
.
sparse_grad_name
(
j
);
sparse_grad_names_
[
table_id
][
j
]
=
table
.
sparse_grad_name
(
j
);
}
}
label_var_name_
[
table_id
]
=
table
.
label_var_name
();
label_var_name_
[
table_id
]
=
table
.
label_var_name
();
}
}
for
(
size_
t
i
=
0
;
i
<
param_
.
dense_table_size
();
++
i
)
{
for
(
in
t
i
=
0
;
i
<
param_
.
dense_table_size
();
++
i
)
{
uint64_t
table_id
=
static_cast
<
uint64_t
>
(
param_
.
dense_table
(
i
).
table_id
());
uint64_t
table_id
=
static_cast
<
uint64_t
>
(
param_
.
dense_table
(
i
).
table_id
());
auto
table
=
param_
.
dense_table
(
i
);
auto
table
=
param_
.
dense_table
(
i
);
dense_value_names_
[
table_id
].
resize
(
table
.
dense_value_name_size
());
dense_value_names_
[
table_id
].
resize
(
table
.
dense_value_name_size
());
for
(
size_
t
j
=
0
;
j
<
table
.
dense_value_name_size
();
++
j
)
{
for
(
in
t
j
=
0
;
j
<
table
.
dense_value_name_size
();
++
j
)
{
dense_value_names_
[
table_id
][
j
]
=
table
.
dense_value_name
(
j
);
dense_value_names_
[
table_id
][
j
]
=
table
.
dense_value_name
(
j
);
}
}
dense_grad_names_
[
table_id
].
resize
(
table
.
dense_grad_name_size
());
dense_grad_names_
[
table_id
].
resize
(
table
.
dense_grad_name_size
());
for
(
size_
t
j
=
0
;
j
<
table
.
dense_grad_name_size
();
++
j
)
{
for
(
in
t
j
=
0
;
j
<
table
.
dense_grad_name_size
();
++
j
)
{
dense_grad_names_
[
table_id
][
j
]
=
table
.
dense_grad_name
(
j
);
dense_grad_names_
[
table_id
][
j
]
=
table
.
dense_grad_name
(
j
);
}
}
}
}
skip_ops_
.
resize
(
param_
.
skip_ops_size
());
skip_ops_
.
resize
(
param_
.
skip_ops_size
());
for
(
size_
t
i
=
0
;
i
<
param_
.
skip_ops_size
();
++
i
)
{
for
(
in
t
i
=
0
;
i
<
param_
.
skip_ops_size
();
++
i
)
{
skip_ops_
[
i
]
=
param_
.
skip_ops
(
i
);
skip_ops_
[
i
]
=
param_
.
skip_ops
(
i
);
}
}
...
@@ -83,14 +83,14 @@ void DownpourWorker::CollectLabelInfo(size_t table_idx) {
...
@@ -83,14 +83,14 @@ void DownpourWorker::CollectLabelInfo(size_t table_idx) {
LoDTensor
*
tensor
=
var
->
GetMutable
<
LoDTensor
>
();
LoDTensor
*
tensor
=
var
->
GetMutable
<
LoDTensor
>
();
int64_t
*
label_ptr
=
tensor
->
data
<
int64_t
>
();
int64_t
*
label_ptr
=
tensor
->
data
<
int64_t
>
();
in
t
global_index
=
0
;
size_
t
global_index
=
0
;
for
(
size_t
i
=
0
;
i
<
sparse_key_names_
[
table_id
].
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
sparse_key_names_
[
table_id
].
size
();
++
i
)
{
VLOG
(
3
)
<<
"sparse_key_names_["
<<
i
VLOG
(
3
)
<<
"sparse_key_names_["
<<
i
<<
"]: "
<<
sparse_key_names_
[
table_id
][
i
];
<<
"]: "
<<
sparse_key_names_
[
table_id
][
i
];
Variable
*
fea_var
=
thread_scope_
->
FindVar
(
sparse_key_names_
[
table_id
][
i
]);
Variable
*
fea_var
=
thread_scope_
->
FindVar
(
sparse_key_names_
[
table_id
][
i
]);
LoDTensor
*
tensor
=
fea_var
->
GetMutable
<
LoDTensor
>
();
LoDTensor
*
tensor
=
fea_var
->
GetMutable
<
LoDTensor
>
();
int64_t
*
ids
=
tensor
->
data
<
int64_t
>
();
int64_t
*
ids
=
tensor
->
data
<
int64_t
>
();
in
t
fea_idx
=
0
;
size_
t
fea_idx
=
0
;
// tensor->lod()[0].size() == batch_size + 1
// tensor->lod()[0].size() == batch_size + 1
for
(
auto
lod_idx
=
1u
;
lod_idx
<
tensor
->
lod
()[
0
].
size
();
++
lod_idx
)
{
for
(
auto
lod_idx
=
1u
;
lod_idx
<
tensor
->
lod
()[
0
].
size
();
++
lod_idx
)
{
for
(;
fea_idx
<
tensor
->
lod
()[
0
][
lod_idx
];
++
fea_idx
)
{
for
(;
fea_idx
<
tensor
->
lod
()[
0
][
lod_idx
];
++
fea_idx
)
{
...
@@ -138,7 +138,7 @@ void DownpourWorker::FillSparseValue(size_t table_idx) {
...
@@ -138,7 +138,7 @@ void DownpourWorker::FillSparseValue(size_t table_idx) {
auto
&
tensor_lod
=
tensor
->
lod
()[
0
];
auto
&
tensor_lod
=
tensor
->
lod
()[
0
];
LoD
data_lod
{
tensor_lod
};
LoD
data_lod
{
tensor_lod
};
tensor_emb
->
set_lod
(
data_lod
);
tensor_emb
->
set_lod
(
data_lod
);
for
(
auto
index
=
0u
;
index
<
len
;
++
index
)
{
for
(
int
index
=
0
;
index
<
len
;
++
index
)
{
if
(
ids
[
index
]
==
0u
)
{
if
(
ids
[
index
]
==
0u
)
{
memcpy
(
ptr
+
table
.
emb_dim
()
*
index
,
init_value
.
data
()
+
2
,
memcpy
(
ptr
+
table
.
emb_dim
()
*
index
,
init_value
.
data
()
+
2
,
sizeof
(
float
)
*
table
.
emb_dim
());
sizeof
(
float
)
*
table
.
emb_dim
());
...
@@ -192,7 +192,7 @@ void DownpourWorker::TrainFilesWithProfiler() {
...
@@ -192,7 +192,7 @@ void DownpourWorker::TrainFilesWithProfiler() {
read_time
+=
timeline
.
ElapsedSec
();
read_time
+=
timeline
.
ElapsedSec
();
total_time
+=
timeline
.
ElapsedSec
();
total_time
+=
timeline
.
ElapsedSec
();
VLOG
(
3
)
<<
"program config size: "
<<
param_
.
program_config_size
();
VLOG
(
3
)
<<
"program config size: "
<<
param_
.
program_config_size
();
for
(
size_
t
i
=
0
;
i
<
param_
.
program_config
(
0
).
pull_sparse_table_id_size
();
for
(
in
t
i
=
0
;
i
<
param_
.
program_config
(
0
).
pull_sparse_table_id_size
();
++
i
)
{
++
i
)
{
uint64_t
tid
=
static_cast
<
uint64_t
>
(
uint64_t
tid
=
static_cast
<
uint64_t
>
(
param_
.
program_config
(
0
).
pull_sparse_table_id
(
i
));
param_
.
program_config
(
0
).
pull_sparse_table_id
(
i
));
...
@@ -244,8 +244,8 @@ void DownpourWorker::TrainFilesWithProfiler() {
...
@@ -244,8 +244,8 @@ void DownpourWorker::TrainFilesWithProfiler() {
}
}
if
(
need_to_push_sparse_
)
{
if
(
need_to_push_sparse_
)
{
for
(
size_t
i
=
0
;
for
(
int
i
=
0
;
i
<
param_
.
program_config
(
0
).
push_sparse_table_id_size
()
;
i
<
param_
.
program_config
(
0
).
push_sparse_table_id_size
();
++
i
)
{
++
i
)
{
uint64_t
tid
=
static_cast
<
uint64_t
>
(
uint64_t
tid
=
static_cast
<
uint64_t
>
(
param_
.
program_config
(
0
).
push_sparse_table_id
(
i
));
param_
.
program_config
(
0
).
push_sparse_table_id
(
i
));
TableParameter
table
;
TableParameter
table
;
...
@@ -268,8 +268,8 @@ void DownpourWorker::TrainFilesWithProfiler() {
...
@@ -268,8 +268,8 @@ void DownpourWorker::TrainFilesWithProfiler() {
if
(
need_to_push_dense_
)
{
if
(
need_to_push_dense_
)
{
timeline
.
Start
();
timeline
.
Start
();
for
(
size_t
i
=
0
;
for
(
int
i
=
0
;
i
<
param_
.
program_config
(
0
).
push_dense_table_id_size
()
;
i
<
param_
.
program_config
(
0
).
push_dense_table_id_size
();
++
i
)
{
++
i
)
{
uint64_t
tid
=
static_cast
<
uint64_t
>
(
uint64_t
tid
=
static_cast
<
uint64_t
>
(
param_
.
program_config
(
0
).
push_dense_table_id
(
i
));
param_
.
program_config
(
0
).
push_dense_table_id
(
i
));
fleet_ptr_
->
PushDenseVarsAsync
(
fleet_ptr_
->
PushDenseVarsAsync
(
...
@@ -315,8 +315,8 @@ void DownpourWorker::TrainFilesWithProfiler() {
...
@@ -315,8 +315,8 @@ void DownpourWorker::TrainFilesWithProfiler() {
}
}
if
(
need_to_push_dense_
)
{
if
(
need_to_push_dense_
)
{
for
(
size_t
i
=
0
;
for
(
int
i
=
0
;
i
<
param_
.
program_config
(
0
).
push_dense_table_id_size
()
;
i
<
param_
.
program_config
(
0
).
push_dense_table_id_size
();
++
i
)
{
++
i
)
{
uint64_t
tid
=
static_cast
<
uint64_t
>
(
uint64_t
tid
=
static_cast
<
uint64_t
>
(
param_
.
program_config
(
0
).
push_dense_table_id
(
i
));
param_
.
program_config
(
0
).
push_dense_table_id
(
i
));
pull_dense_worker_
->
IncreaseThreadVersion
(
thread_id_
,
tid
);
pull_dense_worker_
->
IncreaseThreadVersion
(
thread_id_
,
tid
);
...
@@ -362,7 +362,7 @@ void DownpourWorker::TrainFiles() {
...
@@ -362,7 +362,7 @@ void DownpourWorker::TrainFiles() {
int
cur_batch
;
int
cur_batch
;
while
((
cur_batch
=
device_reader_
->
Next
())
>
0
)
{
while
((
cur_batch
=
device_reader_
->
Next
())
>
0
)
{
// pull sparse here
// pull sparse here
for
(
size_
t
i
=
0
;
i
<
param_
.
program_config
(
0
).
pull_sparse_table_id_size
();
for
(
in
t
i
=
0
;
i
<
param_
.
program_config
(
0
).
pull_sparse_table_id_size
();
++
i
)
{
++
i
)
{
uint64_t
tid
=
static_cast
<
uint64_t
>
(
uint64_t
tid
=
static_cast
<
uint64_t
>
(
param_
.
program_config
(
0
).
pull_sparse_table_id
(
i
));
param_
.
program_config
(
0
).
pull_sparse_table_id
(
i
));
...
@@ -397,8 +397,8 @@ void DownpourWorker::TrainFiles() {
...
@@ -397,8 +397,8 @@ void DownpourWorker::TrainFiles() {
if
(
need_to_push_sparse_
)
{
if
(
need_to_push_sparse_
)
{
// push gradients here
// push gradients here
for
(
size_t
i
=
0
;
for
(
int
i
=
0
;
i
<
param_
.
program_config
(
0
).
push_sparse_table_id_size
()
;
i
<
param_
.
program_config
(
0
).
push_sparse_table_id_size
();
++
i
)
{
++
i
)
{
uint64_t
tid
=
static_cast
<
uint64_t
>
(
uint64_t
tid
=
static_cast
<
uint64_t
>
(
param_
.
program_config
(
0
).
push_sparse_table_id
(
i
));
param_
.
program_config
(
0
).
push_sparse_table_id
(
i
));
TableParameter
table
;
TableParameter
table
;
...
@@ -416,8 +416,8 @@ void DownpourWorker::TrainFiles() {
...
@@ -416,8 +416,8 @@ void DownpourWorker::TrainFiles() {
}
}
if
(
need_to_push_dense_
)
{
if
(
need_to_push_dense_
)
{
for
(
size_t
i
=
0
;
for
(
int
i
=
0
;
i
<
param_
.
program_config
(
0
).
push_dense_table_id_size
()
;
i
<
param_
.
program_config
(
0
).
push_dense_table_id_size
();
++
i
)
{
++
i
)
{
uint64_t
tid
=
static_cast
<
uint64_t
>
(
uint64_t
tid
=
static_cast
<
uint64_t
>
(
param_
.
program_config
(
0
).
push_dense_table_id
(
i
));
param_
.
program_config
(
0
).
push_dense_table_id
(
i
));
fleet_ptr_
->
PushDenseVarsAsync
(
fleet_ptr_
->
PushDenseVarsAsync
(
...
@@ -461,8 +461,8 @@ void DownpourWorker::TrainFiles() {
...
@@ -461,8 +461,8 @@ void DownpourWorker::TrainFiles() {
}
}
if
(
need_to_push_dense_
)
{
if
(
need_to_push_dense_
)
{
for
(
size_t
i
=
0
;
for
(
int
i
=
0
;
i
<
param_
.
program_config
(
0
).
push_dense_table_id_size
()
;
i
<
param_
.
program_config
(
0
).
push_dense_table_id_size
();
++
i
)
{
++
i
)
{
uint64_t
tid
=
static_cast
<
uint64_t
>
(
uint64_t
tid
=
static_cast
<
uint64_t
>
(
param_
.
program_config
(
0
).
push_dense_table_id
(
i
));
param_
.
program_config
(
0
).
push_dense_table_id
(
i
));
pull_dense_worker_
->
IncreaseThreadVersion
(
thread_id_
,
tid
);
pull_dense_worker_
->
IncreaseThreadVersion
(
thread_id_
,
tid
);
...
...
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
aa46caf3
...
@@ -221,7 +221,7 @@ ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
...
@@ -221,7 +221,7 @@ ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
PADDLE_ENFORCE
(
!
member_
->
use_cuda_
,
PADDLE_ENFORCE
(
!
member_
->
use_cuda_
,
"gpu mode does not support async_mode_ now!"
);
"gpu mode does not support async_mode_ now!"
);
graphs
.
push_back
(
graph
);
graphs
.
push_back
(
graph
);
for
(
in
t
i
=
1
;
i
<
places
.
size
();
++
i
)
{
for
(
size_
t
i
=
1
;
i
<
places
.
size
();
++
i
)
{
auto
*
tmp_graph
=
new
ir
::
Graph
(
graph
->
OriginProgram
());
auto
*
tmp_graph
=
new
ir
::
Graph
(
graph
->
OriginProgram
());
async_graphs_
.
emplace_back
(
tmp_graph
);
async_graphs_
.
emplace_back
(
tmp_graph
);
graphs
.
push_back
(
tmp_graph
);
graphs
.
push_back
(
tmp_graph
);
...
@@ -315,7 +315,7 @@ ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
...
@@ -315,7 +315,7 @@ ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
graph
=
build_strategy
.
Apply
(
graph
,
{
member_
->
places_
[
0
]},
loss_var_name
,
graph
=
build_strategy
.
Apply
(
graph
,
{
member_
->
places_
[
0
]},
loss_var_name
,
{
member_
->
local_scopes_
[
0
]},
1
,
{
member_
->
local_scopes_
[
0
]},
1
,
member_
->
use_cuda_
,
member_
->
nccl_ctxs_
.
get
());
member_
->
use_cuda_
,
member_
->
nccl_ctxs_
.
get
());
for
(
in
t
i
=
1
;
i
<
member_
->
places_
.
size
();
++
i
)
{
for
(
size_
t
i
=
1
;
i
<
member_
->
places_
.
size
();
++
i
)
{
graphs
[
i
]
=
graphs
[
i
]
=
build_strategy
.
Apply
(
graphs
[
i
],
{
member_
->
places_
[
i
]},
loss_var_name
,
build_strategy
.
Apply
(
graphs
[
i
],
{
member_
->
places_
[
i
]},
loss_var_name
,
{
member_
->
local_scopes_
[
i
]},
1
,
{
member_
->
local_scopes_
[
i
]},
1
,
...
...
paddle/fluid/framework/trainer_desc.proto
浏览文件 @
aa46caf3
...
@@ -76,7 +76,7 @@ message PullDenseWorkerParameter {
...
@@ -76,7 +76,7 @@ message PullDenseWorkerParameter {
message
TableParameter
{
message
TableParameter
{
// dense table only
// dense table only
optional
int64
table_id
=
1
;
optional
u
int64
table_id
=
1
;
repeated
string
dense_value_name
=
2
;
repeated
string
dense_value_name
=
2
;
repeated
string
dense_grad_name
=
3
;
repeated
string
dense_grad_name
=
3
;
repeated
int32
push_dense_wait_times
=
5
;
repeated
int32
push_dense_wait_times
=
5
;
...
...
python/paddle/fluid/dataset.py
浏览文件 @
aa46caf3
...
@@ -136,6 +136,7 @@ class DatasetBase(object):
...
@@ -136,6 +136,7 @@ class DatasetBase(object):
slot_var
.
name
=
var
.
name
slot_var
.
name
=
var
.
name
if
var
.
lod_level
==
0
:
if
var
.
lod_level
==
0
:
slot_var
.
is_dense
=
True
slot_var
.
is_dense
=
True
slot_var
.
shape
.
extend
(
var
.
shape
)
if
var
.
dtype
==
core
.
VarDesc
.
VarType
.
FP32
:
if
var
.
dtype
==
core
.
VarDesc
.
VarType
.
FP32
:
slot_var
.
type
=
"float"
slot_var
.
type
=
"float"
elif
var
.
dtype
==
core
.
VarDesc
.
VarType
.
INT64
:
elif
var
.
dtype
==
core
.
VarDesc
.
VarType
.
INT64
:
...
...
python/paddle/fluid/executor.py
浏览文件 @
aa46caf3
...
@@ -712,10 +712,6 @@ class Executor(object):
...
@@ -712,10 +712,6 @@ class Executor(object):
if
dataset
==
None
:
if
dataset
==
None
:
raise
RuntimeError
(
"dataset is needed and should be initialized"
)
raise
RuntimeError
(
"dataset is needed and should be initialized"
)
if
not
isinstance
(
self
.
place
,
core
.
CPUPlace
):
raise
RuntimeError
(
"infer_from_dataset is verified on CPUPlace"
"We will open CUDAPlace in the future"
)
scope
,
trainer
=
self
.
_prepare_trainer
(
scope
,
trainer
=
self
.
_prepare_trainer
(
program
=
program
,
program
=
program
,
dataset
=
dataset
,
dataset
=
dataset
,
...
@@ -796,10 +792,6 @@ class Executor(object):
...
@@ -796,10 +792,6 @@ class Executor(object):
if
dataset
==
None
:
if
dataset
==
None
:
raise
RuntimeError
(
"dataset is need and should be initialized"
)
raise
RuntimeError
(
"dataset is need and should be initialized"
)
if
not
isinstance
(
self
.
place
,
core
.
CPUPlace
):
raise
RuntimeError
(
"train_from_dataset is verified on CPUPlace"
"We will open CUDAPlace in the future"
)
scope
,
trainer
=
self
.
_prepare_trainer
(
scope
,
trainer
=
self
.
_prepare_trainer
(
program
=
program
,
program
=
program
,
dataset
=
dataset
,
dataset
=
dataset
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录