Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
a170fd30
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a170fd30
编写于
9月 23, 2020
作者:
W
wanghaoshuang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add fusion pass for fc_reshape_elementwiseadd_layernorm
上级
b150f2b3
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
755 addition
and
11 deletion
+755
-11
cmake/operators.cmake
cmake/operators.cmake
+1
-1
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+1
-0
paddle/fluid/framework/ir/fc_reshape_elementwise_layernorm_fuse_pass.cc
...ramework/ir/fc_reshape_elementwise_layernorm_fuse_pass.cc
+302
-0
paddle/fluid/framework/ir/fc_reshape_elementwise_layernorm_fuse_pass.h
...framework/ir/fc_reshape_elementwise_layernorm_fuse_pass.h
+33
-0
paddle/fluid/inference/api/paddle_pass_builder.cc
paddle/fluid/inference/api/paddle_pass_builder.cc
+11
-10
paddle/fluid/operators/fused/CMakeLists.txt
paddle/fluid/operators/fused/CMakeLists.txt
+4
-0
paddle/fluid/operators/fused/fused_fc_reshape_elementwise_layernorm_op.cc
...rators/fused/fused_fc_reshape_elementwise_layernorm_op.cc
+195
-0
paddle/fluid/operators/fused/fused_fc_reshape_elementwise_layernorm_op.cu
...rators/fused/fused_fc_reshape_elementwise_layernorm_op.cu
+201
-0
paddle/fluid/operators/reshape_op.cc
paddle/fluid/operators/reshape_op.cc
+7
-0
未找到文件。
cmake/operators.cmake
浏览文件 @
a170fd30
...
@@ -126,7 +126,7 @@ function(op_library TARGET)
...
@@ -126,7 +126,7 @@ function(op_library TARGET)
foreach
(
manual_pybind_op
"compare_all_op"
"compare_op"
"logical_op"
"nccl_op"
foreach
(
manual_pybind_op
"compare_all_op"
"compare_op"
"logical_op"
"nccl_op"
"tensor_array_read_write_op"
"tensorrt_engine_op"
"conv_fusion_op"
"tensor_array_read_write_op"
"tensorrt_engine_op"
"conv_fusion_op"
"fusion_transpose_flatten_concat_op"
"fusion_conv_inception_op"
"fusion_transpose_flatten_concat_op"
"fusion_conv_inception_op"
"sync_batch_norm_op"
"dgc_op"
"fused_fc_elementwise_layernorm_op"
"sync_batch_norm_op"
"dgc_op"
"fused_fc_elementwise_layernorm_op"
"fused_fc_reshape_elementwise_layernorm_op"
"multihead_matmul_op"
"fusion_group_op"
"fused_bn_activation_op"
"fused_embedding_eltwise_layernorm_op"
"fusion_gru_op"
)
"multihead_matmul_op"
"fusion_group_op"
"fused_bn_activation_op"
"fused_embedding_eltwise_layernorm_op"
"fusion_gru_op"
)
if
(
"
${
TARGET
}
"
STREQUAL
"
${
manual_pybind_op
}
"
)
if
(
"
${
TARGET
}
"
STREQUAL
"
${
manual_pybind_op
}
"
)
set
(
pybind_flag 1
)
set
(
pybind_flag 1
)
...
...
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
a170fd30
...
@@ -86,6 +86,7 @@ pass_library(shuffle_channel_detect_pass inference)
...
@@ -86,6 +86,7 @@ pass_library(shuffle_channel_detect_pass inference)
pass_library
(
delete_quant_dequant_op_pass inference
)
pass_library
(
delete_quant_dequant_op_pass inference
)
pass_library
(
simplify_with_basic_ops_pass base
)
pass_library
(
simplify_with_basic_ops_pass base
)
pass_library
(
fc_elementwise_layernorm_fuse_pass base
)
pass_library
(
fc_elementwise_layernorm_fuse_pass base
)
pass_library
(
fc_reshape_elementwise_layernorm_fuse_pass base
)
pass_library
(
skip_layernorm_fuse_pass base
)
pass_library
(
skip_layernorm_fuse_pass base
)
pass_library
(
multihead_matmul_fuse_pass inference
)
pass_library
(
multihead_matmul_fuse_pass inference
)
if
(
WITH_GPU
)
if
(
WITH_GPU
)
...
...
paddle/fluid/framework/ir/fc_reshape_elementwise_layernorm_fuse_pass.cc
0 → 100644
浏览文件 @
a170fd30
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/ir/fc_reshape_elementwise_layernorm_fuse_pass.h"
#include <string>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
namespace
patterns
{
struct
FCReshapeElementwiseLayerNorm
:
public
PatternBase
{
FCReshapeElementwiseLayerNorm
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"fc_reshape_elementwise_layernorm"
)
{}
PDNode
*
operator
()(
PDNode
*
x
);
// declare operator node's name
PATTERN_DECL_NODE
(
fused_fc_reshape_elementwise_layernorm
);
PATTERN_DECL_NODE
(
fc
);
PATTERN_DECL_NODE
(
reshape2
);
PATTERN_DECL_NODE
(
elementwise
);
PATTERN_DECL_NODE
(
layer_norm
);
// declare variable node's name
PATTERN_DECL_NODE
(
fc_w
);
PATTERN_DECL_NODE
(
fc_bias
);
PATTERN_DECL_NODE
(
fc_out
);
// (x,fc_w,fc_bias) -> fc_out
PATTERN_DECL_NODE
(
reshape_input
);
PATTERN_DECL_NODE
(
reshape_out
);
PATTERN_DECL_NODE
(
elementwise_input
);
PATTERN_DECL_NODE
(
elementwise_out
);
// (fc_out,elementwise_input) -> elementwise_out
PATTERN_DECL_NODE
(
layer_norm_bias
);
PATTERN_DECL_NODE
(
layer_norm_scale
);
PATTERN_DECL_NODE
(
layer_norm_out
);
PATTERN_DECL_NODE
(
layer_norm_mean
);
PATTERN_DECL_NODE
(
layer_norm_variance
);
};
PDNode
*
FCReshapeElementwiseLayerNorm
::
operator
()(
PDNode
*
x
)
{
// Create nodes for fc op.
x
->
assert_is_op_input
(
"fc"
,
"Input"
);
auto
*
fc
=
pattern
->
NewNode
(
fc_repr
())
->
assert_is_op
(
"fc"
);
auto
*
fc_w_var
=
pattern
->
NewNode
(
fc_w_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"fc"
,
"W"
);
auto
*
fc_bias_var
=
pattern
->
NewNode
(
fc_bias_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"fc"
,
"Bias"
);
auto
*
fc_out_var
=
pattern
->
NewNode
(
fc_out_repr
())
->
assert_is_op_output
(
"fc"
);
// Add links for fc op.
fc
->
LinksFrom
({
x
,
fc_w_var
,
fc_bias_var
}).
LinksTo
({
fc_out_var
});
// Create nodes for elementwise_add op.
fc_out_var
->
AsIntermediate
()
->
assert_is_op_input
(
"reshape2"
);
auto
*
reshape2
=
pattern
->
NewNode
(
reshape2_repr
())
->
assert_is_op
(
"reshape2"
);
auto
*
reshape_out_var
=
pattern
->
NewNode
(
reshape_out_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"reshape2"
);
// Add links for reshape op.
reshape2
->
LinksFrom
({
fc_out_var
}).
LinksTo
({
reshape_out_var
});
reshape_out_var
->
AsIntermediate
()
->
assert_is_op_input
(
"elementwise_add"
);
auto
*
elementwise
=
pattern
->
NewNode
(
elementwise_repr
())
->
assert_is_op
(
"elementwise_add"
);
auto
*
elementwise_input_var
=
pattern
->
NewNode
(
elementwise_input_repr
())
->
assert_is_op_input
(
"elementwise_add"
);
auto
*
elementwise_out_var
=
pattern
->
NewNode
(
elementwise_out_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"elementwise_add"
);
// Add links for elementwise_add op.
elementwise
->
LinksFrom
({
reshape_out_var
,
elementwise_input_var
})
.
LinksTo
({
elementwise_out_var
});
// Create nodes for layer_norm op.
elementwise_out_var
->
AsIntermediate
()
->
assert_is_op_input
(
"layer_norm"
);
auto
*
layer_norm
=
pattern
->
NewNode
(
layer_norm_repr
())
->
assert_is_op
(
"layer_norm"
);
auto
*
layer_norm_bias_var
=
pattern
->
NewNode
(
layer_norm_bias_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"layer_norm"
,
"Bias"
);
auto
*
layer_norm_scale_var
=
pattern
->
NewNode
(
layer_norm_scale_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"layer_norm"
,
"Scale"
);
auto
*
layer_norm_out_var
=
pattern
->
NewNode
(
layer_norm_out_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"layer_norm"
,
"Y"
);
auto
*
layer_norm_mean_var
=
pattern
->
NewNode
(
layer_norm_mean_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"layer_norm"
,
"Mean"
);
auto
*
layer_norm_variance_var
=
pattern
->
NewNode
(
layer_norm_variance_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"layer_norm"
,
"Variance"
);
// Add links for layer_norm op.
layer_norm
->
LinksFrom
(
{
elementwise_out_var
,
layer_norm_bias_var
,
layer_norm_scale_var
})
.
LinksTo
(
{
layer_norm_out_var
,
layer_norm_mean_var
,
layer_norm_variance_var
});
return
layer_norm_out_var
;
}
}
// namespace patterns
template
<
typename
T
>
static
bool
IsEqual
(
const
std
::
vector
<
T
>
&
x
,
const
std
::
vector
<
T
>
&
y
)
{
if
(
!
(
x
.
size
()
>
0U
&&
y
.
size
()
>
0U
)
||
x
.
size
()
!=
y
.
size
())
{
return
false
;
}
for
(
size_t
i
=
0
;
i
<
x
.
size
();
++
i
)
{
if
(
x
[
i
]
!=
y
[
i
])
{
return
false
;
}
}
return
true
;
}
void
FCReshapeElementwiseLayerNormFusePass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
InvalidArgument
(
"Pointer to graph argument should not be NULL."
));
FusePassBase
::
Init
(
"fc_reshape_elementwise_layernorm_fuse"
,
graph
);
int
found_subgraph_count
=
0
;
GraphPatternDetector
gpd
;
auto
*
x
=
gpd
.
mutable_pattern
()
->
NewNode
(
"fc_reshape_elementwise_layernorm_fuse/x"
)
->
AsInput
()
->
assert_is_op_input
(
"fc"
,
"Input"
);
patterns
::
FCReshapeElementwiseLayerNorm
fused_pattern
(
gpd
.
mutable_pattern
(),
"fc_reshape_elementwise_layernorm_fuse"
);
fused_pattern
(
x
);
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
if
(
subgraph
.
count
(
x
)
<=
0
)
{
LOG
(
WARNING
)
<<
"The subgraph is empty."
;
return
;
}
VLOG
(
4
)
<<
"handle FCReshapeElementwiseLayerNorm fuse"
;
GET_IR_NODE_FROM_SUBGRAPH
(
fc
,
fc
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
fc_w
,
fc_w
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
fc_bias
,
fc_bias
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
fc_out
,
fc_out
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
reshape2
,
reshape2
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
reshape_out
,
reshape_out
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise
,
elementwise
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_input
,
elementwise_input
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_out
,
elementwise_out
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
layer_norm
,
layer_norm
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
layer_norm_bias
,
layer_norm_bias
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
layer_norm_scale
,
layer_norm_scale
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
layer_norm_out
,
layer_norm_out
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
layer_norm_mean
,
layer_norm_mean
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
layer_norm_variance
,
layer_norm_variance
,
fused_pattern
);
// if (!IsEqual(reshape_out->Var()->GetShape(),
// elementwise_input->Var()->GetShape())) {
// VLOG(4) << "shape check failed!!!!!";
//
// VLOG(4) << "reshape_out shape: ";
// for (auto dim : reshape_out->Var()->GetShape()) {
// VLOG(4) << "dim: " << dim;
// }
// VLOG(4) << "elementwise_input shape: ";
// for (auto dim : elementwise_input->Var()->GetShape()) {
// VLOG(4) << "dim: " << dim;
// }
// return;
// }
//
// int begin_norm_axis =
// BOOST_GET_CONST(int,
// layer_norm->Op()->GetAttr("begin_norm_axis"));
// auto layer_norm_x_dims = fc_out->Var()->GetShape();
// auto layer_norm_x_mat_dims = framework::flatten_to_2d(
// framework::make_ddim(layer_norm_x_dims), begin_norm_axis);
// if (fc_w->Var()->GetShape()[1] != layer_norm_x_mat_dims[1]) {
// return;
// }
if
(
reshape_out
->
outputs
.
size
()
>
1U
||
elementwise_out
->
outputs
.
size
()
>
1U
)
{
VLOG
(
4
)
<<
"output check failed!!!!!"
;
VLOG
(
4
)
<<
"reshape_out->outputs.size(): "
<<
reshape_out
->
outputs
.
size
();
VLOG
(
4
)
<<
"elementwise_out->outputs.size(): "
<<
elementwise_out
->
outputs
.
size
();
// When reshape_out or elementwise_out are used as input of other
// operators, we
// cannon fuse.
return
;
}
std
::
unordered_set
<
const
Node
*>
del_node_set
;
// Create an FusedFCReshapeElementwiseLayerNorm op node
OpDesc
new_desc
;
new_desc
.
SetType
(
"fused_fc_reshape_elementwise_layernorm"
);
// inputs
new_desc
.
SetInput
(
"X"
,
{
subgraph
.
at
(
x
)
->
Name
()});
new_desc
.
SetInput
(
"W"
,
{
fc_w
->
Name
()});
new_desc
.
SetInput
(
"Bias0"
,
{
fc_bias
->
Name
()});
new_desc
.
SetInput
(
"Y"
,
{
elementwise_input
->
Name
()});
new_desc
.
SetInput
(
"Scale"
,
{
layer_norm_scale
->
Name
()});
new_desc
.
SetInput
(
"Bias1"
,
{
layer_norm_bias
->
Name
()});
// outputs
new_desc
.
SetOutput
(
"Out"
,
{
layer_norm_out
->
Name
()});
bool
lnm_has_output
=
layer_norm_mean
->
outputs
.
size
()
>
0U
;
if
(
lnm_has_output
)
{
new_desc
.
SetOutput
(
"Mean"
,
{
layer_norm_mean
->
Name
()});
}
else
{
del_node_set
.
insert
(
layer_norm_mean
);
}
bool
lnv_has_output
=
layer_norm_variance
->
outputs
.
size
()
>
0U
;
if
(
lnv_has_output
)
{
new_desc
.
SetOutput
(
"Variance"
,
{
layer_norm_variance
->
Name
()});
}
else
{
del_node_set
.
insert
(
layer_norm_variance
);
}
// attrs
new_desc
.
SetAttr
(
"x_num_col_dims"
,
fc
->
Op
()
->
GetAttr
(
"in_num_col_dims"
));
new_desc
.
SetAttr
(
"shape"
,
reshape2
->
Op
()
->
GetAttr
(
"shape"
));
new_desc
.
SetAttr
(
"epsilon"
,
layer_norm
->
Op
()
->
GetAttr
(
"epsilon"
));
new_desc
.
SetAttr
(
"begin_norm_axis"
,
layer_norm
->
Op
()
->
GetAttr
(
"begin_norm_axis"
));
new_desc
.
SetAttr
(
"activation_type"
,
fc
->
Op
()
->
GetAttr
(
"activation_type"
));
auto
fused_node
=
graph
->
CreateOpNode
(
&
new_desc
);
// OpDesc will be copied.
del_node_set
.
insert
(
fc
);
del_node_set
.
insert
(
reshape2
);
del_node_set
.
insert
(
elementwise
);
del_node_set
.
insert
(
layer_norm
);
del_node_set
.
insert
(
fc_out
);
del_node_set
.
insert
(
reshape_out
);
del_node_set
.
insert
(
elementwise_out
);
GraphSafeRemoveNodes
(
graph
,
del_node_set
);
IR_NODE_LINK_TO
(
subgraph
.
at
(
x
),
fused_node
);
IR_NODE_LINK_TO
(
fc_w
,
fused_node
);
IR_NODE_LINK_TO
(
fc_bias
,
fused_node
);
IR_NODE_LINK_TO
(
elementwise_input
,
fused_node
);
IR_NODE_LINK_TO
(
layer_norm_scale
,
fused_node
);
IR_NODE_LINK_TO
(
layer_norm_bias
,
fused_node
);
IR_NODE_LINK_TO
(
fused_node
,
layer_norm_out
);
if
(
lnm_has_output
)
{
IR_NODE_LINK_TO
(
fused_node
,
layer_norm_mean
);
}
if
(
lnv_has_output
)
{
IR_NODE_LINK_TO
(
fused_node
,
layer_norm_variance
);
}
found_subgraph_count
++
;
};
gpd
(
graph
,
handler
);
AddStatis
(
found_subgraph_count
);
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
fc_reshape_elementwise_layernorm_fuse_pass
,
paddle
::
framework
::
ir
::
FCReshapeElementwiseLayerNormFusePass
);
paddle/fluid/framework/ir/fc_reshape_elementwise_layernorm_fuse_pass.h
0 → 100644
浏览文件 @
a170fd30
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
FCReshapeElementwiseLayerNormFusePass
:
public
FusePassBase
{
public:
virtual
~
FCReshapeElementwiseLayerNormFusePass
()
{}
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/inference/api/paddle_pass_builder.cc
浏览文件 @
a170fd30
...
@@ -103,16 +103,17 @@ const std::vector<std::string> kLiteSubgraphPasses({
...
@@ -103,16 +103,17 @@ const std::vector<std::string> kLiteSubgraphPasses({
GpuPassStrategy
::
GpuPassStrategy
()
:
PassStrategy
({})
{
GpuPassStrategy
::
GpuPassStrategy
()
:
PassStrategy
({})
{
passes_
.
assign
({
passes_
.
assign
({
// "identity_scale_op_clean_pass", //
// "identity_scale_op_clean_pass", //
"is_test_pass"
,
//
"is_test_pass"
,
//
"simplify_with_basic_ops_pass"
,
//
"simplify_with_basic_ops_pass"
,
//
"conv_affine_channel_fuse_pass"
,
//
"conv_affine_channel_fuse_pass"
,
//
"conv_eltwiseadd_affine_channel_fuse_pass"
,
//
"conv_eltwiseadd_affine_channel_fuse_pass"
,
//
"conv_bn_fuse_pass"
,
//
"conv_bn_fuse_pass"
,
//
"conv_eltwiseadd_bn_fuse_pass"
,
//
"conv_eltwiseadd_bn_fuse_pass"
,
//
"embedding_eltwise_layernorm_fuse_pass"
,
//
"embedding_eltwise_layernorm_fuse_pass"
,
//
"multihead_matmul_fuse_pass_v2"
,
//
"multihead_matmul_fuse_pass_v2"
,
//
"fc_fuse_pass"
,
//
"fc_fuse_pass"
,
//
"fc_elementwise_layernorm_fuse_pass"
,
//
"fc_elementwise_layernorm_fuse_pass"
,
//
"fc_reshape_elementwise_layernorm_fuse_pass"
,
//
#if CUDNN_VERSION >= 7100 // To run conv_fusion, the version of cudnn must be
#if CUDNN_VERSION >= 7100 // To run conv_fusion, the version of cudnn must be
// guaranteed at least v7
// guaranteed at least v7
"conv_elementwise_add_act_fuse_pass"
,
//
"conv_elementwise_add_act_fuse_pass"
,
//
...
...
paddle/fluid/operators/fused/CMakeLists.txt
浏览文件 @
a170fd30
...
@@ -5,6 +5,7 @@ register_operators(EXCLUDES
...
@@ -5,6 +5,7 @@ register_operators(EXCLUDES
fusion_transpose_flatten_concat_op
fusion_transpose_flatten_concat_op
fusion_conv_inception_op
fusion_conv_inception_op
fused_fc_elementwise_layernorm_op
fused_fc_elementwise_layernorm_op
fused_fc_reshape_elementwise_layernorm_op
multihead_matmul_op
multihead_matmul_op
fused_embedding_eltwise_layernorm_op
fused_embedding_eltwise_layernorm_op
fusion_group_op
fusion_group_op
...
@@ -36,6 +37,9 @@ if (WITH_GPU)
...
@@ -36,6 +37,9 @@ if (WITH_GPU)
# fused_fc_elementwise_layernorm_op
# fused_fc_elementwise_layernorm_op
op_library
(
fused_fc_elementwise_layernorm_op
)
op_library
(
fused_fc_elementwise_layernorm_op
)
file
(
APPEND
${
pybind_file
}
"USE_CUDA_ONLY_OP(fused_fc_elementwise_layernorm);
\n
"
)
file
(
APPEND
${
pybind_file
}
"USE_CUDA_ONLY_OP(fused_fc_elementwise_layernorm);
\n
"
)
# fused_fc_reshape_elementwise_layernorm_op
op_library
(
fused_fc_reshape_elementwise_layernorm_op
)
file
(
APPEND
${
pybind_file
}
"USE_CUDA_ONLY_OP(fused_fc_reshape_elementwise_layernorm);
\n
"
)
# multihead_matmul_op
# multihead_matmul_op
op_library
(
multihead_matmul_op
)
op_library
(
multihead_matmul_op
)
file
(
APPEND
${
pybind_file
}
"USE_CUDA_ONLY_OP(multihead_matmul);
\n
"
)
file
(
APPEND
${
pybind_file
}
"USE_CUDA_ONLY_OP(multihead_matmul);
\n
"
)
...
...
paddle/fluid/operators/fused/fused_fc_reshape_elementwise_layernorm_op.cc
0 → 100644
浏览文件 @
a170fd30
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
class
FusedFCReshapeElementwiseLayerNormOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"X"
),
true
,
"Input(X) of fused_fc_elementwise_layernorm should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"W"
),
true
,
"Input(W) of fused_fc_elementwise_layernorm should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Y"
),
true
,
"Input(Y) of fused_fc_elementwise_layernorm should not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Out"
),
true
,
"Output(Out) of fused_fc_elementwise_layernorm should not be null."
);
auto
w_dims
=
ctx
->
GetInputDim
(
"W"
);
PADDLE_ENFORCE_EQ
(
w_dims
.
size
(),
2
,
"Fully Connected input should be 2-D tensor."
);
if
(
ctx
->
HasInput
(
"Bias0"
))
{
auto
bias0_dims
=
ctx
->
GetInputDim
(
"Bias0"
);
if
(
bias0_dims
.
size
()
==
2
)
{
PADDLE_ENFORCE_EQ
(
bias0_dims
[
0
],
1
,
"The shape of Bias must be [1, dim]."
);
PADDLE_ENFORCE_EQ
(
bias0_dims
[
1
],
w_dims
[
1
],
"The shape of Bias must be [1, dim]."
);
}
else
if
(
bias0_dims
.
size
()
==
1
)
{
PADDLE_ENFORCE_EQ
(
bias0_dims
[
0
],
w_dims
[
1
],
"The shape of Bias must be [1, dim]."
);
}
}
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
int
x_num_col_dims
=
ctx
->
Attrs
().
Get
<
int
>
(
"x_num_col_dims"
);
PADDLE_ENFORCE_GT
(
x_dims
.
size
(),
x_num_col_dims
,
"The input tensor Input's rank of FCOp should be larger than "
"in_num_col_dims."
);
auto
x_mat_dims
=
framework
::
flatten_to_2d
(
x_dims
,
x_num_col_dims
);
PADDLE_ENFORCE_EQ
(
x_mat_dims
[
1
],
w_dims
[
0
],
"Fully Connected input and weigth size do not match. %s, %s"
);
// std::vector<int64_t> fc_out_dims;
// for (int i = 0; i < x_num_col_dims; ++i) {
// fc_out_dims.push_back(x_dims[i]);
// }
// fc_out_dims.push_back(w_dims[1]);
auto
y_dims
=
ctx
->
GetInputDim
(
"Y"
);
// PADDLE_ENFORCE_EQ(framework::make_ddim(fc_out_dims), y_dims);
auto
begin_norm_axis
=
ctx
->
Attrs
().
Get
<
int
>
(
"begin_norm_axis"
);
PADDLE_ENFORCE_LT
(
begin_norm_axis
,
y_dims
.
size
(),
"'begin_norm_axis' must be less than the rank of Input(Y)."
);
auto
y_mat_dim
=
framework
::
flatten_to_2d
(
y_dims
,
begin_norm_axis
);
int64_t
dim_0
=
y_mat_dim
[
0
];
int64_t
dim_1
=
y_mat_dim
[
1
];
if
(
ctx
->
HasInput
(
"Scale"
))
{
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Scale"
).
size
(),
1
);
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Scale"
)[
0
],
dim_1
,
"scale should with right"
);
}
}
if
(
ctx
->
HasInput
(
"Bias1"
))
{
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Bias1"
).
size
(),
1
);
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputDim
(
"Bias1"
)[
0
],
dim_1
,
"bias should with right"
);
}
}
ctx
->
SetOutputDim
(
"Out"
,
y_dims
);
if
(
ctx
->
HasOutput
(
"Mean"
))
{
ctx
->
SetOutputDim
(
"Mean"
,
{
dim_0
});
}
if
(
ctx
->
HasOutput
(
"Variance"
))
{
ctx
->
SetOutputDim
(
"Variance"
,
{
dim_0
});
}
ctx
->
ShareLoD
(
"X"
,
"Out"
);
}
};
class
FusedFCReshapeElementwiseLayerNormOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor), The input tensor of fully connected operation"
);
AddInput
(
"W"
,
"(Tensor), The weight tensor of fully connected operation. It is "
"a 2-D Tensor with shape (I, O)"
);
AddInput
(
"Bias0"
,
"(Tensor, optional), The bias tensor of fully connecred "
"operation. It is a 1-D Tensor with shape (O), or a 2-D Tensor "
"with shape (1, O)."
)
.
AsDispensable
();
AddInput
(
"Y"
,
"(Tensor), The second input tensor of elementwise_add operation. "
"Note that the shape should be the same as fully connect's result "
"tensor."
);
AddInput
(
"Scale"
,
"(Tensor, optional), It is a 1-D input Tensor of layer_norm operation."
)
.
AsDispensable
();
AddInput
(
"Bias1"
,
"(Tensor, optional), It is a 1-D input Tensor of layer_norm operation."
)
.
AsDispensable
();
AddOutput
(
"Out"
,
"(Tensor), Output after normalization. The shape is the shame as "
"layer_norm's input."
);
AddOutput
(
"Mean"
,
"(Tensor, optional), Mean of the current minibatch"
)
.
AsDispensable
();
AddOutput
(
"Variance"
,
"(Tensor, optional), Variance of the current minibatch"
)
.
AsDispensable
();
AddAttr
<
int
>
(
"x_num_col_dims"
,
"(int, default 1), This op can take tensors with more than "
"two dimensions as its inputs."
)
.
SetDefault
(
1
)
.
EqualGreaterThan
(
1
);
AddAttr
<
std
::
string
>
(
"activation_type"
,
"Activation type used in fully connected operator."
)
.
SetDefault
(
""
);
AddAttr
<
std
::
vector
<
int
>>
(
"shape"
,
"(std::vector<int>) Target shape of reshape operator."
"It has the lowest priority compare with Input(Shape) and "
" Input(ShapeTensor)."
)
.
SetDefault
({});
AddAttr
<
float
>
(
"epsilon"
,
"Constant for numerical stability [default 1e-5]."
)
.
SetDefault
(
1e-5
)
.
AddCustomChecker
([](
const
float
&
epsilon
)
{
PADDLE_ENFORCE_GE
(
epsilon
,
0.0
f
,
"'epsilon' should be between 0.0 and 0.001."
);
PADDLE_ENFORCE_LE
(
epsilon
,
0.001
f
,
"'epsilon' should be between 0.0 and 0.001."
);
});
AddAttr
<
int
>
(
"begin_norm_axis"
,
"the axis of `begin_norm_axis ... Rank(Y) - 1` will be "
"normalized. `begin_norm_axis` splits the tensor(`X`) to a "
"matrix [N,H]. [default 1]."
)
.
SetDefault
(
1
)
.
AddCustomChecker
([](
const
int
&
begin_norm_axis
)
{
PADDLE_ENFORCE_GT
(
begin_norm_axis
,
0
,
"'begin_norm_axis' should be greater than zero."
);
});
AddComment
(
R"DOC(
fc_out <= fc(X, W, Bias0)
add_out <= elementwise_add(fc_out, Y)
(out, mean, variance) <= layer_norm(add_out, Scale, Bias1)
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
fused_fc_reshape_elementwise_layernorm
,
ops
::
FusedFCReshapeElementwiseLayerNormOp
,
ops
::
FusedFCReshapeElementwiseLayerNormOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
paddle/fluid/operators/fused/fused_fc_reshape_elementwise_layernorm_op.cu
0 → 100644
浏览文件 @
a170fd30
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <cub/cub.cuh>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/platform/cuda_device_function.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
static
__device__
__forceinline__
T
Relu
(
T
x
)
{
return
(
x
>
0
)
?
x
:
0
;
}
static
__device__
__forceinline__
float
RealSqrt
(
float
x
)
{
return
sqrtf
(
x
);
}
static
__device__
__forceinline__
double
RealSqrt
(
double
x
)
{
return
sqrt
(
x
);
}
template
<
typename
T
>
struct
PairForLayerNorm
{
__device__
__forceinline__
PairForLayerNorm
()
{}
__device__
__forceinline__
PairForLayerNorm
(
const
T
&
first
,
const
T
&
second
)
:
first_
(
first
),
second_
(
second
)
{}
T
first_
;
T
second_
;
};
template
<
typename
T
>
struct
PairForLayerNormAddFunctor
{
__device__
__forceinline__
PairForLayerNorm
<
T
>
operator
()(
const
PairForLayerNorm
<
T
>&
p1
,
const
PairForLayerNorm
<
T
>&
p2
)
{
return
PairForLayerNorm
<
T
>
(
p1
.
first_
+
p2
.
first_
,
p1
.
second_
+
p2
.
second_
);
}
};
template
<
typename
T
,
bool
DoRelu
,
int
BlockDim
>
__global__
void
InplaceAddReluAddLayerNormKernel
(
const
T
*
y
,
const
T
*
bias_0
,
const
T
*
bias_1
,
const
T
*
scale
,
T
*
out
,
T
*
mean
,
T
*
variance
,
int
M
,
int
N
,
float
epsilon
)
{
using
BlockReduce
=
cub
::
BlockReduce
<
PairForLayerNorm
<
T
>
,
BlockDim
>
;
__shared__
typename
BlockReduce
::
TempStorage
temp_storage
;
__shared__
T
shared_mem
[
BlockDim
+
2
];
for
(
int
i
=
blockIdx
.
x
;
i
<
M
;
i
+=
gridDim
.
x
)
{
int
index
=
i
*
N
+
threadIdx
.
x
;
// The fisrt BlockDim elements will be saved to shared memory.
int
save_index
=
threadIdx
.
x
;
T
*
save_ptr
=
shared_mem
;
T
sum_i
=
0
;
T
square_sum_i
=
0
;
for
(
int
j
=
threadIdx
.
x
;
j
<
N
;
j
+=
blockDim
.
x
)
{
T
tmp_0
=
out
[
index
];
// Add bias
T
tmp_1
=
bias_0
?
tmp_0
+
bias_0
[
j
]
:
tmp_0
;
// Relu
T
tmp_2
=
DoRelu
?
Relu
(
tmp_1
)
:
tmp_1
;
// elementwise_add
T
tmp_3
=
tmp_2
+
y
[
index
];
// Save
save_ptr
[
save_index
]
=
tmp_3
;
save_ptr
=
out
;
index
+=
blockDim
.
x
;
save_index
=
index
;
// For layer_norm, reduce to calculate mean and std
sum_i
+=
tmp_3
;
square_sum_i
+=
(
tmp_3
*
tmp_3
);
}
auto
pair
=
BlockReduce
(
temp_storage
)
.
Reduce
(
PairForLayerNorm
<
T
>
(
sum_i
,
square_sum_i
),
PairForLayerNormAddFunctor
<
T
>
());
if
(
threadIdx
.
x
==
0
)
{
T
mean_i
=
static_cast
<
T
>
(
pair
.
first_
/
N
);
T
variance_i
=
static_cast
<
T
>
(
pair
.
second_
/
N
-
mean_i
*
mean_i
);
shared_mem
[
BlockDim
]
=
mean_i
;
shared_mem
[
BlockDim
+
1
]
=
variance_i
;
if
(
mean
)
{
mean
[
blockIdx
.
x
]
=
mean_i
;
}
if
(
variance
)
{
variance
[
blockIdx
.
x
]
=
variance_i
;
}
}
__syncthreads
();
T
mean_i
=
shared_mem
[
BlockDim
];
T
std_i
=
static_cast
<
T
>
(
RealSqrt
(
shared_mem
[
BlockDim
+
1
]
+
epsilon
));
index
=
i
*
N
+
threadIdx
.
x
;
// First BlockDim elements loading from shared memory.
save_index
=
threadIdx
.
x
;
save_ptr
=
shared_mem
;
// For layer_norm, calculate out
for
(
int
j
=
threadIdx
.
x
;
j
<
N
;
j
+=
blockDim
.
x
)
{
T
tmp_0
=
(
save_ptr
[
save_index
]
-
mean_i
)
/
std_i
;
T
tmp_1
=
scale
?
scale
[
j
]
*
tmp_0
:
tmp_0
;
out
[
index
]
=
bias_1
?
tmp_1
+
bias_1
[
j
]
:
tmp_1
;
save_ptr
=
out
;
index
+=
blockDim
.
x
;
save_index
=
index
;
}
}
}
template
<
typename
T
>
class
FusedFCReshapeElementwiseLayerNormOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
w
=
ctx
.
Input
<
framework
::
Tensor
>
(
"W"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
w_dims
=
w
->
dims
();
int
N
=
w_dims
[
1
];
int
K
=
w_dims
[
0
];
int
M
=
framework
::
product
(
x
->
dims
())
/
K
;
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
w_data
=
w
->
data
<
T
>
();
T
*
out_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
blas
=
math
::
GetBlas
<
platform
::
CUDADeviceContext
,
T
>
(
dev_ctx
);
blas
.
GEMM
(
false
,
false
,
M
,
N
,
K
,
static_cast
<
T
>
(
1.0
),
x_data
,
K
,
w_data
,
N
,
static_cast
<
T
>
(
0.0
),
out_data
,
N
);
auto
*
y
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
*
bias_0
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Bias0"
);
auto
*
bias_1
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Bias1"
);
auto
*
scale
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Scale"
);
const
T
*
y_data
=
y
->
data
<
T
>
();
const
T
*
bias_0_data
=
bias_0
?
bias_0
->
data
<
T
>
()
:
nullptr
;
const
T
*
bias_1_data
=
bias_1
?
bias_1
->
data
<
T
>
()
:
nullptr
;
const
T
*
scale_data
=
scale
?
scale
->
data
<
T
>
()
:
nullptr
;
auto
*
mean
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Mean"
);
auto
*
variance
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Variance"
);
T
*
mean_data
=
mean
?
mean
->
mutable_data
<
T
>
(
ctx
.
GetPlace
())
:
nullptr
;
T
*
variance_data
=
variance
?
variance
->
mutable_data
<
T
>
(
ctx
.
GetPlace
())
:
nullptr
;
bool
with_relu
=
(
ctx
.
Attr
<
std
::
string
>
(
"activation_type"
)
==
"relu"
)
?
true
:
false
;
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
int
max_threads
=
dev_ctx
.
GetMaxPhysicalThreadCount
();
if
(
with_relu
)
{
switch
(
platform
::
RoundToPowerOfTwo
(
N
))
{
CUDA_LAUNCH_KERNEL_HELPER
(
InplaceAddReluAddLayerNormKernel
<
T
,
true
,
kPowerOfTwoDim
><<<
std
::
max
(
max_threads
/
kPowerOfTwoDim
,
1
),
kPowerOfTwoDim
,
0
,
dev_ctx
.
stream
()
>>>
(
y_data
,
bias_0_data
,
bias_1_data
,
scale_data
,
out_data
,
mean_data
,
variance_data
,
M
,
N
,
epsilon
));
}
}
else
{
switch
(
platform
::
RoundToPowerOfTwo
(
N
))
{
CUDA_LAUNCH_KERNEL_HELPER
(
InplaceAddReluAddLayerNormKernel
<
T
,
false
,
kPowerOfTwoDim
><<<
std
::
max
(
max_threads
/
kPowerOfTwoDim
,
1
),
kPowerOfTwoDim
,
0
,
dev_ctx
.
stream
()
>>>
(
y_data
,
bias_0_data
,
bias_1_data
,
scale_data
,
out_data
,
mean_data
,
variance_data
,
M
,
N
,
epsilon
));
}
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
fused_fc_reshape_elementwise_layernorm
,
ops
::
FusedFCReshapeElementwiseLayerNormOpKernel
<
float
>
);
paddle/fluid/operators/reshape_op.cc
浏览文件 @
a170fd30
...
@@ -253,6 +253,8 @@ class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -253,6 +253,8 @@ class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
"It has the lowest priority compare with Input(Shape) and "
"It has the lowest priority compare with Input(Shape) and "
" Input(ShapeTensor)."
)
" Input(ShapeTensor)."
)
.
SetDefault
({});
.
SetDefault
({});
AddAttr
<
bool
>
(
"inplace"
,
""
).
SetDefault
(
true
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Reshape Operator.
Reshape Operator.
...
@@ -327,6 +329,7 @@ class ReshapeGradOp : public framework::OperatorWithKernel {
...
@@ -327,6 +329,7 @@ class ReshapeGradOp : public framework::OperatorWithKernel {
class
ReshapeKernel
{
class
ReshapeKernel
{
public:
public:
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
inplace
=
ctx
.
Attr
<
bool
>
(
"inplace"
);
auto
*
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
auto
*
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
auto
*
in
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
auto
*
in
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
...
@@ -360,6 +363,10 @@ class ReshapeKernel {
...
@@ -360,6 +363,10 @@ class ReshapeKernel {
out
->
Resize
(
out_dims
);
out
->
Resize
(
out_dims
);
out
->
mutable_data
(
ctx
.
GetPlace
(),
in
->
type
());
out
->
mutable_data
(
ctx
.
GetPlace
(),
in
->
type
());
if
(
inplace
)
{
return
;
}
framework
::
TensorCopy
(
framework
::
TensorCopy
(
*
in
,
ctx
.
GetPlace
(),
*
in
,
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
platform
::
DeviceContext
>(),
out
);
ctx
.
template
device_context
<
platform
::
DeviceContext
>(),
out
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录