Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
a4bd4147
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
a4bd4147
编写于
3月 05, 2017
作者:
J
jacquesqiao
提交者:
GitHub
3月 05, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1555 from jacquesqiao/refine-import
optimize import of seqToseq_net_v2 for book
上级
3fd13e70
8fa09b82
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
52 addition
and
46 deletion
+52
-46
demo/seqToseq/api_train_v2.py
demo/seqToseq/api_train_v2.py
+13
-9
demo/seqToseq/seqToseq_net_v2.py
demo/seqToseq/seqToseq_net_v2.py
+39
-37
未找到文件。
demo/seqToseq/api_train_v2.py
浏览文件 @
a4bd4147
...
...
@@ -72,31 +72,35 @@ def main():
# define network topology
cost
=
seqToseq_net_v2
(
source_dict_dim
,
target_dict_dim
)
parameters
=
paddle
.
parameters
.
create
(
cost
)
optimizer
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
1e-4
)
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
10
==
0
:
print
"Pass %d, Batch %d, Cost %f, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
)
# define optimize method and trainer
optimizer
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
1e-4
)
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
cost
,
parameters
=
parameters
,
update_equation
=
optimizer
)
# define data reader
reader_dict
=
{
'source_language_word'
:
0
,
'target_language_word'
:
1
,
'target_language_next_word'
:
2
}
trn
_reader
=
paddle
.
reader
.
batched
(
wmt14
_reader
=
paddle
.
reader
.
batched
(
paddle
.
reader
.
shuffle
(
train_reader
(
"data/pre-wmt14/train/train"
),
buf_size
=
8192
),
batch_size
=
5
)
# define event_handler callback
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
10
==
0
:
print
"Pass %d, Batch %d, Cost %f, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
)
# start to train
trainer
.
train
(
reader
=
trn
_reader
,
reader
=
wmt14
_reader
,
event_handler
=
event_handler
,
num_passes
=
10000
,
reader_dict
=
reader_dict
)
...
...
demo/seqToseq/seqToseq_net_v2.py
浏览文件 @
a4bd4147
import
paddle.v2.activation
as
activation
import
paddle.v2.attr
as
attr
import
paddle.v2.data_type
as
data_type
import
paddle.v2.layer
as
layer
import
paddle.v2.networks
as
networks
import
paddle.v2
as
paddle
def
seqToseq_net_v2
(
source_dict_dim
,
target_dict_dim
):
...
...
@@ -12,64 +8,70 @@ def seqToseq_net_v2(source_dict_dim, target_dict_dim):
encoder_size
=
512
# dimension of hidden unit in GRU Encoder network
#### Encoder
src_word_id
=
layer
.
data
(
src_word_id
=
paddle
.
layer
.
data
(
name
=
'source_language_word'
,
type
=
data_type
.
integer_value_sequence
(
source_dict_dim
))
src_embedding
=
layer
.
embedding
(
type
=
paddle
.
data_type
.
integer_value_sequence
(
source_dict_dim
))
src_embedding
=
paddle
.
layer
.
embedding
(
input
=
src_word_id
,
size
=
word_vector_dim
,
param_attr
=
attr
.
ParamAttr
(
name
=
'_source_language_embedding'
))
src_forward
=
networks
.
simple_gru
(
input
=
src_embedding
,
size
=
encoder_size
)
src_backward
=
networks
.
simple_gru
(
param_attr
=
paddle
.
attr
.
ParamAttr
(
name
=
'_source_language_embedding'
))
src_forward
=
paddle
.
networks
.
simple_gru
(
input
=
src_embedding
,
size
=
encoder_size
)
src_backward
=
paddle
.
networks
.
simple_gru
(
input
=
src_embedding
,
size
=
encoder_size
,
reverse
=
True
)
encoded_vector
=
layer
.
concat
(
input
=
[
src_forward
,
src_backward
])
encoded_vector
=
paddle
.
layer
.
concat
(
input
=
[
src_forward
,
src_backward
])
#### Decoder
with
layer
.
mixed
(
size
=
decoder_size
)
as
encoded_proj
:
encoded_proj
+=
layer
.
full_matrix_projection
(
input
=
encoded_vector
)
with
paddle
.
layer
.
mixed
(
size
=
decoder_size
)
as
encoded_proj
:
encoded_proj
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
encoded_vector
)
backward_first
=
layer
.
first_seq
(
input
=
src_backward
)
backward_first
=
paddle
.
layer
.
first_seq
(
input
=
src_backward
)
with
layer
.
mixed
(
size
=
decoder_size
,
act
=
activation
.
Tanh
())
as
decoder_boot
:
decoder_boot
+=
layer
.
full_matrix_projection
(
input
=
backward_first
)
with
paddle
.
layer
.
mixed
(
size
=
decoder_size
,
act
=
paddle
.
activation
.
Tanh
())
as
decoder_boot
:
decoder_boot
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
backward_first
)
def
gru_decoder_with_attention
(
enc_vec
,
enc_proj
,
current_word
):
decoder_mem
=
layer
.
memory
(
decoder_mem
=
paddle
.
layer
.
memory
(
name
=
'gru_decoder'
,
size
=
decoder_size
,
boot_layer
=
decoder_boot
)
context
=
networks
.
simple_attention
(
context
=
paddle
.
networks
.
simple_attention
(
encoded_sequence
=
enc_vec
,
encoded_proj
=
enc_proj
,
decoder_state
=
decoder_mem
)
with
layer
.
mixed
(
size
=
decoder_size
*
3
)
as
decoder_inputs
:
decoder_inputs
+=
layer
.
full_matrix_projection
(
input
=
context
)
decoder_inputs
+=
layer
.
full_matrix_projection
(
input
=
current_word
)
with
paddle
.
layer
.
mixed
(
size
=
decoder_size
*
3
)
as
decoder_inputs
:
decoder_inputs
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
context
)
decoder_inputs
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
current_word
)
gru_step
=
layer
.
gru_step
(
gru_step
=
paddle
.
layer
.
gru_step
(
name
=
'gru_decoder'
,
input
=
decoder_inputs
,
output_mem
=
decoder_mem
,
size
=
decoder_size
)
with
layer
.
mixed
(
size
=
target_dict_dim
,
bias_attr
=
True
,
act
=
activation
.
Softmax
())
as
out
:
out
+=
layer
.
full_matrix_projection
(
input
=
gru_step
)
with
paddle
.
layer
.
mixed
(
size
=
target_dict_dim
,
bias_attr
=
True
,
act
=
paddle
.
activation
.
Softmax
())
as
out
:
out
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
gru_step
)
return
out
decoder_group_name
=
"decoder_group"
group_input1
=
layer
.
StaticInputV2
(
input
=
encoded_vector
,
is_seq
=
True
)
group_input2
=
layer
.
StaticInputV2
(
input
=
encoded_proj
,
is_seq
=
True
)
group_input1
=
paddle
.
layer
.
StaticInputV2
(
input
=
encoded_vector
,
is_seq
=
True
)
group_input2
=
paddle
.
layer
.
StaticInputV2
(
input
=
encoded_proj
,
is_seq
=
True
)
group_inputs
=
[
group_input1
,
group_input2
]
trg_embedding
=
layer
.
embedding
(
input
=
layer
.
data
(
trg_embedding
=
paddle
.
layer
.
embedding
(
input
=
paddle
.
layer
.
data
(
name
=
'target_language_word'
,
type
=
data_type
.
integer_value_sequence
(
target_dict_dim
)),
type
=
paddle
.
data_type
.
integer_value_sequence
(
target_dict_dim
)),
size
=
word_vector_dim
,
param_attr
=
attr
.
ParamAttr
(
name
=
'_target_language_embedding'
))
param_attr
=
paddle
.
attr
.
ParamAttr
(
name
=
'_target_language_embedding'
))
group_inputs
.
append
(
trg_embedding
)
# For decoder equipped with attention mechanism, in training,
...
...
@@ -77,14 +79,14 @@ def seqToseq_net_v2(source_dict_dim, target_dict_dim):
# while encoded source sequence is accessed to as an unbounded memory.
# Here, the StaticInput defines a read-only memory
# for the recurrent_group.
decoder
=
layer
.
recurrent_group
(
decoder
=
paddle
.
layer
.
recurrent_group
(
name
=
decoder_group_name
,
step
=
gru_decoder_with_attention
,
input
=
group_inputs
)
lbl
=
layer
.
data
(
lbl
=
paddle
.
layer
.
data
(
name
=
'target_language_next_word'
,
type
=
data_type
.
integer_value_sequence
(
target_dict_dim
))
cost
=
layer
.
classification_cost
(
input
=
decoder
,
label
=
lbl
)
type
=
paddle
.
data_type
.
integer_value_sequence
(
target_dict_dim
))
cost
=
paddle
.
layer
.
classification_cost
(
input
=
decoder
,
label
=
lbl
)
return
cost
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录