提交 a3f063c2 编写于 作者: H helinwang 提交者: GitHub

Merge pull request #1536 from helinwang/reader_design

add batch reader into reader design doc
...@@ -4,9 +4,10 @@ At training and testing time, PaddlePaddle programs need to read data. To ease t ...@@ -4,9 +4,10 @@ At training and testing time, PaddlePaddle programs need to read data. To ease t
- A *reader* is a function that reads data (from file, network, random number generator, etc) and yields data items. - A *reader* is a function that reads data (from file, network, random number generator, etc) and yields data items.
- A *reader creator* is a function that returns a reader function. - A *reader creator* is a function that returns a reader function.
- A *reader* decorator is a function, which accepts one or more readers, and returns a reader. - A *reader decorator* is a function, which accepts one or more readers, and returns a reader.
- A *batch reader* is a function that reads data (from *reader*, file, network, random number generator, etc) and yields a batch of data items.
and provide frequently used reader creators and reader decorators. and provide function which converts reader to batch reader, frequently used reader creators and reader decorators.
## Data Reader Interface ## Data Reader Interface
...@@ -37,9 +38,54 @@ def reader_creator_random_imageand_label(widht, height, label): ...@@ -37,9 +38,54 @@ def reader_creator_random_imageand_label(widht, height, label):
return reader return reader
``` ```
## Batch Reader Interface
*batch reader* can be any function with no parameter that creates a iterable (anything can be used in `for x in iterable`). The output of the iterable should be a batch (list) of data items. Each item inside the list must be a tuple.
Here are valid outputs:
```python
# a mini batch of three data items. Each data item consist three columns of data, each of which is 1.
[(1, 1, 1),
(2, 2, 2),
(3, 3, 3)]
# a mini batch of three data items, each data item is a list (single column).
[([1,1,1],),
([2,2,2],),
([3,3,3],),
```
Please note that each item inside the list must be a tuple, below is an invalid output:
```python
# wrong, [1,1,1] needs to be inside a tuple: ([1,1,1],).
# Otherwise it's ambiguous whether [1,1,1] means a single column of data [1, 1, 1],
# or three column of datas, each of which is 1.
[[1,1,1],
[2,2,2],
[3,3,3]]
```
It's easy to convert from reader to batch reader:
```python
mnist_train = paddle.dataset.mnist.train()
mnist_train_batch_reader = paddle.batch(mnist_train, 128)
```
Also easy to create custom batch reader:
```python
def custom_batch_reader():
while True:
batch = []
for i in xrange(128):
batch.append((numpy.random.uniform(-1, 1, 28*28),)) # note that it's a tuple being appended.
yield batch
mnist_random_image_batch_reader = custom_batch_reader
```
## Usage ## Usage
data reader, mapping from item(s) read to data layer, batch size and number of total pass will be passed into `paddle.train`: batch reader, mapping from item(s) read to data layer, batch size and number of total pass will be passed into `paddle.train`:
```python ```python
# two data layer is created: # two data layer is created:
...@@ -47,8 +93,8 @@ image_layer = paddle.layer.data("image", ...) ...@@ -47,8 +93,8 @@ image_layer = paddle.layer.data("image", ...)
label_layer = paddle.layer.data("label", ...) label_layer = paddle.layer.data("label", ...)
# ... # ...
batch_reader = paddle.batch(paddle.dataset.mnist.train(), 128)
paddle.train(paddle.dataset.mnist, {"image":0, "label":1}, 128, 10, ...) paddle.train(batch_reader, {"image":0, "label":1}, 128, 10, ...)
``` ```
## Data Reader Decorator ## Data Reader Decorator
...@@ -64,7 +110,7 @@ Since reading data may take time and training can not proceed without data. It i ...@@ -64,7 +110,7 @@ Since reading data may take time and training can not proceed without data. It i
Use `paddle.reader.buffered` to prefetch data: Use `paddle.reader.buffered` to prefetch data:
```python ```python
buffered_reader = paddle.reader.buffered(paddle.dataset.mnist, 100) buffered_reader = paddle.reader.buffered(paddle.dataset.mnist.train(), 100)
``` ```
`buffered_reader` will try to buffer (prefetch) `100` data entries. `buffered_reader` will try to buffer (prefetch) `100` data entries.
...@@ -91,10 +137,10 @@ def reader_creator_bool(t): ...@@ -91,10 +137,10 @@ def reader_creator_bool(t):
true_reader = reader_creator_bool(True) true_reader = reader_creator_bool(True)
false_reader = reader_creator_bool(False) false_reader = reader_creator_bool(False)
reader = paddle.reader.compose(paddle.dataset.mnist, data_reader_creator_random_image(20, 20), true_reader, false_reader) reader = paddle.reader.compose(paddle.dataset.mnist.train(), data_reader_creator_random_image(20, 20), true_reader, false_reader)
# Skipped 1 because paddle.dataset.mnist produces two items per data entry. # Skipped 1 because paddle.dataset.mnist.train() produces two items per data entry.
# And we don't care second item at this time. # And we don't care second item at this time.
paddle.train(reader, {"true_image":0, "fake_image": 2, "true_label": 3, "false_label": 4}, ...) paddle.train(paddle.batch(reader, 128), {"true_image":0, "fake_image": 2, "true_label": 3, "false_label": 4}, ...)
``` ```
### Shuffle ### Shuffle
...@@ -103,16 +149,20 @@ Given shuffle buffer size `n`, `paddle.reader.shuffle` will return a data reader ...@@ -103,16 +149,20 @@ Given shuffle buffer size `n`, `paddle.reader.shuffle` will return a data reader
Example: Example:
```python ```python
reader = paddle.reader.shuffle(paddle.dataset.mnist, 512) reader = paddle.reader.shuffle(paddle.dataset.mnist.train(), 512)
``` ```
## Q & A ## Q & A
### Why return only a single entry, but not a mini batch? ### Why reader return only a single entry, but not a mini batch?
Always returning a single entry make reusing existing data readers much easier (e.g., if existing reader return not a single entry but 3 entries, training code will be more complex because it need to handle cases like batch size 2).
We provide function `paddle.batch` to turn (single entry) reader into batch reader.
If a mini batch is returned, data reader need to take care of batch size. But batch size is a concept for training, it makes more sense for user to specify batch size as a parameter for `train`. ### Why do we need batch reader, isn't train take reader and batch_size as arguments sufficient?
Practically, always return a single entry make reusing existing data readers much easier (e.g., if existing reader return not a single entry but 3 entries, training code will be more complex because it need to handle cases like batch size 2). In most of the case, train taking reader and batch_size as arguments would be sufficent. However sometimes user want to customize order of data entries inside a mini batch. Or even change batch size dynamically.
### Why use a dictionary but not a list to provide mapping? ### Why use a dictionary but not a list to provide mapping?
...@@ -137,7 +187,7 @@ def image_reader_creator(image_path, label_path, n): ...@@ -137,7 +187,7 @@ def image_reader_creator(image_path, label_path, n):
# images_reader_creator creates a reader # images_reader_creator creates a reader
reader = image_reader_creator("/path/to/image_file", "/path/to/label_file", 1024) reader = image_reader_creator("/path/to/image_file", "/path/to/label_file", 1024)
paddle.train(reader, {"image":0, "label":1}, ...) paddle.train(paddle.batch(reader, 128), {"image":0, "label":1}, ...)
``` ```
### How is `paddle.train` implemented ### How is `paddle.train` implemented
...@@ -145,17 +195,8 @@ paddle.train(reader, {"image":0, "label":1}, ...) ...@@ -145,17 +195,8 @@ paddle.train(reader, {"image":0, "label":1}, ...)
An example implementation of paddle.train could be: An example implementation of paddle.train could be:
```python ```python
def make_minibatch(reader, minibatch_size): def train(batch_reader, mapping, batch_size, total_pass):
def ret():
r = reader()
buf = [r.next() for x in xrange(minibatch_size)]
while len(buf) > 0:
yield buf
buf = [r.next() for x in xrange(minibatch_size)]
return ret
def train(reader, mapping, batch_size, total_pass):
for pass_idx in range(total_pass): for pass_idx in range(total_pass):
for mini_batch in make_minibatch(reader): # this loop will never end in online learning. for mini_batch in batch_reader(): # this loop will never end in online learning.
do_forward_backward(mini_batch, mapping) do_forward_backward(mini_batch, mapping)
``` ```
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册