Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
a79a77ee
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a79a77ee
编写于
8月 31, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine and clean code
上级
c459fb5b
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
51 addition
and
79 deletion
+51
-79
paddle/fluid/operators/fusion_lstm_op.cc
paddle/fluid/operators/fusion_lstm_op.cc
+51
-79
未找到文件。
paddle/fluid/operators/fusion_lstm_op.cc
浏览文件 @
a79a77ee
...
@@ -215,46 +215,53 @@ This operator fuse the X into LSTM, more details can refer to LSTM op.
...
@@ -215,46 +215,53 @@ This operator fuse the X into LSTM, more details can refer to LSTM op.
template
<
typename
T
>
template
<
typename
T
>
class
FuisonLSTMKernel
:
public
framework
::
OpKernel
<
T
>
{
class
FuisonLSTMKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
#define INIT_VEC_FUNC \
std::function<void(const int, const T *, T *)> act_gate, act_cell, act_cand; \
auto& act_gate_str = ctx.Attr<std::string>("gate_activation"); \
auto& act_cell_str = ctx.Attr<std::string>("cell_activation"); \
auto& act_cand_str = ctx.Attr<std::string>("candidate_activation"); \
if (platform::jit::MayIUse(platform::jit::avx)) { \
math::VecActivations<T, platform::jit::avx> act_functor; \
act_gate = act_functor(act_gate_str); \
act_cell = act_functor(act_cell_str); \
act_cand = act_functor(act_cand_str); \
} else { \
math::VecActivations<T, platform::jit::isa_any> act_functor; \
act_gate = act_functor(act_gate_str); \
act_cell = act_functor(act_cell_str); \
act_cand = act_functor(act_cand_str); \
}
#define INIT_BASE_INPUT_OUTPUT \
auto* x = ctx.Input<LoDTensor>("X"); \
auto* h0 = ctx.Input<Tensor>("H0"); \
auto* c0 = ctx.Input<Tensor>("C0"); \
auto* wx = ctx.Input<Tensor>("WeightX"); \
auto* wh = ctx.Input<Tensor>("WeightH"); \
auto* bias = ctx.Input<Tensor>("Bias"); \
auto* xx = ctx.Output<LoDTensor>("XX"); \
auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
auto* cell_out = ctx.Output<LoDTensor>("Cell"); \
bool is_reverse = ctx.Attr<bool>("is_reverse");
#define INIT_BASE_SIZES \
auto x_dims = x->dims();
/* T x M*/
\
auto wh_dims = wh->dims();
/* D x 4D*/
\
const int M = x_dims[1]; \
const int D = wh_dims[0]; \
const int D2 = D * 2; \
const int D3 = D * 3; \
const int D4 = wh_dims[1];
void
SeqCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
void
SeqCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
auto
*
x
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
INIT_BASE_INPUT_OUTPUT
auto
*
h0
=
ctx
.
Input
<
Tensor
>
(
"H0"
);
INIT_BASE_SIZES
auto
*
c0
=
ctx
.
Input
<
Tensor
>
(
"C0"
);
INIT_VEC_FUNC
auto
*
wx
=
ctx
.
Input
<
Tensor
>
(
"WeightX"
);
auto
*
wh
=
ctx
.
Input
<
Tensor
>
(
"WeightH"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
xx
=
ctx
.
Output
<
LoDTensor
>
(
"XX"
);
auto
*
hidden_out
=
ctx
.
Output
<
LoDTensor
>
(
"Hidden"
);
auto
*
cell_out
=
ctx
.
Output
<
LoDTensor
>
(
"Cell"
);
bool
is_reverse
=
ctx
.
Attr
<
bool
>
(
"is_reverse"
);
std
::
function
<
void
(
const
int
,
const
T
*
,
T
*
)
>
act_gate
,
act_cell
,
act_cand
;
auto
&
act_gate_str
=
ctx
.
Attr
<
std
::
string
>
(
"gate_activation"
);
auto
&
act_cell_str
=
ctx
.
Attr
<
std
::
string
>
(
"cell_activation"
);
auto
&
act_cand_str
=
ctx
.
Attr
<
std
::
string
>
(
"candidate_activation"
);
if
(
platform
::
jit
::
MayIUse
(
platform
::
jit
::
avx
))
{
math
::
VecActivations
<
T
,
platform
::
jit
::
avx
>
act_functor
;
act_gate
=
act_functor
(
act_gate_str
);
act_cell
=
act_functor
(
act_cell_str
);
act_cand
=
act_functor
(
act_cand_str
);
}
else
{
math
::
VecActivations
<
T
,
platform
::
jit
::
isa_any
>
act_functor
;
act_gate
=
act_functor
(
act_gate_str
);
act_cell
=
act_functor
(
act_cell_str
);
act_cand
=
act_functor
(
act_cand_str
);
}
auto
x_lod
=
x
->
lod
();
auto
x_lod
=
x
->
lod
();
auto
x_dims
=
x
->
dims
();
// T x M
auto
wh_dims
=
wh
->
dims
();
// D x 4D
const
int
total_T
=
x_dims
[
0
];
const
int
total_T
=
x_dims
[
0
];
const
int
N
=
x_lod
[
0
].
size
()
-
1
;
// batch size
const
int
N
=
x_lod
[
0
].
size
()
-
1
;
// batch size
const
int
M
=
x_dims
[
1
];
// x frame size
const
int
D
=
wh_dims
[
0
];
const
int
D2
=
D
*
2
;
const
int
D3
=
D
*
3
;
const
int
D4
=
wh_dims
[
1
];
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
h0_data
=
h0
?
h0
->
data
<
T
>
()
:
NULL
;
const
T
*
h0_data
=
h0
?
h0
->
data
<
T
>
()
:
NULL
;
...
@@ -343,52 +350,18 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
...
@@ -343,52 +350,18 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
void
BatchCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
void
BatchCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
using
DeviceContext
=
platform
::
CPUDeviceContext
;
using
DeviceContext
=
platform
::
CPUDeviceContext
;
auto
*
x
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
INIT_BASE_INPUT_OUTPUT
auto
*
wx
=
ctx
.
Input
<
Tensor
>
(
"WeightX"
);
if
(
x
->
lod
()[
0
].
size
()
==
2
)
{
// batch size == 1
auto
*
wh
=
ctx
.
Input
<
Tensor
>
(
"WeightH"
);
SeqCompute
(
ctx
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
}
auto
*
h0
=
ctx
.
Input
<
Tensor
>
(
"H0"
);
INIT_BASE_SIZES
auto
*
c0
=
ctx
.
Input
<
Tensor
>
(
"C0"
);
INIT_VEC_FUNC
auto
*
xx
=
ctx
.
Output
<
LoDTensor
>
(
"XX"
);
auto
*
reordered_h0
=
ctx
.
Output
<
Tensor
>
(
"ReorderedH0"
);
auto
*
reordered_h0
=
ctx
.
Output
<
Tensor
>
(
"ReorderedH0"
);
auto
*
reordered_c0
=
ctx
.
Output
<
Tensor
>
(
"ReorderedC0"
);
auto
*
reordered_c0
=
ctx
.
Output
<
Tensor
>
(
"ReorderedC0"
);
auto
*
batched_input
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedInput"
);
auto
*
batched_input
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedInput"
);
auto
*
batched_c_out
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedCell"
);
auto
*
batched_c_out
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedCell"
);
auto
*
batched_h_out
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedHidden"
);
auto
*
batched_h_out
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedHidden"
);
auto
*
hidden_out
=
ctx
.
Output
<
LoDTensor
>
(
"Hidden"
);
auto
*
cell_out
=
ctx
.
Output
<
LoDTensor
>
(
"Cell"
);
bool
is_reverse
=
ctx
.
Attr
<
bool
>
(
"is_reverse"
);
std
::
function
<
void
(
const
int
,
const
T
*
,
T
*
)
>
act_gate
,
act_cell
,
act_cand
;
auto
&
act_gate_str
=
ctx
.
Attr
<
std
::
string
>
(
"gate_activation"
);
auto
&
act_cell_str
=
ctx
.
Attr
<
std
::
string
>
(
"cell_activation"
);
auto
&
act_cand_str
=
ctx
.
Attr
<
std
::
string
>
(
"candidate_activation"
);
if
(
platform
::
jit
::
MayIUse
(
platform
::
jit
::
avx
))
{
math
::
VecActivations
<
T
,
platform
::
jit
::
avx
>
act_functor
;
act_gate
=
act_functor
(
act_gate_str
);
act_cell
=
act_functor
(
act_cell_str
);
act_cand
=
act_functor
(
act_cand_str
);
}
else
{
math
::
VecActivations
<
T
,
platform
::
jit
::
isa_any
>
act_functor
;
act_gate
=
act_functor
(
act_gate_str
);
act_cell
=
act_functor
(
act_cell_str
);
act_cand
=
act_functor
(
act_cand_str
);
}
auto
x_dims
=
x
->
dims
();
// T x M
auto
wh_dims
=
wh
->
dims
();
// D x 4D
// auto x_lod = x->lod();
// const int N = x_lod[0].size() - 1; // batch size
// if (N == 1) {
// SeqCompute(ctx);
// }
const
int
M
=
x_dims
[
1
];
const
int
D
=
wh_dims
[
0
];
const
int
D2
=
D
*
2
;
const
int
D3
=
D
*
3
;
const
int
D4
=
wh_dims
[
1
];
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
wx_data
=
wx
->
data
<
T
>
();
const
T
*
wx_data
=
wx
->
data
<
T
>
();
...
@@ -485,16 +458,12 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
...
@@ -485,16 +458,12 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
// W_ch, W_ih, W_fh, W_oh
// W_ch, W_ih, W_fh, W_oh
act_gate
(
D3
,
cur_in_data
+
D
,
cur_in_data
+
D
);
act_gate
(
D3
,
cur_in_data
+
D
,
cur_in_data
+
D
);
act_cand
(
D
,
cur_in_data
,
cur_in_data
);
act_cand
(
D
,
cur_in_data
,
cur_in_data
);
// a = forget * prev_cell
// a = forget * prev_cell
blas
.
VMUL
(
D
,
cur_in_data
+
D2
,
cur_prev_c_data
,
cur_in_data
+
D2
);
blas
.
VMUL
(
D
,
cur_in_data
+
D2
,
cur_prev_c_data
,
cur_in_data
+
D2
);
// b = input * tilde
// b = input * tilde
blas
.
VMUL
(
D
,
cur_in_data
,
cur_in_data
+
D
,
cur_in_data
+
D
);
blas
.
VMUL
(
D
,
cur_in_data
,
cur_in_data
+
D
,
cur_in_data
+
D
);
// cell out= a+b
// cell out= a+b
blas
.
VADD
(
D
,
cur_in_data
+
D
,
cur_in_data
+
D2
,
cur_c_out_data
);
blas
.
VADD
(
D
,
cur_in_data
+
D
,
cur_in_data
+
D2
,
cur_c_out_data
);
// hidden out= act_state(cellout) * outgate
// hidden out= act_state(cellout) * outgate
act_cell
(
D
,
cur_c_out_data
,
cur_in_data
+
D2
);
act_cell
(
D
,
cur_c_out_data
,
cur_in_data
+
D2
);
blas
.
VMUL
(
D
,
cur_in_data
+
D2
,
cur_in_data
+
D3
,
cur_h_out_data
);
blas
.
VMUL
(
D
,
cur_in_data
+
D2
,
cur_in_data
+
D3
,
cur_h_out_data
);
...
@@ -526,6 +495,9 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
...
@@ -526,6 +495,9 @@ class FuisonLSTMKernel : public framework::OpKernel<T> {
BatchCompute
(
ctx
);
BatchCompute
(
ctx
);
}
}
}
}
#undef INIT_BASE_SIZES
#undef INIT_BASE_INPUT_OUTPUT
#undef INIT_VEC_FUNC
};
};
}
// namespace operators
}
// namespace operators
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录