提交 a74f5365 编写于 作者: Y Yu Yang

Format code

上级 82bee14d
......@@ -18,6 +18,8 @@ import numpy as np
TERM_NUM = 24
FORECASTING_NUM = 25
LABEL_VALUE_NUM = 4
def initHook(settings, file_list, **kwargs):
"""
Init hook is invoked before process data. It will set obj.slots and store data meta.
......@@ -27,8 +29,8 @@ def initHook(settings, file_list, **kwargs):
:param file_list: the meta file object, which passed from trainer_config.py,but unused in this function.
:param kwargs: unused other arguments.
"""
del kwargs #unused
del kwargs #unused
settings.pool_size = sys.maxint
#Use a time seires of the past as feature.
#Dense_vector's expression form is [float,float,...,float]
......@@ -38,40 +40,43 @@ def initHook(settings, file_list, **kwargs):
for i in range(FORECASTING_NUM):
settings.slots.append(integer_value(LABEL_VALUE_NUM))
@provider(init_hook=initHook, cache=CacheType.CACHE_PASS_IN_MEM, should_shuffle=True)
@provider(
init_hook=initHook, cache=CacheType.CACHE_PASS_IN_MEM, should_shuffle=True)
def process(settings, file_name):
with open(file_name) as f:
#abandon fields name
f.next()
for row_num, line in enumerate(f):
speeds = map(int,line.rstrip('\r\n').split(",")[1:])
for row_num, line in enumerate(f):
speeds = map(int, line.rstrip('\r\n').split(",")[1:])
# Get the max index.
end_time = len(speeds)
# Scanning and generating samples
for i in range(TERM_NUM,end_time - FORECASTING_NUM):
for i in range(TERM_NUM, end_time - FORECASTING_NUM):
# For dense slot
pre_spd = map(float,speeds[i-TERM_NUM:i])
pre_spd = map(float, speeds[i - TERM_NUM:i])
# Integer value need predicting, values start from 0, so every one minus 1.
fol_spd = [i-1 for i in speeds[i:i + FORECASTING_NUM]]
fol_spd = [i - 1 for i in speeds[i:i + FORECASTING_NUM]]
# Predicting label is missing, abandon the sample.
if -1 in fol_spd:
continue
yield [pre_spd] + fol_spd
def predict_initHook(settings, file_list, **kwargs):
settings.pool_size = sys.maxint
settings.slots = [dense_vector(TERM_NUM)]
@provider(init_hook=predict_initHook,should_shuffle=False)
@provider(init_hook=predict_initHook, should_shuffle=False)
def process_predict(settings, file_name):
with open(file_name) as f:
#abandon fields name
f.next()
for row_num, line in enumerate(f):
speeds = map(int,line.rstrip('\r\n').split(","))
speeds = map(int, line.rstrip('\r\n').split(","))
end_time = len(speeds)
pre_spd = map(float,speeds[end_time-TERM_NUM:end_time])
pre_spd = map(float, speeds[end_time - TERM_NUM:end_time])
yield pre_spd
res = []
with open('./rank-00000') as f:
for line in f:
pred = map(int,line.strip('\r\n;').split(";"))
pred = map(int, line.strip('\r\n;').split(";"))
#raw prediction range from 0 to 3
res.append([i+1 for i in pred])
res.append([i + 1 for i in pred])
file_name = open('./data/pred.list').read().strip('\r\n')
FORECASTING_NUM=24
header=['id',
'201604200805',
'201604200810',
'201604200815',
'201604200820',
'201604200825',
'201604200830',
'201604200835',
'201604200840',
'201604200845',
'201604200850',
'201604200855',
'201604200900',
'201604200905',
'201604200910',
'201604200915',
'201604200920',
'201604200925',
'201604200930',
'201604200935',
'201604200940',
'201604200945',
'201604200950',
'201604200955',
'201604201000',
]
FORECASTING_NUM = 24
header = [
'id',
'201604200805',
'201604200810',
'201604200815',
'201604200820',
'201604200825',
'201604200830',
'201604200835',
'201604200840',
'201604200845',
'201604200850',
'201604200855',
'201604200900',
'201604200905',
'201604200910',
'201604200915',
'201604200920',
'201604200925',
'201604200930',
'201604200935',
'201604200940',
'201604200945',
'201604200950',
'201604200955',
'201604201000',
]
###################
## To CSV format ##
###################
......@@ -43,5 +44,4 @@ with open(file_name) as f:
for row_num, line in enumerate(f):
fields = line.rstrip('\r\n').split(',')
linkid = fields[0]
print linkid+','+','.join(map(str,res[row_num]))
print linkid + ',' + ','.join(map(str, res[row_num]))
......@@ -2,26 +2,22 @@
#-*python-*-
from paddle.trainer_config_helpers import *
################################### DATA Configuration #############################################
is_predict = get_config_arg('is_predict', bool, False)
trn = './data/train.list' if not is_predict else None
tst = './data/test.list' if not is_predict else './data/pred.list'
process = 'process' if not is_predict else 'process_predict'
define_py_data_sources2(train_list=trn,
test_list=tst,
module="dataprovider",
obj=process)
define_py_data_sources2(
train_list=trn, test_list=tst, module="dataprovider", obj=process)
################################### Parameter Configuaration #######################################
TERM_NUM=24
FORECASTING_NUM= 25
emb_size=16
batch_size=128 if not is_predict else 1
TERM_NUM = 24
FORECASTING_NUM = 25
emb_size = 16
batch_size = 128 if not is_predict else 1
settings(
batch_size = batch_size,
learning_rate = 1e-3,
learning_method = RMSPropOptimizer()
)
batch_size=batch_size,
learning_rate=1e-3,
learning_method=RMSPropOptimizer())
################################### Algorithm Configuration ########################################
output_label = []
......@@ -29,15 +25,17 @@ output_label = []
link_encode = data_layer(name='link_encode', size=TERM_NUM)
for i in xrange(FORECASTING_NUM):
# Each task share same weight.
link_param = ParamAttr(name='_link_vec.w', initial_max=1.0, initial_min=-1.0)
link_vec = fc_layer(input=link_encode,size=emb_size, param_attr=link_param)
link_param = ParamAttr(
name='_link_vec.w', initial_max=1.0, initial_min=-1.0)
link_vec = fc_layer(input=link_encode, size=emb_size, param_attr=link_param)
score = fc_layer(input=link_vec, size=4, act=SoftmaxActivation())
if is_predict:
maxid = maxid_layer(score)
output_label.append(maxid)
else:
# Multi-task training.
label = data_layer(name='label_%dmin'%((i+1)*5), size=4)
cls = classification_cost(input=score,name="cost_%dmin"%((i+1)*5), label=label)
label = data_layer(name='label_%dmin' % ((i + 1) * 5), size=4)
cls = classification_cost(
input=score, name="cost_%dmin" % ((i + 1) * 5), label=label)
output_label.append(cls)
outputs(output_label)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册