提交 9dbea788 编写于 作者: F ForFishes

fix the scatternd/scatterndadd

上级 6b727e08
...@@ -8555,6 +8555,11 @@ def scatter_nd_add(ref, index, updates, name=None): ...@@ -8555,6 +8555,11 @@ def scatter_nd_add(ref, index, updates, name=None):
output = fluid.layers.scatter_nd_add(ref, index, updates) output = fluid.layers.scatter_nd_add(ref, index, updates)
""" """
if in_dygraph_mode():
op = getattr(core.ops, 'scatter_nd_add')
return op(ref, updates, output)
if ref.dtype != updates.dtype: if ref.dtype != updates.dtype:
raise ValueError("ref and updates must have same data type.") raise ValueError("ref and updates must have same data type.")
...@@ -8577,34 +8582,38 @@ def scatter_nd(index, updates, shape, name=None): ...@@ -8577,34 +8582,38 @@ def scatter_nd(index, updates, shape, name=None):
Output is obtained by scattering the :attr:`updates` in a new tensor according Output is obtained by scattering the :attr:`updates` in a new tensor according
to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the
tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)` tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)`
is equal to :code:`scatter_nd_add(fluid.layers.zeros(shape, updates.dtype), index, updates)` . is equal to :code:`scatter_nd_add(paddle.zeros(shape, updates.dtype), index, updates)` .
If :attr:`index` has repeated elements, then the corresponding updates are accumulated. If :attr:`index` has repeated elements, then the corresponding updates are accumulated.
Because of the numerical approximation issues, the different order of repeated elements Because of the numerical approximation issues, the different order of repeated elements
in :attr:`index` may cause different results. The specific calculation method can be in :attr:`index` may cause different results. The specific calculation method can be
seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op. seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.
Args: Args:
index (Variable): The index input with rank > 1 and index.shape[-1] <= len(shape). index (Tensor): The index input with rank > 1 and index.shape[-1] <= len(shape).
Its dtype should be int32 or int64 as it is used as indexes. Its dtype should be int32 or int64 as it is used as indexes.
updates (Variable): The updated value of scatter_nd op. Its dtype should be float32, float64. updates (Tensor): The updated value of scatter_nd op. Its dtype should be float32, float64.
It must have the shape index.shape[:-1] + shape[index.shape[-1]:] It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
shape(tuple|list): Shape of output tensor. shape(tuple|list): Shape of output tensor.
name (str|None): The output variable name. If set None, the layer will be named automatically. name (str|None): The output Tensor name. If set None, the layer will be named automatically.
Returns: Returns:
output (Variable): The output is a tensor with the same type as :attr:`updates` . output (Tensor): The output is a tensor with the same type as :attr:`updates` .
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle
import numpy as np
index = fluid.data(name='index', shape=[3, 2], dtype='int64') index_data = np.array([[1, 1],
updates = fluid.data(name='update', shape=[3, 9, 10], dtype='float32') [0, 1],
[1, 3]]).astype(np.int64)
index = paddle.to_tensor(index_data)
updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
shape = [3, 5, 9, 10] shape = [3, 5, 9, 10]
output = fluid.layers.scatter_nd(index, updates, shape) output = paddle.scatter_nd(index, updates, shape)
""" """
return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name) return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)
......
...@@ -284,5 +284,24 @@ class TestScatterNdOpRaise(unittest.TestCase): ...@@ -284,5 +284,24 @@ class TestScatterNdOpRaise(unittest.TestCase):
self.assertRaises(ValueError, check_raise_is_test) self.assertRaises(ValueError, check_raise_is_test)
class TestDygraph(unittest.TestCase):
def test_dygraph1(self):
paddle.disable_static()
index_data = np.array([[1, 1], [0, 1], [1, 3]]).astype(np.int64)
index = paddle.to_tensor(index_data)
updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
shape = [3, 5, 9, 10]
output = paddle.scatter_nd(index, updates, shape)
def test_dygraph2(self):
paddle.disable_static()
x = paddle.rand(shape=[3, 5, 9, 10], dtype='float32')
updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
index_data = np.array([[1, 1], [0, 1], [1, 3]]).astype(np.int64)
index = paddle.to_tensor(index_data)
output = paddle.scatter_nd_add(x, index, updates)
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()
...@@ -29,7 +29,6 @@ from ..fluid.layers import strided_slice #DEFINE_ALIAS ...@@ -29,7 +29,6 @@ from ..fluid.layers import strided_slice #DEFINE_ALIAS
from ..fluid.layers import transpose #DEFINE_ALIAS from ..fluid.layers import transpose #DEFINE_ALIAS
from ..fluid.layers import unstack #DEFINE_ALIAS from ..fluid.layers import unstack #DEFINE_ALIAS
from ..fluid.layers import scatter_nd_add #DEFINE_ALIAS
from ..fluid.layers import scatter_nd #DEFINE_ALIAS from ..fluid.layers import scatter_nd #DEFINE_ALIAS
from ..fluid.layers import shard_index #DEFINE_ALIAS from ..fluid.layers import shard_index #DEFINE_ALIAS
from ..fluid.layers import unique_with_counts #DEFINE_ALIAS from ..fluid.layers import unique_with_counts #DEFINE_ALIAS
...@@ -974,6 +973,78 @@ def scatter(x, index, updates, overwrite=True, name=None): ...@@ -974,6 +973,78 @@ def scatter(x, index, updates, overwrite=True, name=None):
return out return out
def scatter_nd_add(x, index, updates, name=None):
"""
**Scatter_nd_add Layer**
Output is obtained by applying sparse addition to a single value
or slice in a Tensor.
:attr:`x` is a Tensor with rank :math:`R`
and :attr:`index` is a Tensor with rank :math:`K` . Thus, :attr:`index`
has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates`
is a Tensor with rank :math:`K - 1 + R - Q` and its
shape is :math:`index.shape[:-1] + x.shape[index.shape[-1]:]` .
According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
add the corresponding :attr:`updates` slice to the :attr:`x` slice
which is obtained by the last one dimension of :attr:`index` .
.. code-block:: text
Given:
* Case 1:
x = [0, 1, 2, 3, 4, 5]
index = [[1], [2], [3], [1]]
updates = [9, 10, 11, 12]
we get:
output = [0, 22, 12, 14, 4, 5]
* Case 2:
x = [[65, 17], [-14, -25]]
index = [[], []]
updates = [[[-1, -2], [1, 2]],
[[3, 4], [-3, -4]]]
x.shape = (2, 2)
index.shape = (2, 0)
updates.shape = (2, 2, 2)
we get:
output = [[67, 19], [-16, -27]]
Args:
x (Tensor): The x input. Its dtype should be float32, float64.
index (Tensor): The index input with rank > 1 and index.shape[-1] <= x.rank.
Its dtype should be int32 or int64 as it is used as indexes.
updates (Tensor): The updated value of scatter_nd_add op, and it must have the same dtype
as x. It must have the shape index.shape[:-1] + x.shape[index.shape[-1]:].
name (str|None): The output tensor name. If set None, the layer will be named automatically.
Returns:
output (Tensor): The output is a tensor with the same shape and dtype as x.
Examples:
.. code-block:: python
import paddle
import numpy as np
x = paddle.rand(shape=[3, 5, 9, 10], dtype='float32')
updates = paddle.rand(shape=[3, 9, 10], dtype='float32')
index_data = np.array([[1, 1],
[0, 1],
[1, 3]]).astype(np.int64)
index = paddle.to_tensor(index_data)
output = paddle.scatter_nd_add(x, index, updates)
"""
return layers.scatter_nd_add(x, index, updates, name=None)
def chunk(x, chunks, axis=0, name=None): def chunk(x, chunks, axis=0, name=None):
""" """
Split the input tensor into multiple sub-Tensors. Split the input tensor into multiple sub-Tensors.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册