You need to sign in or sign up before continuing.
提交 9f7c9875 编写于 作者: C chengduoZH

fix doc

上级 3f8a7b55
......@@ -38,11 +38,12 @@ void Conv3DOp::InferShape(framework::InferShapeContext* ctx) const {
int input_channels = in_dims[1];
int output_channels = filter_dims[0];
PADDLE_ENFORCE_EQ(in_dims.size(), 5, "Conv3DOp input should be 5-D.");
PADDLE_ENFORCE_EQ(filter_dims.size(), 5, "Conv3DOp filter should be 5-D.");
PADDLE_ENFORCE_EQ(in_dims.size(), 5, "Conv3DOp input should be 5-D tensor.");
PADDLE_ENFORCE_EQ(filter_dims.size(), 5,
"Conv3DOp filter should be 5-D tensor.");
PADDLE_ENFORCE_EQ(input_channels, filter_dims[1] * groups,
"The number of input channels should be equal to filter "
"channels * groups.");
"(channels * groups).");
PADDLE_ENFORCE_EQ(
output_channels % groups, 0,
"The number of output channels should be divided by groups.");
......@@ -71,27 +72,31 @@ Conv3DOpMaker::Conv3DOpMaker(framework::OpProto* proto,
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput(
"Input",
"The input tensor of convolution operator. "
"(Tensor), the input tensor of convolution operator. "
"The format of input tensor is NCDHW. Where N is batch size, C is the "
"number of channels, D, H and W is the depth, height and width of "
"image.");
AddInput("Filter",
"The filter tensor of convolution operator."
"(Tensor), the filter tensor of convolution operator."
"The format of the filter tensor is MCDHW, where M is the number of "
"output image channels, C is the number of input image channels, "
"D, H and W is depth, height and width of filter. "
"If the groups attribute is greater than 1, C equal the number of "
"input image channels divided by the groups.");
AddOutput("Output",
"The output tensor of convolution operator."
"(Tensor), the output tensor of convolution operator."
"The format of output tensor is also NCDHW.");
AddAttr<std::vector<int>>("strides", "strides of convolution operator.")
AddAttr<std::vector<int>>(
"strides",
"(vector, default {0,0,0}), the strides of convolution operator.")
.SetDefault({1, 1, 1});
AddAttr<std::vector<int>>("paddings", "The paddings of convolution operator.")
AddAttr<std::vector<int>>(
"paddings",
"(vector, default {0,0,0}), the paddings of convolution operator.")
.SetDefault({0, 0, 0});
AddAttr<int>(
"groups",
"The group size of convolution operator. "
"(int, default 1) the group size of convolution operator. "
"Refer to grouped convolution in Alex Krizhevsky's paper: "
"when group=2, the first half of the filters are only connected to the "
"first half of the input channels, and the second half only connected "
......@@ -101,6 +106,22 @@ Conv3DOpMaker::Conv3DOpMaker(framework::OpProto* proto,
The convolution operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
Input(Input, Filter) and output(Output) are in NCDHW format. Where N is batch
size, C is the number of channels, D, H and W is the depth, height and
width of feature. Parameters(ksize, strides, paddings) are three elements.
These three elements represent depth, height and width, respectively.
The input(X) size and output(Out) size may be different.
Example:
Input:
Input shape: (N, C_in, D_in, H_in, W_in)
Filter shape: (C_out, C_in, D_f, H_f, W_f)
Output:
Output shape: (N, C_out, D_out, H_out, W_out)
where
D_out = (D_in - filter_size[0] + 2 * paddings[0]) / strides[0] + 1;
H_out = (H_in - filter_size[1] + 2 * paddings[1]) / strides[1] + 1;
W_out = (W_in - filter_size[2] + 2 * paddings[2]) / strides[2] + 1;
)DOC");
}
......
......@@ -123,7 +123,6 @@ Example:
X shape: (N, C, H_in, W_in)
Output:
Out shape: (N, C, H_out, W_out)
Mask shape: (N, C, H_out, W_out)
where
H_out = (H_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
W_out = (W_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
......@@ -190,7 +189,6 @@ Example:
X shape: (N, C, D_in, H_in, W_in)
Output:
Out shape: (N, C, D_out, H_out, W_out)
Mask shape: (N, C, D_out, H_out, W_out)
where
D_out = (D_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
H_out = (H_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册