Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
a6344af2
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a6344af2
编写于
9月 10, 2020
作者:
S
sandyhouse
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update, test=develop
上级
f71543ee
变更
6
展开全部
隐藏空白更改
内联
并排
Showing
6 changed file
with
501 addition
and
815 deletion
+501
-815
paddle/fluid/framework/device_worker.h
paddle/fluid/framework/device_worker.h
+9
-8
paddle/fluid/framework/pipeline_trainer.cc
paddle/fluid/framework/pipeline_trainer.cc
+229
-142
paddle/fluid/framework/section_worker.cc
paddle/fluid/framework/section_worker.cc
+208
-572
paddle/fluid/framework/trainer.h
paddle/fluid/framework/trainer.h
+21
-13
paddle/fluid/framework/trainer_desc.proto
paddle/fluid/framework/trainer_desc.proto
+1
-1
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+33
-79
未找到文件。
paddle/fluid/framework/device_worker.h
浏览文件 @
a6344af2
...
...
@@ -414,7 +414,8 @@ class HeterCpuWorker : public HogwildWorker {
#if defined(PADDLE_WITH_NCCL)
class
SectionWorker
:
public
DeviceWorker
{
public:
SectionWorker
()
{
local_batch_id_
=
0
;
}
// SectionWorker() { local_batch_id_ = 0; }
SectionWorker
()
{}
~
SectionWorker
()
override
{}
void
Initialize
(
const
TrainerDesc
&
desc
)
override
;
...
...
@@ -429,7 +430,7 @@ class SectionWorker : public DeviceWorker {
const
platform
::
Place
&
place
()
const
{
return
place_
;
}
void
SetSectionIndex
(
int
section_id
)
{
section_id_
=
section_id
;
}
//
void SetSectionIndex(int section_id) { section_id_ = section_id; }
void
SetDeviceIndex
(
int
tid
)
override
{}
void
SetThreadIndex
(
int
thread_id
)
{
thread_id_
=
thread_id
;
}
void
SetMicrobatchNum
(
int
num
)
{
num_microbatches_
=
num
;
}
...
...
@@ -440,7 +441,7 @@ class SectionWorker : public DeviceWorker {
void
SetSkipVars
(
const
std
::
vector
<
std
::
string
>&
skip_vars
)
{
skip_vars_
=
skip_vars
;
}
static
void
ResetBatchId
()
{
batch_id_
=
0
;
}
//
static void ResetBatchId() { batch_id_ = 0; }
static
std
::
atomic
<
int
>
cpu_id_
;
...
...
@@ -454,13 +455,13 @@ class SectionWorker : public DeviceWorker {
const
Scope
*
minibatch_scope_
;
std
::
vector
<
std
::
unique_ptr
<
OperatorBase
>>
ops_
;
static
std
::
mutex
thread_mutex
;
static
std
::
mutex
cout_mutex
;
static
std
::
condition_variable
thread_condition
;
static
bool
threads_completed
;
//
static std::mutex thread_mutex;
//
static std::mutex cout_mutex;
//
static std::condition_variable thread_condition;
//
static bool threads_completed;
std
::
shared_ptr
<
framework
::
ProgramDesc
>
program_
;
static
uint64_t
batch_id_
;
uint64_t
local_batch_id_
;
//
uint64_t local_batch_id_;
platform
::
DeviceContext
*
dev_ctx_
=
nullptr
;
};
...
...
paddle/fluid/framework/pipeline_trainer.cc
浏览文件 @
a6344af2
...
...
@@ -27,73 +27,88 @@ void PipelineTrainer::Initialize(const TrainerDesc& trainer_desc,
const
auto
&
section_params
=
trainer_desc
.
section_param
();
num_microbatches_
=
section_params
.
num_microbatches
();
VLOG
(
3
)
<<
"Number of microbatches per minibatch: "
<<
num_microbatches_
;
section_num_
=
section_params
.
section_config_size
();
VLOG
(
3
)
<<
"Number of program sections: "
<<
section_num_
;
trainer_desc_
=
trainer_desc
;
start_cpu_core_id_
=
section_params
.
start_cpu_core_id
();
SetDataset
(
dataset
);
//
SetDataset(dataset);
ParseDumpConfig
(
trainer_desc
);
// get filelist from trainer_desc here
const
std
::
vector
<
paddle
::
framework
::
DataFeed
*>
readers
=
dataset
->
GetReaders
();
VLOG
(
3
)
<<
"readers num: "
<<
readers
.
size
();
int
num_readers
=
readers
.
size
();
PADDLE_ENFORCE_EQ
(
num_readers
,
1
,
platform
::
errors
::
InvalidArgument
(
"Number of dataset readers for pipeline "
"must be 1 now, but the value you give is %d."
,
num_readers
));
auto
*
reader
=
readers
[
0
];
// const std::vector<paddle::framework::DataFeed*> readers =
// VLOG(3) << "Number of program sections: " << section_num_;
// dataset->GetReaders();
// VLOG(3) << "readers num: " << readers.size();
// int num_readers = readers.size();
// PADDLE_ENFORCE_EQ(num_readers, 1,
// platform::errors::InvalidArgument(
// "Number of dataset readers for pipeline "
// "must be 1 now, but the value you give is %d.",
// num_readers));
// auto* reader = readers[0];
workers_
.
resize
(
section_num_
);
for
(
int
i
=
0
;
i
<
section_num_
;
++
i
)
{
const
auto
&
section_config
=
section_params
.
section_config
(
i
);
platform
::
Place
place
;
int
place_id
=
section_config
.
place_id
();
switch
(
section_config
.
place
())
{
case
SectionConfig
::
CPUPlace
:
place
=
platform
::
CPUPlace
();
break
;
case
SectionConfig
::
CUDAPlace
:
// Note that one section has at most one GPU place in one pipeline
PADDLE_ENFORCE_GE
(
place_id
,
0
,
platform
::
errors
::
InvalidArgument
(
"The place_id value for CUDAPlace shoud be greater "
"than or equal to 0, but the value you give is %d."
,
place_id
));
place
=
platform
::
CUDAPlace
(
place_id
);
break
;
case
SectionConfig
::
CUDAPinnedPlace
:
place
=
platform
::
CUDAPinnedPlace
();
break
;
default:
PADDLE_ENFORCE_NOT_NULL
(
nullptr
,
platform
::
errors
::
InvalidArgument
(
"Unkown place type in SectionConfig: %d"
,
section_config
.
place
()));
}
places_
.
emplace_back
(
place
);
VLOG
(
3
)
<<
"Device worker place: "
<<
place
<<
", device id: "
<<
place_id
<<
", section: "
<<
i
;
// workers_.resize(section_num_);
// for (int i = 0; i < section_num_; ++i) {
// const auto& section_config = section_params.section_config(i);
// platform::Place place;
// int place_id = section_config.place_id();
// switch (section_config.place()) {
// case SectionConfig::CPUPlace:
// place = platform::CPUPlace();
// break;
// case SectionConfig::CUDAPlace:
// // Note that one section has at most one GPU place in one pipeline
// PADDLE_ENFORCE_GE(
// place_id, 0,
// platform::errors::InvalidArgument(
// "The place_id value for CUDAPlace shoud be greater "
// "than or equal to 0, but the value you give is %d.",
// place_id));
// place = platform::CUDAPlace(place_id);
// break;
// case SectionConfig::CUDAPinnedPlace:
// place = platform::CUDAPinnedPlace();
// break;
// default:
// PADDLE_ENFORCE_NOT_NULL(nullptr,
// platform::errors::InvalidArgument(
// "Unkown place type in SectionConfig: %d",
// section_config.place()));
// }
// places_.emplace_back(place);
// VLOG(3) << "Device worker place: " << place << ", device id: " << place_id
// << ", section: " << i;
// workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
// trainer_desc.device_worker_name());
// auto this_worker =
// std::dynamic_pointer_cast<paddle::framework::SectionWorker>(
// workers_[i]);
// if (i == 0) {
// // we only set reader for the first section
// this_worker->SetDataFeed(reader);
// this_worker->SetReaderPlace(place);
// }
// this_worker->SetThreadIndex(i);
// this_worker->SetSectionIndex(i);
// this_worker->SetPlace(place);
// this_worker->Initialize(trainer_desc);
// this_worker->SetMicrobatchNum(num_microbatches_);
//}
const
auto
&
section_config
=
section_params
.
section_config
();
int
place_id
=
section_config
.
place_id
();
PADDLE_ENFORCE_GE
(
place_id
,
0
,
platform
::
errors
::
InvalidArgument
(
"The place_id value for CUDAPlace shoud be "
"non-negative, but the value given is %d."
,
place_id
));
place_
=
platform
::
CUDAPlace
(
place_id
);
worker_
=
DeviceWorkerFactory
::
CreateDeviceWorker
(
trainer_desc
.
device_worker_name
());
auto
this_worker
=
std
::
dynamic_pointer_cast
<
paddle
::
framework
::
SectionWorker
>
(
worker_
);
this_worker
->
SetPlace
(
place_
);
this_worker
->
Initialize
(
trainer_desc
);
this_worker
->
SetMicrobatchNum
(
num_microbatches_
);
workers_
[
i
]
=
DeviceWorkerFactory
::
CreateDeviceWorker
(
trainer_desc
.
device_worker_name
());
auto
this_worker
=
std
::
dynamic_pointer_cast
<
paddle
::
framework
::
SectionWorker
>
(
workers_
[
i
]);
if
(
i
==
0
)
{
// we only set reader for the first section
this_worker
->
SetDataFeed
(
reader
);
this_worker
->
SetReaderPlace
(
place
);
}
this_worker
->
SetThreadIndex
(
i
);
this_worker
->
SetSectionIndex
(
i
);
this_worker
->
SetPlace
(
place
);
this_worker
->
Initialize
(
trainer_desc
);
this_worker
->
SetMicrobatchNum
(
num_microbatches_
);
}
// set debug here
SetDebug
(
trainer_desc
.
debug
());
}
...
...
@@ -119,7 +134,52 @@ void PipelineTrainer::InitDumpEnv() {
}
}
void
PipelineTrainer
::
CopyParameters
(
int
section_id
,
int
microbatch_id
,
// void PipelineTrainer::CopyParameters(int section_id, int microbatch_id,
// const ProgramDesc& program,
// const platform::Place& place) {
// auto& global_block = program.Block(0);
// std::map<std::string, int> param_map;
// for (auto& var : global_block.AllVars()) {
// if (var->Persistable()) {
// param_map[var->Name()] = 1;
// }
// }
// for (auto& var : global_block.AllVars()) {
// bool is_param_grad = false;
// size_t pos = 0;
// if ((pos = var->Name().find(kGradVarSuffix)) != std::string::npos) {
// auto prefix_name = var->Name().substr(0, pos);
// if (param_map.find(prefix_name) != param_map.end()) {
// is_param_grad = true;
// }
// }
// VLOG(3) << "Var name: " << var->Name();
// if ((var->Persistable() || is_param_grad) && microbatch_id == 0) {
// auto* ptr = root_scope_->FindVar(var->Name());
// auto* new_ptr = minibatch_scopes_[section_id]->Var(var->Name());
// VLOG(3) << "Create persistable var " << var->Name() << " for minibatch
// "
// << section_id << ", which pointer is " << new_ptr;
// InitializeVariable(new_ptr, var->GetType());
// if (is_param_grad) {
// continue;
// }
// const LoDTensor& root_tensor = ptr->Get<LoDTensor>();
// LoDTensor* minibatch_tensor = new_ptr->GetMutable<LoDTensor>();
// TensorCopy(*static_cast<const Tensor*>(&root_tensor), place,
// static_cast<Tensor*>(minibatch_tensor));
// } else if (!var->Persistable() && !is_param_grad) {
// auto* ptr =
// microbatch_scopes_[section_id][microbatch_id]->Var(var->Name());
// VLOG(3) << "Create variable " << var->Name() << " for section "
// << section_id << " microbatch " << microbatch_id
// << ", which pointer is " << ptr;
// InitializeVariable(ptr, var->GetType());
// }
// }
// }
void
PipelineTrainer
::
CopyParameters
(
int
microbatch_id
,
const
ProgramDesc
&
program
,
const
platform
::
Place
&
place
)
{
auto
&
global_block
=
program
.
Block
(
0
);
...
...
@@ -139,45 +199,57 @@ void PipelineTrainer::CopyParameters(int section_id, int microbatch_id,
}
}
VLOG
(
3
)
<<
"Var name: "
<<
var
->
Name
();
if
((
var
->
Persistable
()
||
is_param_grad
)
&&
microbatch_id
==
0
)
{
auto
*
ptr
=
root_scope_
->
FindVar
(
var
->
Name
());
auto
*
new_ptr
=
minibatch_scopes_
[
section_id
]
->
Var
(
var
->
Name
());
VLOG
(
3
)
<<
"Create persistable var "
<<
var
->
Name
()
<<
" for minibatch "
<<
section_id
<<
", which pointer is "
<<
new_ptr
;
InitializeVariable
(
new_ptr
,
var
->
GetType
());
if
(
is_param_grad
)
{
continue
;
}
const
LoDTensor
&
root_tensor
=
ptr
->
Get
<
LoDTensor
>
();
LoDTensor
*
minibatch_tensor
=
new_ptr
->
GetMutable
<
LoDTensor
>
();
TensorCopy
(
*
static_cast
<
const
Tensor
*>
(
&
root_tensor
),
place
,
static_cast
<
Tensor
*>
(
minibatch_tensor
));
if
(
is_param_grad
&&
microbatch_id
==
0
)
{
auto
*
ptr
=
minibatch_scope_
->
Var
(
var
->
Name
());
InitializeVariable
(
ptr
,
var
->
GetType
());
VLOG
(
3
)
<<
"Create grad for persistable var: "
<<
var
->
Name
()
<<
", which pointer is "
<<
ptr
;
}
else
if
(
!
var
->
Persistable
()
&&
!
is_param_grad
)
{
auto
*
ptr
=
microbatch_scopes_
[
section_id
][
microbatch_id
]
->
Var
(
var
->
Name
());
VLOG
(
3
)
<<
"Create variable "
<<
var
->
Name
()
<<
" for section "
<<
section_id
<<
" microbatch "
<<
microbatch_id
auto
*
ptr
=
microbatch_scopes_
[
microbatch_id
]
->
Var
(
var
->
Name
());
VLOG
(
3
)
<<
"Create variable "
<<
var
->
Name
()
<<
" microbatch "
<<
", which pointer is "
<<
ptr
;
InitializeVariable
(
ptr
,
var
->
GetType
());
}
}
}
void
PipelineTrainer
::
GetSkipVars
(
int
section_id
,
const
ProgramDesc
&
program
)
{
// void PipelineTrainer::GetSkipVars(int section_id, const ProgramDesc& program)
// {
// auto& global_block = program.Block(0);
// for (auto& op : global_block.AllOps()) {
// if (op->Type() != "enqueue") {
// continue;
// }
// auto input_arg_names = op->InputArgumentNames();
// PADDLE_ENFORCE_EQ(input_arg_names.size(), 1,
// platform::errors::InvalidArgument(
// "Number of input arguments for enqueue op must be
// 1, "
// "but the value is %d.",
// input_arg_names.size()));
// std::string input_arg_name = input_arg_names[0];
// if (input_arg_name.rfind("@GRAD") != input_arg_name.size() - 5) {
// skip_vars_[section_id].emplace_back(input_arg_name);
// VLOG(3) << "add skip var name: " << input_arg_name;
// }
// }
// }
void
PipelineTrainer
::
GetSkipVars
(
const
ProgramDesc
&
program
)
{
auto
&
global_block
=
program
.
Block
(
0
);
for
(
auto
&
op
:
global_block
.
AllOps
())
{
if
(
op
->
Type
()
!=
"
enqueue
"
)
{
if
(
op
->
Type
()
!=
"
c_send
"
)
{
continue
;
}
auto
input_arg_names
=
op
->
InputArgumentNames
();
PADDLE_ENFORCE_EQ
(
input_arg_names
.
size
(),
1
,
platform
::
errors
::
InvalidArgument
(
"Number of input arguments for
enqueue
op must be 1, "
"but the value is %d."
,
"Number of input arguments for
c_send
op must be 1, "
"but the value
given
is %d."
,
input_arg_names
.
size
()));
std
::
string
input_arg_name
=
input_arg_names
[
0
];
if
(
input_arg_name
.
rfind
(
"@GRAD"
)
!=
input_arg_name
.
size
()
-
5
)
{
skip_vars_
[
section_id
]
.
emplace_back
(
input_arg_name
);
skip_vars_
.
emplace_back
(
input_arg_name
);
VLOG
(
3
)
<<
"add skip var name: "
<<
input_arg_name
;
}
}
...
...
@@ -185,86 +257,101 @@ void PipelineTrainer::GetSkipVars(int section_id, const ProgramDesc& program) {
void
PipelineTrainer
::
InitTrainerEnv
(
const
ProgramDesc
&
main_program
,
const
platform
::
Place
&
place
)
{
PADDLE_ENFORCE_NOT_NULL
(
root_scope_
,
platform
::
errors
::
InvalidArgument
(
"root_scope pointer can not be nullptr"
));
PADDLE_ENFORCE_NOT_NULL
(
root_scope_
,
platform
::
errors
::
InvalidArgument
(
"root_scope_ can not be nullptr"
));
auto
start_cpu_id
=
trainer_desc_
.
section_param
().
start_cpu_core_id
();
SectionWorker
::
cpu_id_
.
store
(
start_cpu_id
);
minibatch_scopes_
.
resize
(
section_num_
);
microbatch_scopes_
.
resize
(
section_num_
);
skip_vars_
.
resize
(
section_num_
);
// minibatch_scopes_.resize(section_num_);
// microbatch_scopes_.resize(section_num_);
// minibatch_scopes_.resize(1);
microbatch_scopes_
.
resize
(
num_microbatches_
);
// skip_vars_.resize(section_num_);
VLOG
(
3
)
<<
"Init ScopeQueues and create all scopes"
;
for
(
int
i
=
0
;
i
<
section_num_
;
++
i
)
{
minibatch_scopes_
[
i
]
=
&
root_scope_
->
NewScope
();
std
::
shared_ptr
<
framework
::
ProgramDesc
>
program
;
program
.
reset
(
new
ProgramDesc
(
trainer_desc_
.
section_param
().
section_config
(
i
).
program_desc
()));
microbatch_scopes_
[
i
].
resize
(
num_microbatches_
);
for
(
int
j
=
0
;
j
<
num_microbatches_
;
++
j
)
{
microbatch_scopes_
[
i
][
j
]
=
&
minibatch_scopes_
[
i
]
->
NewScope
();
CopyParameters
(
i
,
j
,
*
program
,
places_
[
i
]);
}
GetSkipVars
(
i
,
*
program
);
// for (int i = 0; i < section_num_; ++i) {
minibatch_scope_
=
&
root_scope_
->
NewScope
();
std
::
shared_ptr
<
framework
::
ProgramDesc
>
program
;
program
.
reset
(
new
ProgramDesc
(
trainer_desc_
.
section_param
().
section_config
().
program_desc
()));
// trainer_desc_.section_param().section_config(i).program_desc()));
// microbatch_scopes_[i].resize(num_microbatches_);
for
(
int
j
=
0
;
j
<
num_microbatches_
;
++
j
)
{
// microbatch_scopes_[j] = &minibatch_scopes_[i]->NewScope();
microbatch_scopes_
[
j
]
=
&
minibatch_scope_
->
NewScope
();
// CopyParameters(i, j, *program, places_[i]);
CopyParameters
(
j
,
*
program
,
place_
);
}
// GetSkipVars(i, *program);
GetSkipVars
(
*
program
);
// }
for
(
int
i
=
0
;
i
<
section_num_
;
++
i
)
{
auto
this_worker
=
std
::
dynamic_pointer_cast
<
paddle
::
framework
::
SectionWorker
>
(
workers_
[
i
]);
this_worker
->
SetRootScope
(
root_scope_
);
this_worker
->
SetMinibatchScope
(
minibatch_scopes_
[
i
]);
this_worker
->
SetMicrobatchScopes
(
microbatch_scopes_
[
i
]);
this_worker
->
SetSkipVars
(
skip_vars_
[
i
]);
}
// for (int i = 0; i < section_num_; ++i) {
auto
this_worker
=
std
::
dynamic_pointer_cast
<
paddle
::
framework
::
SectionWorker
>
(
worker_
);
// workers_[i]);
this_worker
->
SetRootScope
(
root_scope_
);
this_worker
->
SetMinibatchScope
(
minibatch_scope_
);
// this_worker->SetMicrobatchScopes(microbatch_scopes_[i]);
this_worker
->
SetMicrobatchScopes
(
microbatch_scopes_
);
// this_worker->SetSkipVars(skip_vars_[i]);
//}
}
void
PipelineTrainer
::
Run
()
{
VLOG
(
3
)
<<
"Going to run"
;
for
(
int
i
=
0
;
i
<
section_num_
;
++
i
)
{
if
(
!
debug_
)
{
section_threads_
.
push_back
(
std
::
thread
(
&
DeviceWorker
::
TrainFiles
,
workers_
[
i
].
get
()));
}
else
{
section_threads_
.
push_back
(
std
::
thread
(
&
DeviceWorker
::
TrainFilesWithProfiler
,
workers_
[
i
].
get
()));
}
// for (int i = 0; i < section_num_; ++i) {
if
(
!
debug_
)
{
section_thread_
=
std
::
thread
(
&
DeviceWorker
::
TrainFiles
,
worker_
.
get
());
// section_threads_.push_back(
// std::thread(&DeviceWorker::TrainFiles, workers_.get()));
// std::thread(&DeviceWorker::TrainFiles, workers_[i].get()));
}
else
{
section_thread_
=
std
::
thread
(
&
DeviceWorker
::
TrainFilesWithProfiler
,
worker_
.
get
());
// section_threads_.push_back(std::thread(
// &DeviceWorker::TrainFilesWithProfiler, workers_.get()));
// &DeviceWorker::TrainFilesWithProfiler, workers_[i].get()));
}
//}
}
void
PipelineTrainer
::
Finalize
()
{
for
(
auto
&
th
:
section_threads_
)
{
th
.
join
();
}
// for (auto& th : section_threads_) {
// th.join();
//}
section_thread_
.
join
();
if
(
need_dump_field_
)
{
FinalizeDumpEnv
();
}
VLOG
(
3
)
<<
"copying back parameters. "
;
for
(
int
i
=
0
;
i
<
section_num_
;
++
i
)
{
std
::
shared_ptr
<
framework
::
ProgramDesc
>
program
;
program
.
reset
(
new
ProgramDesc
(
trainer_desc_
.
section_param
().
section_config
(
i
).
program_desc
()));
for
(
int
j
=
0
;
j
<
num_microbatches_
;
++
j
)
{
auto
&
global_block
=
program
->
Block
(
0
);
for
(
auto
&
var
:
global_block
.
AllVars
())
{
if
(
var
->
Persistable
())
{
auto
*
ptr
=
root_scope_
->
FindVar
(
var
->
Name
());
LoDTensor
*
root_tensor
=
ptr
->
GetMutable
<
LoDTensor
>
();
auto
*
minibatch_ptr
=
minibatch_scopes_
[
i
]
->
Var
(
var
->
Name
());
const
LoDTensor
&
minibatch_tensor
=
minibatch_ptr
->
Get
<
LoDTensor
>
();
TensorCopy
(
*
static_cast
<
const
Tensor
*>
(
&
minibatch_tensor
),
places_
[
0
],
static_cast
<
Tensor
*>
(
root_tensor
));
VLOG
(
3
)
<<
"Copy persitable var "
<<
var
->
Name
()
<<
" to root scope"
;
}
}
}
}
// VLOG(3) << "copying back parameters. ";
// for (int i = 0; i < section_num_; ++i) {
// std::shared_ptr<framework::ProgramDesc> program;
// program.reset(new ProgramDesc(
// trainer_desc_.section_param().section_config(i).program_desc()));
// for (int j = 0; j < num_microbatches_; ++j) {
// auto& global_block = program->Block(0);
// for (auto& var : global_block.AllVars()) {
// if (var->Persistable()) {
// auto* ptr = root_scope_->FindVar(var->Name());
// LoDTensor* root_tensor = ptr->GetMutable<LoDTensor>();
// auto* minibatch_ptr = minibatch_scopes_[i]->Var(var->Name());
// const LoDTensor& minibatch_tensor =
// minibatch_ptr->Get<LoDTensor>();
// TensorCopy(*static_cast<const Tensor*>(&minibatch_tensor),
// places_[0],
// static_cast<Tensor*>(root_tensor));
// VLOG(3) << "Copy persitable var " << var->Name() << " to root
// scope";
// }
// }
// }
// }
root_scope_
->
DropKids
();
SectionWorker
::
ResetBatchId
();
//
SectionWorker::ResetBatchId();
}
Scope
*
PipelineTrainer
::
GetWorkerScope
(
int
thread_id
)
{
return
microbatch_scopes_
[
thread_id
][
0
];
return
microbatch_scopes_
[
0
];
}
}
// end namespace framework
...
...
paddle/fluid/framework/section_worker.cc
浏览文件 @
a6344af2
此差异已折叠。
点击以展开。
paddle/fluid/framework/trainer.h
浏览文件 @
a6344af2
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#include <fstream>
#include <map>
#include <memory>
#include <mutex> // NOLINT
#include <string>
...
...
@@ -217,28 +218,35 @@ class PipelineTrainer : public TrainerBase {
virtual
Scope
*
GetWorkerScope
(
int
thread_id
);
void
InitDumpEnv
()
override
;
virtual
std
::
string
GetDumpPath
(
int
tid
);
void
GetSkipVars
(
int
section_id
,
const
ProgramDesc
&
main_program
);
void
GetSkipVars
(
const
ProgramDesc
&
main_program
);
protected:
int
section_num_
;
//
int section_num_;
int
num_microbatches_
;
int
start_cpu_core_id_
;
std
::
vector
<
platform
::
Place
>
places_
;
std
::
vector
<
std
::
vector
<
std
::
string
>>
skip_vars_
;
// std::vector<platform::Place> places_;
platform
::
Place
place_
;
// std::vector<std::vector<std::string>> skip_vars_;
std
::
vector
<
std
::
string
>
skip_vars_
;
TrainerDesc
trainer_desc_
;
std
::
vector
<
std
::
thread
>
section_threads_
;
// std::vector<std::thread> section_threads_;
std
::
thread
section_thread_
;
// worker: [section_id]
std
::
vector
<
std
::
shared_ptr
<
paddle
::
framework
::
DeviceWorker
>>
workers_
;
// std::vector<std::shared_ptr<paddle::framework::DeviceWorker>> workers_;
std
::
shared_ptr
<
paddle
::
framework
::
DeviceWorker
>
worker_
;
// minibatch_scopes_: [section_id]
std
::
vector
<
Scope
*>
minibatch_scopes_
;
// std::vector<Scope*> minibatch_scopes_;
Scope
*
minibatch_scope_
;
// microbatch_scopes_: [section_id][microbatch_id]
std
::
vector
<
std
::
vector
<
Scope
*>>
microbatch_scopes_
;
void
CopyParameters
(
int
section_id
,
int
microbatch_id
,
const
ProgramDesc
&
program
,
const
platform
::
Place
&
place
);
bool
isPersistableVarGrad
(
std
::
string
name
);
bool
isPersistable
(
VarDesc
*
var
);
// std::vector<std::vector<Scope*>> microbatch_scopes_;
// microbatch_scopes_: [microbatch_id]
std
::
vector
<
Scope
*>
microbatch_scopes_
;
void
CopyParameters
(
int
microbatch_id
,
const
ProgramDesc
&
program
,
const
platform
::
Place
&
place
);
// bool isPersistableVarGrad(std::string name);
// bool isPersistable(VarDesc* var);
};
#endif
...
...
paddle/fluid/framework/trainer_desc.proto
浏览文件 @
a6344af2
...
...
@@ -84,7 +84,7 @@ message DownpourWorkerParameter {
}
message
SectionWorkerParameter
{
repeated
SectionConfig
section_config
=
1
;
SectionConfig
section_config
=
1
;
optional
int32
queue_size
=
2
[
default
=
1
];
optional
int64
sync_steps
=
3
[
default
=
1
];
optional
int32
start_cpu_core_id
=
4
[
default
=
1
];
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
a6344af2
...
...
@@ -3784,6 +3784,7 @@ class PipelineOptimizer(object):
Args:
main_program (Program): the main program
devices: all used devices
"""
programs
=
[]
# Map from device to its corresponding section program info
...
...
@@ -3910,10 +3911,10 @@ class PipelineOptimizer(object):
data_devices_map
[
var_name
].
append
(
dev_spec
)
return
data_devices_map
def
_insert_
enq_deq
_for_data_var
(
self
,
main_block
,
programs
,
startup
,
devices
):
def
_insert_
sendrecv
_for_data_var
(
self
,
main_block
,
programs
,
startup
,
devices
):
"""
Insert
enqueue and dequeue
ops for data var that on other devices.
Insert
send and recv
ops for data var that on other devices.
Args:
main_block (Block): Global block for main program
...
...
@@ -3926,39 +3927,24 @@ class PipelineOptimizer(object):
first_prog
=
programs
[
0
][
'program'
]
first_block
=
first_prog
.
block
(
0
)
enqueue
_index
=
0
insert
_index
=
0
for
op
in
first_block
.
ops
:
enqueue
_index
+=
1
insert
_index
+=
1
if
op
.
type
==
"read"
:
break
first_dev_spec
=
devices
[
0
]
for
var_name
in
data_devices_map
.
keys
():
for
device
in
data_devices_map
[
var_name
]:
if
device
==
first_dev_spec
:
continue
# step1: generate queue for each pair of data var and device
# that that data on
queue_name
=
var_name
+
"_blocking_queue"
queue_name
=
unique_name
.
generate
(
queue_name
)
queue_var
=
startup
.
block
(
0
).
create_var
(
name
=
queue_name
,
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
)
startup
.
block
(
0
).
append_op
(
type
=
'queue_generator'
,
attrs
=
{
'names'
:
[
queue_name
],
'capacity'
:
self
.
_num_microbatches
})
main_var
=
main_block
.
var
(
var_name
)
assert
main_var
.
is_data
if
not
var_name
in
first_block
.
vars
:
self
.
_create_var
(
first_block
,
main_var
,
var_name
)
first_block
.
_insert_op
(
index
=
enqueue
_index
,
type
=
'
enqueue
'
,
index
=
insert
_index
,
type
=
'
c_send
'
,
inputs
=
{
'X'
:
first_block
.
var
(
var_name
)},
attrs
=
{
'queue_name'
:
queue_name
,
self
.
_op_device_key
:
first_dev_spec
,
self
.
_op_role_key
:
self
.
_op_role
.
Forward
})
...
...
@@ -3972,12 +3958,11 @@ class PipelineOptimizer(object):
new_var
=
self
.
_create_var
(
block
,
source_var
,
var_name
)
block
.
_insert_op
(
index
=
0
,
type
=
'
dequeue
'
,
type
=
'
c_recv
'
,
outputs
=
{
'Out'
:
[
new_var
]},
attrs
=
{
self
.
_op_device_key
:
device
,
self
.
_op_role_key
:
self
.
_op_role
.
Forward
,
'queue_name'
:
queue_name
,
})
def
_strip_grad_suffix
(
self
,
name
):
...
...
@@ -4080,23 +4065,22 @@ class PipelineOptimizer(object):
assert
sorted_device_specs
==
device_specs
return
device_specs
def
_insert_enq_deq_ops_for_boundaries
(
self
,
block
,
origin_block
,
startup_program
):
def
_insert_sendrecv_ops_for_boundaries
(
self
,
block
,
origin_block
):
"""
Insert a pair of
enqueue and dequeue
ops for every two
Insert a pair of
send and recv
ops for every two
consecutive ops on different devices.
"""
startup_block
=
startup_program
.
global_block
()
extra_index
=
0
# A map from var to device spec where op takes it as input,
# avoiding multiple
enqueue and dequeue
ops.
# avoiding multiple
send and recv
ops.
var_devspec
=
dict
()
for
index
,
op
in
list
(
enumerate
(
origin_block
.
ops
)):
# skips lr-related op and vars, as we will process them later.
# skips lr-related op
s
and vars, as we will process them later.
if
int
(
op
.
attr
(
self
.
_op_role_key
))
&
int
(
self
.
_op_role
.
LRSched
):
continue
# skips update ops and vars, as we will process them later.
if
self
.
_is_update_op
(
op
):
continue
cur_device_spec
=
op
.
attr
(
self
.
_op_device_key
)
...
...
@@ -4119,37 +4103,23 @@ class PipelineOptimizer(object):
if
cur_device_spec
in
var_devspec
[
var_name
]:
continue
var_devspec
[
var_name
].
append
(
cur_device_spec
)
queue_name
=
var_name
+
"_blocking_queue"
queue_name
=
unique_name
.
generate
(
queue_name
)
queue_var
=
startup_block
.
create_var
(
name
=
queue_name
,
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
)
startup_block
.
append_op
(
type
=
'queue_generator'
,
attrs
=
{
'names'
:
[
queue_name
],
'capacity'
:
self
.
_num_microbatches
})
op_role
=
op
.
all_attrs
()[
self
.
_op_role_key
]
var
=
block
.
vars
[
var_name
]
block
.
_insert_op
(
index
=
index
+
extra_index
,
type
=
'
enqueue
'
,
type
=
'
c_send
'
,
inputs
=
{
'X'
:
var
},
attrs
=
{
'queue_name'
:
queue_name
,
self
.
_op_device_key
:
prev_device_spec
,
self
.
_op_role_key
:
op_role
})
extra_index
+=
1
block
.
_insert_op
(
index
=
index
+
extra_index
,
type
=
'
dequeue
'
,
type
=
'
c_recv
'
,
outputs
=
{
'Out'
:
[
var
]},
attrs
=
{
self
.
_op_device_key
:
cur_device_spec
,
'queue_name'
:
queue_name
,
self
.
_op_role_key
:
op_role
})
extra_index
+=
1
...
...
@@ -4178,7 +4148,9 @@ class PipelineOptimizer(object):
def
_accumulate_gradients
(
self
,
block
):
"""
Accumulate the graident generated in microbatch to the one in mini-batch.
Accumulate the gradients generated in microbatch to the one in mini-batch.
We also scale the loss corresponding to number of micro-batches at
the same time.
"""
for
index
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
offset
=
index
...
...
@@ -4210,12 +4182,10 @@ class PipelineOptimizer(object):
for
i
in
range
(
0
,
len
(
op_role_var
),
2
):
grad_name
=
op_role_var
[
i
+
1
]
grad_var
=
block
.
vars
[
grad_name
]
param_name
=
op_role_var
[
i
]
param_var
=
block
.
vars
[
param_name
]
new_var_name
=
unique_name
.
generate
(
param_name
)
new_var_name
=
self
.
_append_grad_suffix
(
new_var_name
)
new_var
=
self
.
_create_var
(
block
,
grad_var
,
new_var_name
)
self
.
_rename_arg
(
op
,
grad_name
,
new_var_name
)
new_grad_var_name
=
unique_name
.
generate
(
grad_name
)
new_var
=
self
.
_create_var
(
block
,
grad_var
,
new_grad_var_name
)
self
.
_rename_arg
(
op
,
grad_name
,
new_grad_var_name
)
block
.
_insert_op
(
index
=
offset
+
1
,
type
=
'sum'
,
...
...
@@ -4247,7 +4217,6 @@ class PipelineOptimizer(object):
def
_get_device_info
(
self
,
block
):
for
op
in
block
.
ops
:
if
not
op
.
_has_kernel
(
op
.
type
):
continue
op_device
=
op
.
attr
(
self
.
_op_device_key
)
return
op_device
...
...
@@ -4282,7 +4251,7 @@ class PipelineOptimizer(object):
for
prog
in
var_info
[
var_name
]:
block
=
prog
.
block
(
0
)
for
op
in
block
.
ops
:
if
op
.
type
==
"
dequeue
"
:
continue
if
op
.
type
==
"
c_recv
"
:
continue
# We have processed lr related vars
if
op
.
attr
(
self
.
_op_role_key
)
==
int
(
self
.
_op_role
.
Optimize
.
LRSched
):
...
...
@@ -4306,24 +4275,11 @@ class PipelineOptimizer(object):
for
prog
in
all_progs
:
if
prog
==
write_prog
:
continue
queue_name
=
var_name
+
"_blocking_queue"
queue_name
=
unique_name
.
generate
(
queue_name
)
queue_var
=
startup_prog
.
block
(
0
).
create_var
(
name
=
queue_name
,
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
)
startup_prog
.
block
(
0
).
append_op
(
type
=
'queue_generator'
,
attrs
=
{
'names'
:
[
queue_name
],
'capacity'
:
self
.
_num_microbatches
})
write_block
.
_insert_op
(
index
=
0
,
type
=
'
enqueue
'
,
type
=
'
c_send
'
,
inputs
=
{
'X'
:
write_block
.
var
(
var_name
),
},
attrs
=
{
'queue_name'
:
queue_name
,
self
.
_op_device_key
:
write_device
,
# A trick to make the role LRSched to avoid copy every
# microbatch
...
...
@@ -4333,14 +4289,13 @@ class PipelineOptimizer(object):
read_device
=
self
.
_get_device_info
(
read_block
)
read_block
.
_insert_op
(
index
=
0
,
type
=
'
dequeue
'
,
type
=
'
c_recv
'
,
outputs
=
{
'Out'
:
[
read_block
.
var
(
var_name
)]},
attrs
=
{
self
.
_op_device_key
:
read_device
,
# A trick to make the role LRSched to avoid copy every
# microbatch
self
.
_op_role_key
:
self
.
_op_role
.
LRSched
,
'queue_name'
:
queue_name
,
})
def
minimize
(
self
,
...
...
@@ -4365,14 +4320,13 @@ class PipelineOptimizer(object):
device_specs
=
self
.
_check_validation
(
main_block
)
# Step3: add
enqueue and dequeue
ops between section boundaries
# Step3: add
send and recv
ops between section boundaries
origin_prog
=
main_block
.
program
.
clone
(
for_test
=
False
)
origin_main_block
=
origin_prog
.
global_block
()
self
.
_insert_enq_deq_ops_for_boundaries
(
main_block
,
origin_main_block
,
startup_program
)
self
.
_insert_sendrecv_ops_for_boundaries
(
main_block
,
origin_main_block
)
# Step4:
accumulate gradients during backward
# a
nd clear them after update
# Step4:
clear gradients before each mini-batch and
# a
ccumulate gradients during backward
self
.
_clear_gradients
(
main_block
)
self
.
_accumulate_gradients
(
main_block
)
...
...
@@ -4392,14 +4346,14 @@ class PipelineOptimizer(object):
raise
ValueError
(
"Unknown device type: %s"
,
dev_spec
)
# Step5: split program into sections and add pairs of
#
enqueue and dequeue
ops for data var.
#
send and recv
ops for data var.
if
len
(
place_list
)
<=
1
:
raise
ValueError
(
"Run on one device, do not use pipeline."
)
program_list
=
self
.
_split_program
(
main_program
,
device_specs
)
for
p
in
program_list
:
self
.
_create_vars
(
p
[
"program"
].
block
(
0
),
main_program
)
self
.
_insert_
enq_deq
_for_data_var
(
main_block
,
program_list
,
startup_program
,
device_specs
)
self
.
_insert_
sendrecv
_for_data_var
(
main_block
,
program_list
,
startup_program
,
device_specs
)
# Step6: Special Case: process persistable vars that exist in
# multiple sections
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录