未验证 提交 9ce45ddd 编写于 作者: H huangxu96 提交者: GitHub

Det &Slogdet (#34992)

Add new API : paddle.linalg.det & paddle.linalg.slogdet

API Alias:paddle.det& paddle.slogdet
上级 00e0e358
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/determinant_op.h"
namespace paddle {
namespace operators {
class DeterminantOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "determinant");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "determinant");
}
};
class DeterminantOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("Input", "(Tensor) The input tensor of determinant.");
AddOutput("Out",
"(Tensor) The output Tensor containing the determinant"
"value of a square matrix or batches of square matrices ");
AddComment(R"DOC(
Determinant Operator.)DOC");
}
};
class DeterminantGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input",
"DeterminantGradOp");
OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out", "DeterminantGradOp");
OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("Input")), "Output",
framework::GradVarName("Input"), "DeterminantGradOp");
ctx->SetOutputDim(framework::GradVarName("Input"),
ctx->GetInputDim("Input"));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.GetPlace());
}
};
template <typename T>
class DeterminantGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> grad_op) const override {
grad_op->SetType("determinant_grad");
grad_op->SetInput("Input", this->Input("Input"));
grad_op->SetInput("Out", this->Output("Out"));
grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
grad_op->SetOutput(framework::GradVarName("Input"),
this->InputGrad("Input"));
grad_op->SetAttrMap(this->Attrs());
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERER(DeterminantGradNoNeedBufferVarsInferer,
"Input");
class SlogDeterminantOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "determinant");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "determinant");
}
};
class SlogDeterminantOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("Input", "(Tensor) The input tensor of SlogDeterminant.");
AddOutput("Out",
"(Tensor) The output tensor containing the sign of the"
"determinant and the natural logarithm"
"of the absolute value of determinant,");
AddComment(R"DOC(
SlogDeterminant Operator.)DOC");
}
};
class SlogDeterminantGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input",
"SlogDeterminantGradOp");
OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out",
"SlogDeterminantGradOp");
OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("Input")), "Output",
framework::GradVarName("Input"), "SlogDeterminantGradOp");
ctx->SetOutputDim(framework::GradVarName("Input"),
ctx->GetInputDim("Input"));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.GetPlace());
}
};
template <typename T>
class SlogDeterminantGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> grad_op) const override {
grad_op->SetType("slogdeterminant_grad");
grad_op->SetInput("Input", this->Input("Input"));
grad_op->SetInput("Out", this->Output("Out"));
grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
grad_op->SetOutput(framework::GradVarName("Input"),
this->InputGrad("Input"));
grad_op->SetAttrMap(this->Attrs());
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SlogDeterminantGradNoNeedBufferVarsInferer,
"Input");
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OPERATOR(determinant, ops::DeterminantOp, ops::DeterminantOpMaker,
ops::DeterminantGradOpMaker<paddle::framework::OpDesc>,
ops::DeterminantGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(determinant_grad, ops::DeterminantGradOp)
REGISTER_OP_CPU_KERNEL(determinant,
ops::DeterminantKernel<plat::CPUDeviceContext, float>,
ops::DeterminantKernel<plat::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
determinant_grad, ops::DeterminantGradKernel<plat::CPUDeviceContext, float>,
ops::DeterminantGradKernel<plat::CPUDeviceContext, double>);
REGISTER_OPERATOR(slogdeterminant, ops::SlogDeterminantOp,
ops::SlogDeterminantOpMaker,
ops::SlogDeterminantGradOpMaker<paddle::framework::OpDesc>,
ops::SlogDeterminantGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(slogdeterminant_grad,
ops::DeterminantGradOp) // reuse det grad op
REGISTER_OP_CPU_KERNEL(
slogdeterminant, ops::SlogDeterminantKernel<plat::CPUDeviceContext, float>,
ops::SlogDeterminantKernel<plat::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
slogdeterminant_grad,
ops::DeterminantGradKernel<plat::CPUDeviceContext, float>,
ops::DeterminantGradKernel<plat::CPUDeviceContext, double>);
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/determinant_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
namespace paddle {
namespace operators {
using platform::PADDLE_CUDA_NUM_THREADS;
using Tensor = framework::Tensor;
template <typename T>
__global__ void DeterminantGrad(const size_t numel, T* out) {
int tid = threadIdx.x + blockIdx.x * blockDim.x;
if (tid < numel) {
out[tid] = static_cast<T>(1);
}
}
template <typename T>
class DeterminantGradCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const auto* dout = context.Input<Tensor>(framework::GradVarName("Out"));
const T* dout_data = dout->data<T>();
auto dout_dim = vectorize(dout->dims());
auto* dx = context.Output<Tensor>(framework::GradVarName("Input"));
T* dx_data = dx->mutable_data<T>(context.GetPlace());
int64_t numel = dx->numel();
for (int64_t idx = 0; idx < numel; idx++) {
dx_data[idx] = static_cast<T>(1);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(
determinant, ops::DeterminantKernel<plat::CUDADeviceContext, float>,
ops::DeterminantKernel<plat::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
determinant_grad,
ops::DeterminantGradKernel<plat::CUDADeviceContext, float>,
ops::DeterminantGradKernel<plat::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
slogdeterminant, ops::SlogDeterminantKernel<plat::CUDADeviceContext, float>,
ops::SlogDeterminantKernel<plat::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
slogdeterminant_grad,
ops::SlogDeterminantGradKernel<plat::CUDADeviceContext, float>,
ops::SlogDeterminantGradKernel<plat::CUDADeviceContext, double>);
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <Eigen/Dense>
#include <Eigen/LU>
#include <algorithm>
#include <cmath>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
T sign(T val) {
return static_cast<T>(T(0) < val) - (val < T(0));
}
template <typename T>
class EigenMatrix {};
template <>
class EigenMatrix<float> {
public:
using MatrixType = Eigen::MatrixXf;
};
template <>
class EigenMatrix<double> {
public:
using MatrixType = Eigen::MatrixXd;
};
inline int64_t GetBatchCount(const framework::DDim dims) {
int64_t batch_count = 1;
auto dim_size = dims.size();
PADDLE_ENFORCE_GT(dim_size, 2,
platform::errors::InvalidArgument(
"To get the number of batch square matrices, "
"the size of dimension should greater than 2.",
dim_size));
// Cumulative multiplying each dimension until the last 2 to get the batch
// count,
// for example a tensor with shape [3,3,3,3], the batch count of matrices is
// 9.
for (int64_t i = 0; i < dims.size() - 2; i++) {
batch_count *= dims[i];
}
return batch_count;
}
template <typename T>
struct DeterminantFunctor {
void operator()(const Tensor& input, const framework::ExecutionContext ctx,
int64_t rank, int64_t batch_count, Tensor* output) {
std::vector<T> input_vec;
std::vector<T> output_vec;
framework::TensorToVector(input, ctx.device_context(), &input_vec);
for (int64_t i = 0; i < batch_count; ++i) { // maybe can be parallel
auto begin_iter = input_vec.begin() + i * rank * rank;
auto end_iter = input_vec.begin() + (i + 1) * rank * rank;
std::vector<T> sub_vec(begin_iter,
end_iter); // get every square matrix data
Eigen::MatrixXf matrix(rank, rank);
for (int64_t i = 0; i < rank; ++i) {
for (int64_t j = 0; j < rank; ++j) {
matrix(i, j) = sub_vec[rank * i + j];
}
}
output_vec.push_back(matrix.determinant());
}
framework::TensorFromVector(output_vec, output);
}
};
template <typename DeviceContext, typename T>
class DeterminantKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* input = context.Input<framework::Tensor>("Input");
auto input_dim = vectorize(input->dims());
auto input_dim_size = input_dim.size();
auto* output = context.Output<framework::Tensor>("Out");
auto batch_count = GetBatchCount(input->dims());
VLOG(2) << "input dim:" << input->dims();
PADDLE_ENFORCE_GE(
input_dim_size, 2,
platform::errors::InvalidArgument(
"the input matrix dimension size should greater than 2."));
PADDLE_ENFORCE_EQ(input_dim[input_dim_size - 1],
input_dim[input_dim_size - 2],
platform::errors::InvalidArgument(
"the input matrix should be square matrix."));
auto rank = input_dim[input_dim_size - 1]; // square matrix length
DeterminantFunctor<T>()(*input, context, rank, batch_count, output);
if (input_dim_size > 2) {
auto output_dims =
framework::slice_ddim(input->dims(), 0, input_dim_size - 2);
output->Resize(output_dims);
}
VLOG(2) << "output dim:" << output->dims();
}
};
template <typename DeviceContext, typename T>
class DeterminantGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
PADDLE_THROW(platform::errors::Unimplemented(
"Not support DeterminantGrad at this time."));
}
};
template <typename T>
struct SlogDeterminantFunctor {
void operator()(const Tensor& input, const framework::ExecutionContext ctx,
int rank, int batch_count, Tensor* output) {
std::vector<T> input_vec;
std::vector<T> sign_vec;
std::vector<T> log_vec;
std::vector<T> output_vec;
framework::TensorToVector(input, ctx.device_context(), &input_vec);
for (int i = 0; i < batch_count; ++i) { // maybe can be parallel
auto begin_iter = input_vec.begin() + i * rank * rank;
auto end_iter = input_vec.begin() + (i + 1) * rank * rank;
std::vector<T> sub_vec(begin_iter,
end_iter); // get every square matrix data
typename EigenMatrix<T>::MatrixType matrix(rank, rank);
for (int i = 0; i < rank; ++i) {
for (int j = 0; j < rank; ++j) {
matrix(i, j) = sub_vec[rank * i + j];
}
}
VLOG(2) << "det value: " << matrix.determinant();
VLOG(2) << "matrix val: " << matrix;
auto det_val = matrix.determinant();
sign_vec.push_back(sign(det_val));
det_val >= 0
? log_vec.push_back(std::log(det_val))
: log_vec.push_back(std::log(std::abs(
det_val))); // for computing log value of a negative value.
}
// merge sign_vec and log_vec as final output_vec
output_vec.insert(output_vec.end(), sign_vec.begin(), sign_vec.end());
output_vec.insert(output_vec.end(), log_vec.begin(), log_vec.end());
framework::TensorFromVector(output_vec, output);
}
};
template <typename DeviceContext, typename T>
class SlogDeterminantKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* input = context.Input<framework::Tensor>("Input");
auto input_dim = vectorize(input->dims());
auto input_dim_size = input_dim.size();
auto* output = context.Output<framework::Tensor>("Out");
auto batch_count = GetBatchCount(input->dims());
VLOG(2) << "input dim:" << input->dims();
PADDLE_ENFORCE_GE(
input_dim_size, 2,
platform::errors::InvalidArgument(
"the input matrix dimension size should greater than 2."));
PADDLE_ENFORCE_EQ(input_dim[input_dim_size - 1],
input_dim[input_dim_size - 2],
platform::errors::InvalidArgument(
"the input matrix should be square matrix."));
auto rank = input_dim[input_dim_size - 1]; // square matrix length
SlogDeterminantFunctor<T>()(*input, context, rank, batch_count, output);
std::vector<int> output_dim_vec(input_dim.begin(), input_dim.end() - 2);
output_dim_vec.insert(output_dim_vec.begin(),
2); // make the output dims as same as numpy
auto output_dims = framework::make_ddim(output_dim_vec);
output->Resize(output_dims);
VLOG(2) << "output dim:" << output->dims();
}
};
template <typename DeviceContext, typename T>
class SlogDeterminantGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
PADDLE_THROW(platform::errors::Unimplemented(
"Not support SlogDeterminantGrad at this time."));
}
};
} // namespace operators
} // namespace paddle
......@@ -101,6 +101,8 @@ from .tensor.linalg import cholesky # noqa: F401
from .tensor.linalg import bmm # noqa: F401
from .tensor.linalg import histogram # noqa: F401
from .tensor.linalg import mv # noqa: F401
from .tensor.linalg import det # noqa: F401
from .tensor.linalg import slogdet # noqa: F401
from .tensor.linalg import multi_dot # noqa: F401
from .tensor.linalg import matrix_power # noqa: F401
from .tensor.linalg import svd # noqa: F401
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest, skip_check_grad_ci
import paddle
import paddle.nn.functional as F
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.tensor as tensor
paddle.enable_static()
@skip_check_grad_ci(reason="determinant grad is in progress.")
class TestDeterminantOp(OpTest):
def setUp(self):
self.init_data()
self.op_type = "determinant"
self.outputs = {'Out': self.target}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
pass
def init_data(self):
np.random.seed(0)
self.case = np.random.rand(3, 3, 3, 3, 3).astype('float64')
self.inputs = {'Input': self.case}
self.target = np.linalg.det(self.case)
class TestDeterminantOpCase1(TestDeterminantOp):
def init_data(self):
np.random.seed(0)
self.case = np.random.rand(3, 3, 3, 3).astype(np.float32)
self.inputs = {'Input': self.case}
self.target = np.linalg.det(self.case)
def test_check_grad(self):
pass
class TestDeterminantOpCase2(TestDeterminantOp):
def init_data(self):
np.random.seed(0)
self.case = np.random.rand(4, 2, 4, 4).astype('float64')
self.inputs = {'Input': self.case}
self.target = np.linalg.det(self.case)
def test_check_grad(self):
pass
class TestDeterminantAPI(unittest.TestCase):
def setUp(self):
self.shape = [3, 3, 3, 3]
np.random.seed(0)
self.x = np.random.rand(3, 3, 3, 3).astype(np.float32)
self.place = paddle.CPUPlace()
def test_api_static(self):
paddle.enable_static()
with paddle.static.program_guard(paddle.static.Program()):
x = paddle.fluid.data('X', self.shape)
out = paddle.linalg.det(x)
exe = paddle.static.Executor(self.place)
res = exe.run(feed={'X': self.x}, fetch_list=[out])
out_ref = np.linalg.det(self.x)
for out in res:
self.assertEqual(np.allclose(out, out_ref, rtol=1e-03), True)
def test_api_dygraph(self):
paddle.disable_static(self.place)
x_tensor = paddle.to_tensor(self.x)
out = paddle.linalg.det(x_tensor)
out_ref = np.linalg.det(self.x)
self.assertEqual(np.allclose(out.numpy(), out_ref, rtol=1e-03), True)
paddle.enable_static()
@skip_check_grad_ci(reason="slogdeterminant grad is in progress.")
class TestSlogDeterminantOp(OpTest):
def setUp(self):
self.op_type = "slogdeterminant"
self.init_data()
self.outputs = {'Out': self.target}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
pass
def init_data(self):
np.random.seed(0)
self.case = np.random.rand(3, 3, 3, 3).astype('float64')
self.inputs = {'Input': self.case}
self.target = np.array(np.linalg.slogdet(self.case))
class TestSlogDeterminantOpCase1(TestSlogDeterminantOp):
def init_data(self):
np.random.seed(0)
self.case = np.random.rand(2, 2, 5, 5).astype(np.float32)
self.inputs = {'Input': self.case}
self.target = np.array(np.linalg.slogdet(self.case))
class TestSlogDeterminantAPI(unittest.TestCase):
def setUp(self):
self.shape = [3, 3, 3, 3]
np.random.seed(0)
self.x = np.random.rand(3, 3, 3, 3).astype(np.float32)
self.place = paddle.CPUPlace()
def test_api_static(self):
paddle.enable_static()
with paddle.static.program_guard(paddle.static.Program()):
x = paddle.fluid.data('X', self.shape)
out = paddle.linalg.slogdet(x)
exe = paddle.static.Executor(self.place)
res = exe.run(feed={'X': self.x}, fetch_list=[out])
out_ref = np.array(np.linalg.slogdet(self.x))
for out in res:
self.assertEqual(np.allclose(out, out_ref, rtol=1e-03), True)
def test_api_dygraph(self):
paddle.disable_static(self.place)
x_tensor = paddle.to_tensor(self.x)
out = paddle.linalg.slogdet(x_tensor)
out_ref = np.array(np.linalg.slogdet(self.x))
self.assertEqual(np.allclose(out.numpy(), out_ref, rtol=1e-03), True)
paddle.enable_static()
if __name__ == '__main__':
unittest.main()
......@@ -22,6 +22,8 @@ from .tensor.linalg import multi_dot # noqa: F401
from .tensor.linalg import matrix_rank
from .tensor.linalg import svd
from .tensor.linalg import eigh # noqa: F401
from .tensor.linalg import det
from .tensor.linalg import slogdet
from .tensor.linalg import pinv
__all__ = [
......@@ -34,6 +36,8 @@ __all__ = [
'matrix_rank',
'svd',
'matrix_power',
'det',
'slogdet',
'eigh',
'pinv'
]
......@@ -14,7 +14,7 @@
import numpy as np
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
from ..fluid.framework import in_dygraph_mode, _varbase_creator, Variable
from ..fluid.layers import transpose, cast # noqa: F401
......@@ -1351,6 +1351,109 @@ def mv(x, vec, name=None):
return out
def det(x):
"""
Calculates determinant value of a square matrix or batches of square matrices.
Args:
x (Tensor): input (Tensor): the input matrix of size `(n, n)` or the batch of matrices of size
`(*, n, n)` where `*` is one or more batch dimensions.
Returns:
y (Tensor):the determinant value of a square matrix or batches of square matrices.
Example:
.. code-block:: python
import paddle
x = paddle.randn([3,3,3])
A = paddle.det(x)
print(A)
# [ 0.02547996, 2.52317095, -6.15900707])
"""
if in_dygraph_mode():
return core.ops.determinant(x)
check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'det')
input_shape = list(x.shape)
assert len(input_shape) >= 2, \
"The x must be at least 2-dimensional, " \
"but received Input x's dimensional: %s.\n" % \
len(input_shape)
assert (input_shape[-1] == input_shape[-2]), \
"Expect squared input," \
"but received %s by %s matrix.\n" \
%(input_shape[-2], input_shape[-1]) \
helper = LayerHelper('determinant', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='determinant', inputs={'Input': [x]}, outputs={'Out': [out]})
return out
def slogdet(x):
"""
Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.
The determinant can be computed with ``sign * exp(logabsdet)
Supports input of float, double
Note that for matrices that have zero determinant, this returns ``(0, -inf)``
Args:
x (Tensor): the batch of matrices of size :math:`(*, n, n)`
where math:`*` is one or more batch dimensions.
Returns:
y (Tensor): A tensor containing the sign of the determinant and the natural logarithm
of the absolute value of determinant, respectively.
Example:
.. code-block:: python
import paddle
x = paddle.randn([3,3,3])
A = paddle.slogdet(x)
print(A)
# [[ 1. , 1. , -1. ],
# [-0.98610914, -0.43010661, -0.10872950]])
"""
if in_dygraph_mode():
return core.ops.slogdeterminant(x)
check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'slogdet')
input_shape = list(x.shape)
assert len(input_shape) >= 2, \
"The x must be at least 2-dimensional, " \
"but received Input x's dimensional: %s.\n" % \
len(input_shape)
assert (input_shape[-1] == input_shape[-2]), \
"Expect squared input," \
"but received %s by %s matrix.\n" \
%(input_shape[-2], input_shape[-1]) \
helper = LayerHelper('slogdeterminant', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='slogdeterminant', inputs={'Input': [x]}, outputs={'Out': [out]})
return out
def svd(x, full_matrices=False, name=None):
r"""
Computes the singular value decomposition of one matrix or a batch of regular matrices.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册