Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
a3202760
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a3202760
编写于
1月 10, 2018
作者:
Y
Yang yaming
提交者:
GitHub
1月 10, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #7176 from pkuyym/fix-7173
Enhence shrink_rnn_memory_op.
上级
4bcc0b64
12ed53c1
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
87 addition
and
29 deletion
+87
-29
paddle/operators/shrink_rnn_memory_op.cc
paddle/operators/shrink_rnn_memory_op.cc
+20
-5
python/paddle/v2/fluid/tests/test_shrink_rnn_memory.py
python/paddle/v2/fluid/tests/test_shrink_rnn_memory.py
+67
-24
未找到文件。
paddle/operators/shrink_rnn_memory_op.cc
浏览文件 @
a3202760
...
...
@@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/lod_rank_table.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/operators/array_operator.h"
#include "paddle/operators/math/math_function.h"
...
...
@@ -46,8 +47,21 @@ class ShrinkRNNMemoryOp : public ArrayOp {
auto
*
out_var
=
scope
.
FindVar
(
Output
(
"Out"
));
PADDLE_ENFORCE
(
out_var
!=
nullptr
,
"Output Out must be set"
);
auto
&
out_tensor
=
*
out_var
->
GetMutable
<
framework
::
LoDTensor
>
();
size_t
height
=
dst_num_rows
;
// do shrink for the top level LoD
if
(
x_tensor
.
lod
().
size
()
>
0
&&
x_tensor
.
lod
()[
0
].
size
()
>
static_cast
<
size_t
>
(
dst_num_rows
))
{
auto
lod_offset
=
framework
::
GetSubLoDAndAbsoluteOffset
(
x_tensor
.
lod
(),
0
,
dst_num_rows
,
0
);
height
=
lod_offset
.
second
.
second
;
auto
out_lod
=
out_tensor
.
mutable_lod
();
framework
::
AppendLoD
(
out_lod
,
lod_offset
.
first
);
}
if
(
dst_num_rows
!=
0
)
{
out_tensor
.
ShareDataWith
(
x_tensor
.
Slice
(
0
,
dst_num_rows
));
out_tensor
.
ShareDataWith
(
x_tensor
.
Slice
(
0
,
height
));
}
}
};
...
...
@@ -64,11 +78,11 @@ class ShrinkRNNMemoryOpProtoMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"Out"
,
"(LoDTensor) The shrinked RNN step memory."
);
AddComment
(
R"DOC(
In dynamic RNN, we are able to handle sequences of different lengths.
Because of the multiple lengths, the size of each step input can be
In dynamic RNN, we are able to handle sequences of different lengths.
Because of the multiple lengths, the size of each step input can be
different, which may lead to a mismatching between the input of
the current step and the memory generated by the previous one. This
operator shrinks memory according to the size of the next step input,
the current step and the memory generated by the previous one. This
operator shrinks memory according to the size of the next step input,
to make sure that they can match each other.
)DOC"
);
}
...
...
@@ -132,6 +146,7 @@ class ShrinkRNNMemoryGradInferShape : public framework::InferShapeBase {
PADDLE_ENFORCE
(
context
->
HasOutput
(
framework
::
GradVarName
(
"X"
)));
context
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
context
->
GetInputDim
(
"X"
));
context
->
ShareLoD
(
"X"
,
framework
::
GradVarName
(
"X"
));
}
};
...
...
python/paddle/v2/fluid/tests/test_shrink_rnn_memory.py
浏览文件 @
a3202760
...
...
@@ -3,43 +3,86 @@ import paddle.v2.fluid.core as core
from
paddle.v2.fluid.executor
import
Executor
import
paddle.v2.fluid.layers
as
layers
from
paddle.v2.fluid.backward
import
append_backward
from
paddle.v2.fluid.framework
import
default_main_program
import
numpy
from
paddle.v2.fluid.framework
import
default_main_program
,
switch_main_program
from
paddle.v2.fluid.framework
import
Program
import
numpy
as
np
main_program
=
default_main_program
()
class
TestShrinkRNNMemory
(
unittest
.
TestCase
):
def
test_shrink_rnn_memory
(
self
):
class
TestShrinkRNNMemoryBase
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
main_program
=
Program
()
switch_main_program
(
self
.
main_program
)
x
=
layers
.
data
(
'x'
,
shape
=
[
100
],
dtype
=
'float32'
)
x
.
stop_gradient
=
False
table
=
layers
.
lod_rank_table
(
x
=
x
)
rank_table_tensor
=
layers
.
data
(
'rank_table_tensor'
,
shape
=
[
1
],
dtype
=
'float32'
,
lod_level
=
1
)
table
=
layers
.
lod_rank_table
(
x
=
rank_table_tensor
)
i
=
layers
.
zeros
(
dtype
=
'int64'
,
shape
=
[
1
])
mem1
=
layers
.
shrink_memory
(
x
=
x
,
i
=
i
,
table
=
table
)
self
.
mem1
=
layers
.
shrink_memory
(
x
=
x
,
i
=
i
,
table
=
table
)
i
=
layers
.
increment
(
x
=
i
)
i
.
stop_gradient
=
True
mem2
=
layers
.
shrink_memory
(
x
=
mem1
,
i
=
i
,
table
=
table
)
self
.
mem2
=
layers
.
shrink_memory
(
x
=
self
.
mem1
,
i
=
i
,
table
=
table
)
i
=
layers
.
increment
(
x
=
i
)
i
.
stop_gradient
=
True
mem3
=
layers
.
shrink_memory
(
x
=
mem2
,
i
=
i
,
table
=
table
)
self
.
mem3
=
layers
.
shrink_memory
(
x
=
self
.
mem2
,
i
=
i
,
table
=
table
)
mem3_mean
=
layers
.
mean
(
x
=
self
.
mem3
)
append_backward
(
loss
=
mem3_mean
)
self
.
x_grad
=
self
.
main_program
.
global_block
().
var
(
'x@GRAD'
)
def
sum_lodtensor
(
self
,
tensor
):
sum_res
=
0.0
for
i
in
xrange
(
np
.
product
(
tensor
.
get_dims
())):
sum_res
+=
tensor
.
get_float_element
(
i
)
return
sum_res
class
TestShrinkRNNMemoryReferLoD
(
TestShrinkRNNMemoryBase
):
def
test_refer_lod
(
self
):
cpu
=
core
.
CPUPlace
()
tensor
=
core
.
LoDTensor
()
tensor
.
set_lod
([[
0
,
2
,
5
,
6
]])
tensor_np
=
numpy
.
random
.
random
(
size
=
(
3
,
100
)).
astype
(
'float32'
)
tensor
.
set
(
tensor_np
,
cpu
)
x_tensor
=
core
.
LoDTensor
()
x_tensor
.
set_lod
([[
0
,
2
,
5
,
6
]])
tensor_np
=
np
.
random
.
random
(
size
=
(
6
,
100
)).
astype
(
'float32'
)
x_tensor
.
set
(
tensor_np
,
cpu
)
rank_table_tensor
=
core
.
LoDTensor
()
rank_table_tensor
.
set_lod
([[
0
,
1
,
3
,
6
]])
rank_table_tensor
.
set
(
np
.
random
.
random
(
size
=
(
6
,
1
)).
astype
(
'float32'
),
cpu
)
exe
=
Executor
(
cpu
)
outs
=
exe
.
run
(
feed
=
{
'x'
:
tensor
},
fetch_list
=
[
mem1
,
mem2
,
mem3
])
self
.
assertTrue
(
numpy
.
allclose
(
tensor_np
[
0
:
3
],
outs
[
0
]))
self
.
assertTrue
(
numpy
.
allclose
(
tensor_np
[
0
:
2
],
outs
[
1
]))
self
.
assertTrue
(
numpy
.
allclose
(
tensor_np
[
0
:
1
],
outs
[
2
]))
outs
=
exe
.
run
(
feed
=
{
'x'
:
x_tensor
,
'rank_table_tensor'
:
rank_table_tensor
},
fetch_list
=
[
self
.
mem1
,
self
.
mem2
,
self
.
mem3
,
self
.
x_grad
],
return_numpy
=
False
)
self
.
assertTrue
(
np
.
allclose
(
tensor_np
[
0
:
6
],
outs
[
0
]))
self
.
assertTrue
(
np
.
allclose
(
tensor_np
[
0
:
5
],
outs
[
1
]))
self
.
assertTrue
(
np
.
allclose
(
tensor_np
[
0
:
2
],
outs
[
2
]))
self
.
assertAlmostEqual
(
1.0
,
self
.
sum_lodtensor
(
outs
[
3
]),
delta
=
0.01
)
mem3_mean
=
layers
.
mean
(
x
=
mem3
)
append_backward
(
loss
=
mem3_mean
)
x_grad
=
exe
.
run
(
feed
=
{
'x'
:
tensor
},
fetch_list
=
[
main_program
.
global_block
().
var
(
'x@GRAD'
)])[
0
]
self
.
assertAlmostEqual
(
1.0
,
x_grad
.
sum
(),
delta
=
0.1
)
class
TestShrinkRNNMemoryNoLoD
(
TestShrinkRNNMemoryBase
):
def
test_no_lod
(
self
):
cpu
=
core
.
CPUPlace
()
x_tensor
=
core
.
LoDTensor
()
tensor_np
=
np
.
random
.
random
(
size
=
(
3
,
100
)).
astype
(
'float32'
)
x_tensor
.
set
(
tensor_np
,
cpu
)
rank_table_tensor
=
core
.
LoDTensor
()
rank_table_tensor
.
set_lod
([[
0
,
1
,
3
,
6
]])
rank_table_tensor
.
set
(
np
.
random
.
random
(
size
=
(
6
,
1
)).
astype
(
'float32'
),
cpu
)
exe
=
Executor
(
cpu
)
outs
=
exe
.
run
(
feed
=
{
'x'
:
x_tensor
,
'rank_table_tensor'
:
rank_table_tensor
},
fetch_list
=
[
self
.
mem1
,
self
.
mem2
,
self
.
mem3
,
self
.
x_grad
],
return_numpy
=
False
)
self
.
assertTrue
(
np
.
allclose
(
tensor_np
[
0
:
3
],
outs
[
0
]))
self
.
assertTrue
(
np
.
allclose
(
tensor_np
[
0
:
2
],
outs
[
1
]))
self
.
assertTrue
(
np
.
allclose
(
tensor_np
[
0
:
1
],
outs
[
2
]))
self
.
assertAlmostEqual
(
1.0
,
self
.
sum_lodtensor
(
outs
[
3
]),
delta
=
0.01
)
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录