Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
a6a1a92e
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a6a1a92e
编写于
1月 31, 2019
作者:
T
tensor-tang
提交者:
GitHub
1月 31, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #15586 from tensor-tang/jit/cache
refine bert
上级
e887d719
2b0811c3
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
41 addition
and
59 deletion
+41
-59
paddle/fluid/operators/jit/benchmark.cc
paddle/fluid/operators/jit/benchmark.cc
+4
-0
paddle/fluid/operators/jit/gen/blas.cc
paddle/fluid/operators/jit/gen/blas.cc
+1
-1
paddle/fluid/operators/jit/gen/blas.h
paddle/fluid/operators/jit/gen/blas.h
+1
-0
paddle/fluid/operators/jit/helper.h
paddle/fluid/operators/jit/helper.h
+15
-8
paddle/fluid/operators/jit/more/mix/mix.cc
paddle/fluid/operators/jit/more/mix/mix.cc
+10
-43
paddle/fluid/operators/jit/more/mkl/mkl.cc
paddle/fluid/operators/jit/more/mkl/mkl.cc
+1
-1
paddle/fluid/operators/math/fc_compute.h
paddle/fluid/operators/math/fc_compute.h
+6
-4
paddle/fluid/operators/math/softmax_impl.h
paddle/fluid/operators/math/softmax_impl.h
+3
-2
未找到文件。
paddle/fluid/operators/jit/benchmark.cc
浏览文件 @
a6a1a92e
...
...
@@ -93,6 +93,7 @@ std::vector<int> TestSizes() {
template
<
typename
KernelTuples
,
typename
...
Args
>
struct
BenchFunc
{
// return this function avg time
// TODO(TJ): clear cache every time
double
operator
()(
const
typename
KernelTuples
::
func_type
tgt
,
Args
...
args
)
{
for
(
int
i
=
0
;
i
<
FLAGS_burning
;
++
i
)
{
tgt
(
args
...);
...
...
@@ -172,6 +173,9 @@ void BenchXYZNKernel() {
RandomVec
<
T
>
(
d
,
y_data
);
BenchAllImpls
<
KT
,
jit
::
XYZNTuples
<
T
>
,
PlaceType
>
(
d
,
x
.
data
<
T
>
(),
y
.
data
<
T
>
(),
z_data
,
d
);
// test inplace
BenchAllImpls
<
KT
,
jit
::
XYZNTuples
<
T
>
,
PlaceType
>
(
d
,
x
.
data
<
T
>
(),
z_data
,
z_data
,
d
);
}
}
...
...
paddle/fluid/operators/jit/gen/blas.cc
浏览文件 @
a6a1a92e
...
...
@@ -155,7 +155,7 @@ class NCHW16CMulNCCreator : public JitCodeCreator<int> {
class name##Creator : public JitCodeCreator<int> { \
public: \
bool UseMe(const int& attr) const override { \
return platform::MayIUse(platform::avx)
;
\
return platform::MayIUse(platform::avx)
&& attr <= 1024;
\
} \
size_t CodeSize(const int& d) const override { \
return 96 + d / YMM_FLOAT_BLOCK * 4 * 8; \
...
...
paddle/fluid/operators/jit/gen/blas.h
浏览文件 @
a6a1a92e
...
...
@@ -61,6 +61,7 @@ class VXXJitCode : public JitCode {
base
+=
"_Vec"
;
}
base
+=
(
with_relu_
?
"_Relu"
:
""
);
base
+=
"_D"
+
std
::
to_string
(
num_
);
return
base
.
c_str
();
}
void
genCode
()
override
;
...
...
paddle/fluid/operators/jit/helper.h
浏览文件 @
a6a1a92e
...
...
@@ -118,26 +118,33 @@ typename KernelTuples::func_type Get(
return
GetRefer
<
KT
,
KernelTuples
>
();
}
template
<
KernelType
KT
,
typename
KernelTuples
>
class
KernelFuncs
Cache
{
template
<
KernelType
KT
,
typename
KernelTuples
,
typename
PlaceType
>
class
KernelFuncs
{
public:
KernelFuncs
Cache
()
=
default
;
static
KernelFuncs
Cache
&
Instanc
e
()
{
static
thread_local
KernelFuncs
Cache
<
KT
,
KernelTuples
>
g_func_cache
;
KernelFuncs
()
=
default
;
static
KernelFuncs
&
Cach
e
()
{
static
thread_local
KernelFuncs
<
KT
,
KernelTuples
,
PlaceType
>
g_func_cache
;
return
g_func_cache
;
}
bool
Has
(
int
key
)
const
{
return
funcs_
.
find
(
key
)
!=
funcs_
.
end
();
}
typename
KernelTuples
::
func_type
At
(
int
key
)
{
return
funcs_
.
at
(
key
);
}
void
Insert
(
int
key
,
typename
KernelTuples
::
func_type
func
)
{
funcs_
.
emplace
(
key
,
func
);
}
typename
KernelTuples
::
func_type
At
(
int
key
)
{
if
(
Has
(
key
))
{
return
funcs_
.
at
(
key
);
}
auto
func
=
Get
<
KT
,
KernelTuples
,
PlaceType
>
(
key
);
Insert
(
key
,
func
);
return
func
;
}
private:
std
::
unordered_map
<
int
,
typename
KernelTuples
::
func_type
>
funcs_
;
DISABLE_COPY_AND_ASSIGN
(
KernelFuncs
Cache
);
DISABLE_COPY_AND_ASSIGN
(
KernelFuncs
);
};
const
char
*
to_string
(
KernelType
kt
);
...
...
paddle/fluid/operators/jit/more/mix/mix.cc
浏览文件 @
a6a1a92e
...
...
@@ -49,49 +49,16 @@ void VTanh(const T* x, T* y, int n) {
}
void
Softmax
(
const
T
*
x
,
T
*
y
,
int
n
,
int
bs
)
{
typename
XRNTuples
<
T
>::
func_type
compute_hmax
{
nullptr
};
typename
XRNTuples
<
T
>::
func_type
compute_hsum
{
nullptr
};
typename
AXYNTuples
<
T
>::
func_type
compute_vscal
{
nullptr
};
typename
AXYNTuples
<
T
>::
func_type
compute_vaddbias
{
nullptr
};
typename
XYNTuples
<
T
>::
func_type
compute_vexp
{
nullptr
};
if
(
!
KernelFuncsCache
<
kHMax
,
XRNTuples
<
T
>>::
Instance
().
Has
(
n
))
{
compute_hmax
=
Get
<
kHMax
,
XRNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
KernelFuncsCache
<
kHMax
,
XRNTuples
<
T
>>::
Instance
().
Insert
(
n
,
compute_hmax
);
}
else
{
compute_hmax
=
KernelFuncsCache
<
kHMax
,
XRNTuples
<
T
>>::
Instance
().
At
(
n
);
}
if
(
!
KernelFuncsCache
<
kHSum
,
XRNTuples
<
T
>>::
Instance
().
Has
(
n
))
{
compute_hsum
=
Get
<
kHSum
,
XRNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
KernelFuncsCache
<
kHSum
,
XRNTuples
<
T
>>::
Instance
().
Insert
(
n
,
compute_hsum
);
}
else
{
compute_hsum
=
KernelFuncsCache
<
kHSum
,
XRNTuples
<
T
>>::
Instance
().
At
(
n
);
}
if
(
!
KernelFuncsCache
<
kVScal
,
AXYNTuples
<
T
>>::
Instance
().
Has
(
n
))
{
compute_vscal
=
Get
<
kVScal
,
AXYNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
KernelFuncsCache
<
kVScal
,
AXYNTuples
<
T
>>::
Instance
().
Insert
(
n
,
compute_vscal
);
}
else
{
compute_vscal
=
KernelFuncsCache
<
kVScal
,
AXYNTuples
<
T
>>::
Instance
().
At
(
n
);
}
if
(
!
KernelFuncsCache
<
kVAddBias
,
AXYNTuples
<
T
>>::
Instance
().
Has
(
n
))
{
compute_vaddbias
=
Get
<
kVAddBias
,
AXYNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
KernelFuncsCache
<
kVAddBias
,
AXYNTuples
<
T
>>::
Instance
().
Insert
(
n
,
compute_vaddbias
);
}
else
{
compute_vaddbias
=
KernelFuncsCache
<
kVAddBias
,
AXYNTuples
<
T
>>::
Instance
().
At
(
n
);
}
if
(
!
KernelFuncsCache
<
kVExp
,
XYNTuples
<
T
>>::
Instance
().
Has
(
n
))
{
compute_vexp
=
Get
<
KernelType
::
kVExp
,
XYNTuples
<
T
>
,
platform
::
CPUPlace
>
(
n
);
KernelFuncsCache
<
kVExp
,
XYNTuples
<
T
>>::
Instance
().
Insert
(
n
,
compute_vexp
);
}
else
{
compute_vexp
=
KernelFuncsCache
<
kVExp
,
XYNTuples
<
T
>>::
Instance
().
At
(
n
);
}
auto
compute_hmax
=
KernelFuncs
<
kHMax
,
XRNTuples
<
T
>
,
platform
::
CPUPlace
>::
Cache
().
At
(
n
);
auto
compute_hsum
=
KernelFuncs
<
kHSum
,
XRNTuples
<
T
>
,
platform
::
CPUPlace
>::
Cache
().
At
(
n
);
auto
compute_vscal
=
KernelFuncs
<
kVScal
,
AXYNTuples
<
T
>
,
platform
::
CPUPlace
>::
Cache
().
At
(
n
);
auto
compute_vaddbias
=
KernelFuncs
<
kVAddBias
,
AXYNTuples
<
T
>
,
platform
::
CPUPlace
>::
Cache
().
At
(
n
);
auto
compute_vexp
=
KernelFuncs
<
kVExp
,
XYNTuples
<
T
>
,
platform
::
CPUPlace
>::
Cache
().
At
(
n
);
for
(
int
i
=
0
;
i
<
bs
;
++
i
)
{
T
scalar
;
...
...
paddle/fluid/operators/jit/more/mkl/mkl.cc
浏览文件 @
a6a1a92e
...
...
@@ -136,7 +136,7 @@ bool VMulKernel<float>::UseMe(const int& d) const {
template
<
>
bool
VAddKernel
<
float
>::
UseMe
(
const
int
&
d
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
512f
)
&&
d
>
512
;
return
platform
::
MayIUse
(
platform
::
avx
)
&&
d
>
512
;
}
template
<
>
...
...
paddle/fluid/operators/math/fc_compute.h
浏览文件 @
a6a1a92e
...
...
@@ -30,15 +30,17 @@ inline void FCCompute(const BlasT<DeviceContext, T>& blas, const int M,
return
;
}
if
(
relu
)
{
auto
compute
=
jit
::
Get
<
jit
::
kVAddRelu
,
jit
::
XYZNTuples
<
T
>
,
platform
::
CPUPlace
>
(
N
);
auto
compute
=
jit
::
KernelFuncs
<
jit
::
kVAddRelu
,
jit
::
XYZNTuples
<
T
>
,
platform
::
CPUPlace
>::
Cache
()
.
At
(
N
);
for
(
int
i
=
0
;
i
<
M
;
i
++
)
{
T
*
dst
=
Y
+
i
*
N
;
compute
(
B
,
dst
,
dst
,
N
);
}
}
else
{
auto
compute
=
jit
::
Get
<
jit
::
kVAdd
,
jit
::
XYZNTuples
<
T
>
,
platform
::
CPUPlace
>
(
N
);
auto
compute
=
jit
::
KernelFuncs
<
jit
::
kVAdd
,
jit
::
XYZNTuples
<
T
>
,
platform
::
CPUPlace
>::
Cache
()
.
At
(
N
);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
...
...
paddle/fluid/operators/math/softmax_impl.h
浏览文件 @
a6a1a92e
...
...
@@ -82,8 +82,9 @@ class SoftmaxFunctor<DeviceContext, float, true, enable_if_CPU<DeviceContext>> {
const
int
kClassDim
=
1
;
// 2D data. Batch x C
auto
compute_softmax
=
jit
::
Get
<
jit
::
kSoftmax
,
jit
::
SoftmaxTuples
<
float
>
,
platform
::
CPUPlace
>
(
in_dims
[
kClassDim
]);
jit
::
KernelFuncs
<
jit
::
kSoftmax
,
jit
::
SoftmaxTuples
<
float
>
,
platform
::
CPUPlace
>::
Cache
()
.
At
(
in_dims
[
kClassDim
]);
compute_softmax
(
in_data
,
out_data
,
in_dims
[
kClassDim
],
in_dims
[
kBatchDim
]);
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录