未验证 提交 a858326a 编写于 作者: B baoachun 提交者: GitHub

add conv+hard_sigmoid and conv+hard_swish fuse pass ut (#37553)

* add conv+hard_sigmoid fuse pass ut

* update conv_elementwise_add_mkldnn_fuse_pass ut

* update conv_hard_sigmoid_mkldnn_fuse_pass ut

* update conv+hard_sigmoid and conv+hard_swish fuse pass ut

* update ut

* update ut
上级 d48f7c89
...@@ -157,7 +157,7 @@ ConvActivationFusePass::ConvActivationFusePass() { ...@@ -157,7 +157,7 @@ ConvActivationFusePass::ConvActivationFusePass() {
// IsStringIn({"NHWC", "NCHW"}) MobileNetV2 has no this attribute // IsStringIn({"NHWC", "NCHW"}) MobileNetV2 has no this attribute
.AddAttr("data_format") .AddAttr("data_format")
.IsOptional() .IsOptional()
.IsStringIn({"NHWC", "NCHW", "AnyLayout"}) .IsStringIn({"NCHW", "AnyLayout"})
.End(); .End();
AddOpCompat(OpCompat("relu")) AddOpCompat(OpCompat("relu"))
......
...@@ -98,6 +98,8 @@ if (WITH_MKLDNN) ...@@ -98,6 +98,8 @@ if (WITH_MKLDNN)
set_tests_properties(test_conv_act_mkldnn_fuse_pass PROPERTIES TIMEOUT 120) set_tests_properties(test_conv_act_mkldnn_fuse_pass PROPERTIES TIMEOUT 120)
set_tests_properties(test_conv_transpose_eltwiseadd_bn_fuse_pass PROPERTIES TIMEOUT 250) set_tests_properties(test_conv_transpose_eltwiseadd_bn_fuse_pass PROPERTIES TIMEOUT 250)
set_tests_properties(test_conv_transpose_bn_fuse_pass PROPERTIES TIMEOUT 300) set_tests_properties(test_conv_transpose_bn_fuse_pass PROPERTIES TIMEOUT 300)
set_tests_properties(test_mkldnn_conv_hard_sigmoid_fuse_pass PROPERTIES TIMEOUT 300)
set_tests_properties(test_mkldnn_conv_hard_swish_fuse_pass PROPERTIES TIMEOUT 300)
set_tests_properties(test_mkldnn_batch_norm_act_fuse_pass PROPERTIES TIMEOUT 100) set_tests_properties(test_mkldnn_batch_norm_act_fuse_pass PROPERTIES TIMEOUT 100)
set_tests_properties(test_mkldnn_conv_transpose_bias_fuse_pass PROPERTIES TIMEOUT 100) set_tests_properties(test_mkldnn_conv_transpose_bias_fuse_pass PROPERTIES TIMEOUT 100)
set_tests_properties(test_conv_eltwiseadd_bn_fuse_pass PROPERTIES TIMEOUT 300) set_tests_properties(test_conv_eltwiseadd_bn_fuse_pass PROPERTIES TIMEOUT 300)
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import PassAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import unittest
import hypothesis
from hypothesis import given, settings, seed, example, assume
import hypothesis.strategies as st
class TestConvHardSigmoidMkldnnFusePass(PassAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
# If the problem has been fixed, the judgment
# needs to be deleted!!!
if attrs[0]['data_format'] == "NHWC":
return False
return True
def sample_program_config(self, draw):
data_format = draw(st.sampled_from(["NCHW", "NHWC"]))
dilations = draw(st.sampled_from([[1, 1], [2, 2], [1, 2]]))
padding_algorithm = draw(st.sampled_from(["EXPLICIT", "SAME", "VALID"]))
groups = draw(st.sampled_from([1, 2, 4]))
paddings = draw(st.sampled_from([[0, 3], [1, 2, 3, 4]]))
strides = draw(st.sampled_from([[1, 1], [2, 2], [1, 2]]))
slope = draw(st.floats(min_value=0, max_value=10))
offset = draw(st.floats(min_value=0, max_value=10))
batch_size = draw(st.integers(min_value=1, max_value=4))
def generate_input():
if data_format == "NCHW":
return np.random.random(
[batch_size, 48, 64, 64]).astype(np.float32)
else:
return np.random.random(
[batch_size, 64, 64, 48]).astype(np.float32)
def generate_weight():
return np.random.random(
[16, int(48 / groups), 3, 3]).astype(np.float32)
ops_config = [{
"op_type": "conv2d",
"op_inputs": {
"Input": ["input_data"],
"Filter": ["input_weight"]
},
"op_outputs": {
"Output": ["conv_output"]
},
"op_attrs": {
"data_format": data_format,
"dilations": dilations,
"padding_algorithm": padding_algorithm,
"groups": groups,
"paddings": paddings,
"strides": strides
}
}, {
"op_type": "hard_sigmoid",
"op_inputs": {
"X": ["conv_output"]
},
"op_outputs": {
"Out": ["sigmoid_output"]
},
"op_attrs": {
"slope": slope,
"offset": offset
},
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={
"input_weight": TensorConfig(data_gen=partial(generate_weight))
},
inputs={
"input_data": TensorConfig(data_gen=partial(generate_input)),
},
outputs=["sigmoid_output"])
return program_config
def sample_predictor_configs(self, program_config):
config = self.create_inference_config(use_mkldnn=True)
yield config, ["conv2d"], (1e-5, 1e-5)
def test(self):
self.run_and_statis(
quant=False, passes=["conv_hard_sigmoid_mkldnn_fuse_pass"])
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import PassAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import unittest
import hypothesis
from hypothesis import given, settings, seed, example, assume
import hypothesis.strategies as st
class TestConvHardSwishMkldnnFusePass(PassAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
# If the problem has been fixed, the judgment
# needs to be deleted!!!
if attrs[0]['data_format'] == "NHWC":
return False
return True
def sample_program_config(self, draw):
data_format = draw(st.sampled_from(["NCHW", "NHWC"]))
dilations = draw(st.sampled_from([[1, 1], [2, 2], [1, 2]]))
padding_algorithm = draw(st.sampled_from(["EXPLICIT", "SAME", "VALID"]))
groups = draw(st.sampled_from([1, 2, 4]))
paddings = draw(st.sampled_from([[0, 3], [1, 2, 3, 4]]))
strides = draw(st.sampled_from([[1, 1], [2, 2], [1, 2]]))
threshold = draw(st.sampled_from([6.0]))
scale = draw(st.sampled_from([6.0]))
offset = draw(st.sampled_from([3.0]))
batch_size = draw(st.integers(min_value=1, max_value=4))
def generate_input():
if data_format == "NCHW":
return np.random.random(
[batch_size, 48, 64, 64]).astype(np.float32)
else:
return np.random.random(
[batch_size, 64, 64, 48]).astype(np.float32)
def generate_weight():
return np.random.random(
[16, int(48 / groups), 3, 3]).astype(np.float32)
ops_config = [{
"op_type": "conv2d",
"op_inputs": {
"Input": ["input_data"],
"Filter": ["input_weight"]
},
"op_outputs": {
"Output": ["conv_output"]
},
"op_attrs": {
"data_format": data_format,
"dilations": dilations,
"padding_algorithm": padding_algorithm,
"groups": groups,
"paddings": paddings,
"strides": strides
}
}, {
"op_type": "hard_swish",
"op_inputs": {
"X": ["conv_output"]
},
"op_outputs": {
"Out": ["swish_output"]
},
"op_attrs": {
"threshold": threshold,
"scale": scale,
"offset": offset
},
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={
"input_weight": TensorConfig(data_gen=partial(generate_weight))
},
inputs={
"input_data": TensorConfig(data_gen=partial(generate_input)),
},
outputs=["swish_output"])
return program_config
def sample_predictor_configs(self, program_config):
config = self.create_inference_config(use_mkldnn=True)
yield config, ["conv2d"], (1e-5, 1e-5)
def test(self):
self.run_and_statis(
quant=False, passes=["conv_hard_swish_mkldnn_fuse_pass"])
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册