未验证 提交 9f4d201a 编写于 作者: 提交者: GitHub

add test (#35316)

上级 4cf1255c
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import unittest
class TrtConvertLayerNormTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
inputs = program_config.inputs
weights = program_config.weights
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
if attrs[0]['epsilon'] < 0 or attrs[0]['epsilon'] > 0.001:
return False
if attrs[0]['begin_norm_axis'] <= 0 or attrs[0]['begin_norm_axis'] >= (
len(inputs['input_data'].shape) - 1):
return False
return True
def sample_program_configs(self):
def generate_input1(attrs: List[Dict[str, Any]], shape_input):
return np.ones(shape_input).astype(np.float32)
def generate_input2(attrs: List[Dict[str, Any]], shape_input):
begin = attrs[0]["begin_norm_axis"]
sum = 1
for x in range(begin, len(shape_input)):
sum *= shape_input[x]
return np.ones([sum]).astype(np.float32)
for epsilon in [0.0005, -1, 1]:
for begin_norm_axis in [1, 0, -1, 2, 3]:
dics = [{
"epsilon": epsilon,
"begin_norm_axis": begin_norm_axis
}, {}]
ops_config = [{
"op_type": "layer_norm",
"op_inputs": {
"X": ["input_data"],
"Scale": ["scale_data"],
"Bias": ["bias_data"]
},
"op_outputs": {
"Y": ["y_data"],
"Mean": ["saved_mean_data"],
"Variance": ["saved_variance_data"]
},
"op_attrs": dics[0]
}]
ops = self.generate_op_config(ops_config)
shape_input = [1, 3, 64, 64]
program_config = ProgramConfig(
ops=ops,
weights={
"bias_data": TensorConfig(data_gen=partial(
generate_input2, dics, shape_input)),
"scale_data": TensorConfig(data_gen=partial(
generate_input2, dics, shape_input))
},
inputs={
"input_data": TensorConfig(data_gen=partial(
generate_input1, dics, shape_input))
},
outputs=["y_data"])
yield program_config
def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
self.dynamic_shape.min_input_shape = {"input_data": [1, 3, 32, 32]}
self.dynamic_shape.max_input_shape = {"input_data": [4, 3, 64, 64]}
self.dynamic_shape.opt_input_shape = {"input_data": [1, 3, 64, 64]}
def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
def generate_trt_nodes_num(attrs, dynamic_shape):
inputs = program_config.inputs
#if not dynamic_shape:
# if attrs[0]["begin_norm_axis"] >= len(inputs["input_data"].shape) - 1:
# print ("iiiiiii")
# return 0, 3
return 1, 2
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-2
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-2
def test(self):
self.run_test()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册