Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
9cb8738f
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
9cb8738f
编写于
10月 25, 2018
作者:
T
tensor-tang
提交者:
GitHub
10月 25, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #14018 from tensor-tang/refine/jit/gru
Refine/jit/gru
上级
8c1eea93
032c3a07
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
244 addition
and
154 deletion
+244
-154
paddle/fluid/operators/fusion_gru_op.cc
paddle/fluid/operators/fusion_gru_op.cc
+50
-98
paddle/fluid/operators/math/CMakeLists.txt
paddle/fluid/operators/math/CMakeLists.txt
+1
-1
paddle/fluid/operators/math/jit_kernel.h
paddle/fluid/operators/math/jit_kernel.h
+9
-0
paddle/fluid/operators/math/jit_kernel_rnn.cc
paddle/fluid/operators/math/jit_kernel_rnn.cc
+178
-55
python/paddle/fluid/tests/unittests/test_fusion_gru_op.py
python/paddle/fluid/tests/unittests/test_fusion_gru_op.py
+6
-0
未找到文件。
paddle/fluid/operators/fusion_gru_op.cc
浏览文件 @
9cb8738f
...
@@ -16,10 +16,9 @@ limitations under the License. */
...
@@ -16,10 +16,9 @@ limitations under the License. */
#include <cstring> // for memcpy
#include <cstring> // for memcpy
#include <string>
#include <string>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/operators/math/fc_compute.h"
#include "paddle/fluid/operators/math/fc_compute.h"
#include "paddle/fluid/operators/math/jit_kernel.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -174,58 +173,44 @@ class FusionGRUKernel : public framework::OpKernel<T> {
...
@@ -174,58 +173,44 @@ class FusionGRUKernel : public framework::OpKernel<T> {
}
}
}
}
#define INIT_VEC_FUNC \
#define INIT_BASE_DEFINES \
std::function<void(const int, const T *, T *)> act_gate, act_state; \
auto* x = ctx.Input<LoDTensor>("X"); \
std::function<void(const int, const T*, const T*, const T*, T*)> cross; \
auto* wh = ctx.Input<Tensor>("WeightH"); \
auto& act_gate_str = ctx.Attr<std::string>("gate_activation"); \
auto* xx = ctx.Output<LoDTensor>("XX"); \
auto& act_state_str = ctx.Attr<std::string>("activation"); \
auto x_lod = x->lod(); \
if (platform::jit::MayIUse(platform::jit::avx)) { \
auto x_dims = x->dims();
/* T x M*/
\
math::VecActivations<T, platform::jit::avx> act_functor; \
auto wh_dims = wh->dims();
/* D x 3D*/
\
act_gate = act_functor(act_gate_str); \
const int total_T = x_dims[0]; \
act_state = act_functor(act_state_str); \
const int D3 = wh_dims[1]
cross = math::vec_cross<T, platform::jit::avx>; \
} else { \
#define INIT_OTHER_DEFINES \
math::VecActivations<T, platform::jit::isa_any> act_functor; \
auto* h0 = ctx.Input<Tensor>("H0"); \
act_gate = act_functor(act_gate_str); \
auto* wx = ctx.Input<Tensor>("WeightX"); \
act_state = act_functor(act_state_str); \
auto* bias = ctx.Input<Tensor>("Bias"); \
cross = math::vec_cross<T, platform::jit::isa_any>; \
auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
}
bool is_reverse = ctx.Attr<bool>("is_reverse"); \
const int M = x_dims[1]; \
#define INIT_BASE_INPUT_OUTPUT \
const int D = wh_dims[0]; \
auto* h0 = ctx.Input<Tensor>("H0"); \
const int D2 = D * 2; \
auto* wx = ctx.Input<Tensor>("WeightX"); \
const auto& ker = math::jitkernel::KernelPool::Instance() \
auto* wh = ctx.Input<Tensor>("WeightH"); \
.template Get<math::jitkernel::GRUKernel<T>, \
auto* bias = ctx.Input<Tensor>("Bias"); \
const std::string&, const std::string&>( \
auto* xx = ctx.Output<LoDTensor>("XX"); \
ctx.Attr<std::string>("gate_activation"), \
auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
ctx.Attr<std::string>("activation"), D); \
bool is_reverse = ctx.Attr<bool>("is_reverse");
const T* x_data = x->data<T>(); \
const T* wx_data = wx->data<T>(); \
#define INIT_BASE_SIZES \
const T* wh_data = wh->data<T>(); \
auto x_dims = x->dims();
/* T x M*/
\
auto place = ctx.GetPlace(); \
auto wh_dims = wh->dims();
/* D x 3D*/
\
T* xx_data = xx->mutable_data<T>(place)
const int total_T = x_dims[0]; \
const int M = x_dims[1]; \
const int D = wh_dims[0]; \
const int D3 = wh_dims[1]; \
const int D2 = D * 2;
void
SeqCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
void
SeqCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
auto
*
x
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
INIT_BASE_DEFINES
;
INIT_BASE_INPUT_OUTPUT
INIT_OTHER_DEFINES
;
INIT_BASE_SIZES
INIT_VEC_FUNC
auto
x_lod
=
x
->
lod
();
const
int
N
=
x_lod
[
0
].
size
()
-
1
;
const
int
N
=
x_lod
[
0
].
size
()
-
1
;
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
h0_data
=
h0
?
h0
->
data
<
T
>
()
:
nullptr
;
const
T
*
h0_data
=
h0
?
h0
->
data
<
T
>
()
:
nullptr
;
const
T
*
wx_data
=
wx
->
data
<
T
>
();
const
T
*
wh_data
=
wh
->
data
<
T
>
();
const
T
*
wh_state_data
=
wh_data
+
D
*
D2
;
const
T
*
wh_state_data
=
wh_data
+
D
*
D2
;
T
*
xx_data
=
xx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
hidden_out_data
=
hidden_out
->
mutable_data
<
T
>
(
place
);
T
*
hidden_out_data
=
hidden_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
ctx
);
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
ctx
);
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
total_T
,
D3
,
M
,
x_data
,
wx_data
,
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
total_T
,
D3
,
M
,
x_data
,
wx_data
,
xx_data
,
xx_data
,
...
@@ -252,14 +237,7 @@ class FusionGRUKernel : public framework::OpKernel<T> {
...
@@ -252,14 +237,7 @@ class FusionGRUKernel : public framework::OpKernel<T> {
if
(
h0_data
)
{
if
(
h0_data
)
{
prev_hidden_data
=
h0_data
+
bid
*
D
;
prev_hidden_data
=
h0_data
+
bid
*
D
;
}
else
{
}
else
{
// W: {W_update, W_reset; W_state}
ker
->
ComputeH1
(
xx_data
,
hidden_out_data
);
// update gate
act_gate
(
D
,
xx_data
,
xx_data
);
// state gate
act_state
(
D
,
xx_data
+
D2
,
xx_data
+
D2
);
// out = a*b
blas
.
VMUL
(
D
,
xx_data
,
xx_data
+
D2
,
hidden_out_data
);
// save prev
prev_hidden_data
=
hidden_out_data
;
prev_hidden_data
=
hidden_out_data
;
tstart
=
1
;
tstart
=
1
;
move_step
();
move_step
();
...
@@ -269,17 +247,12 @@ class FusionGRUKernel : public framework::OpKernel<T> {
...
@@ -269,17 +247,12 @@ class FusionGRUKernel : public framework::OpKernel<T> {
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
1
,
D2
,
D
,
static_cast
<
T
>
(
1
),
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
1
,
D2
,
D
,
static_cast
<
T
>
(
1
),
prev_hidden_data
,
D
,
wh_data
,
D2
,
static_cast
<
T
>
(
1
),
xx_data
,
prev_hidden_data
,
D
,
wh_data
,
D2
,
static_cast
<
T
>
(
1
),
xx_data
,
D3
);
D3
);
act_gate
(
D2
,
xx_data
,
xx_data
);
ker
->
ComputeHtPart1
(
xx_data
,
prev_hidden_data
,
hidden_out_data
);
// rt = rt*ht_1 inplace result
blas
.
VMUL
(
D
,
prev_hidden_data
,
xx_data
+
D
,
hidden_out_data
);
// gemm rt * Ws
// gemm rt * Ws
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
1
,
D
,
D
,
static_cast
<
T
>
(
1
),
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
1
,
D
,
D
,
static_cast
<
T
>
(
1
),
hidden_out_data
,
D
,
wh_state_data
,
D
,
static_cast
<
T
>
(
1
),
hidden_out_data
,
D
,
wh_state_data
,
D
,
static_cast
<
T
>
(
1
),
xx_data
+
D2
,
D3
);
xx_data
+
D2
,
D3
);
act_state
(
D
,
xx_data
+
D2
,
xx_data
+
D2
);
ker
->
ComputeHtPart2
(
xx_data
,
prev_hidden_data
,
hidden_out_data
);
// out = zt*ht~ + (1-zt)*ht_1
cross
(
D
,
xx_data
,
xx_data
+
D2
,
prev_hidden_data
,
hidden_out_data
);
// save prev
// save prev
prev_hidden_data
=
hidden_out_data
;
prev_hidden_data
=
hidden_out_data
;
move_step
();
move_step
();
...
@@ -289,28 +262,19 @@ class FusionGRUKernel : public framework::OpKernel<T> {
...
@@ -289,28 +262,19 @@ class FusionGRUKernel : public framework::OpKernel<T> {
void
BatchCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
void
BatchCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
auto
*
x
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
INIT_BASE_DEFINES
;
INIT_BASE_INPUT_OUTPUT
if
(
x_lod
[
0
].
size
()
==
2
)
{
INIT_BASE_SIZES
if
(
x
->
lod
()[
0
].
size
()
==
2
)
{
xx
->
Resize
({
total_T
,
D3
});
xx
->
Resize
({
total_T
,
D3
});
SeqCompute
(
ctx
);
SeqCompute
(
ctx
);
return
;
return
;
}
}
INIT_VEC_FUNC
INIT_OTHER_DEFINES
;
auto
*
reordered_h0
=
ctx
.
Output
<
Tensor
>
(
"ReorderedH0"
);
auto
*
reordered_h0
=
ctx
.
Output
<
Tensor
>
(
"ReorderedH0"
);
auto
*
batched_input
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedInput"
);
auto
*
batched_input
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedInput"
);
auto
*
batched_out
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedOut"
);
auto
*
batched_out
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedOut"
);
T
*
batched_input_data
=
batched_input
->
mutable_data
<
T
>
(
place
);
const
T
*
x_data
=
x
->
data
<
T
>
();
T
*
batched_out_data
=
batched_out
->
mutable_data
<
T
>
(
place
);
const
T
*
wx_data
=
wx
->
data
<
T
>
();
hidden_out
->
mutable_data
<
T
>
(
place
);
const
T
*
wh_data
=
wh
->
data
<
T
>
();
T
*
xx_data
=
xx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
batched_input_data
=
batched_input
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
batched_out_data
=
batched_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
hidden_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
dev_ctx
);
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
dev_ctx
);
math
::
LoDTensor2BatchFunctor
<
DeviceContext
,
T
>
to_batch
;
math
::
LoDTensor2BatchFunctor
<
DeviceContext
,
T
>
to_batch
;
...
@@ -336,7 +300,7 @@ class FusionGRUKernel : public framework::OpKernel<T> {
...
@@ -336,7 +300,7 @@ class FusionGRUKernel : public framework::OpKernel<T> {
T
*
prev_hidden_data
=
nullptr
;
T
*
prev_hidden_data
=
nullptr
;
if
(
h0
)
{
if
(
h0
)
{
// reorder h0
// reorder h0
T
*
reordered_h0_data
=
reordered_h0
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()
);
T
*
reordered_h0_data
=
reordered_h0
->
mutable_data
<
T
>
(
place
);
const
T
*
h0_data
=
h0
->
data
<
T
>
();
const
T
*
h0_data
=
h0
->
data
<
T
>
();
prev_hidden_data
=
reordered_h0_data
;
prev_hidden_data
=
reordered_h0_data
;
size_t
sz
=
sizeof
(
T
)
*
D
;
size_t
sz
=
sizeof
(
T
)
*
D
;
...
@@ -350,12 +314,7 @@ class FusionGRUKernel : public framework::OpKernel<T> {
...
@@ -350,12 +314,7 @@ class FusionGRUKernel : public framework::OpKernel<T> {
T
*
cur_out_data
=
batched_out_data
;
T
*
cur_out_data
=
batched_out_data
;
// W: {W_update, W_reset; W_state}
// W: {W_update, W_reset; W_state}
for
(
int
i
=
0
;
i
<
max_bs
;
++
i
)
{
for
(
int
i
=
0
;
i
<
max_bs
;
++
i
)
{
// update gate
ker
->
ComputeH1
(
cur_in_data
,
cur_out_data
);
act_gate
(
D
,
cur_in_data
,
cur_in_data
);
// state gate
act_state
(
D
,
cur_in_data
+
D2
,
cur_in_data
+
D2
);
// out = a*b
blas
.
VMUL
(
D
,
cur_in_data
,
cur_in_data
+
D2
,
cur_out_data
);
// add offset
// add offset
cur_in_data
+=
D3
;
cur_in_data
+=
D3
;
cur_out_data
+=
D
;
cur_out_data
+=
D
;
...
@@ -380,10 +339,8 @@ class FusionGRUKernel : public framework::OpKernel<T> {
...
@@ -380,10 +339,8 @@ class FusionGRUKernel : public framework::OpKernel<T> {
T
*
cur_out_data
=
batched_out_data
;
T
*
cur_out_data
=
batched_out_data
;
T
*
cur_prev_hidden_data
=
prev_hidden_data
;
T
*
cur_prev_hidden_data
=
prev_hidden_data
;
for
(
int
i
=
0
;
i
<
cur_bs
;
++
i
)
{
for
(
int
i
=
0
;
i
<
cur_bs
;
++
i
)
{
act_gate
(
D2
,
cur_batched_data
,
cur_batched_data
);
ker
->
ComputeHtPart1
(
cur_batched_data
,
cur_prev_hidden_data
,
// rt = rt*ht_1 inplace result
cur_out_data
);
blas
.
VMUL
(
D
,
cur_prev_hidden_data
,
cur_batched_data
+
D
,
cur_out_data
);
cur_batched_data
+=
D3
;
cur_batched_data
+=
D3
;
cur_prev_hidden_data
+=
D
;
cur_prev_hidden_data
+=
D
;
cur_out_data
+=
D
;
cur_out_data
+=
D
;
...
@@ -397,12 +354,8 @@ class FusionGRUKernel : public framework::OpKernel<T> {
...
@@ -397,12 +354,8 @@ class FusionGRUKernel : public framework::OpKernel<T> {
cur_prev_hidden_data
=
prev_hidden_data
;
cur_prev_hidden_data
=
prev_hidden_data
;
for
(
int
i
=
0
;
i
<
cur_bs
;
++
i
)
{
for
(
int
i
=
0
;
i
<
cur_bs
;
++
i
)
{
// ht~ = act_state(...)
ker
->
ComputeHtPart2
(
cur_batched_data
,
cur_prev_hidden_data
,
act_state
(
D
,
cur_batched_data
+
D2
,
cur_batched_data
+
D2
);
cur_out_data
);
// out = zt*ht~ + (1-zt)*ht_1
cross
(
D
,
cur_batched_data
,
cur_batched_data
+
D2
,
cur_prev_hidden_data
,
cur_out_data
);
cur_batched_data
+=
D3
;
cur_batched_data
+=
D3
;
cur_prev_hidden_data
+=
D
;
cur_prev_hidden_data
+=
D
;
cur_out_data
+=
D
;
cur_out_data
+=
D
;
...
@@ -416,9 +369,8 @@ class FusionGRUKernel : public framework::OpKernel<T> {
...
@@ -416,9 +369,8 @@ class FusionGRUKernel : public framework::OpKernel<T> {
batched_out
->
set_lod
(
batched_lod
);
batched_out
->
set_lod
(
batched_lod
);
to_seq
(
dev_ctx
,
*
batched_out
,
hidden_out
);
to_seq
(
dev_ctx
,
*
batched_out
,
hidden_out
);
}
}
#undef INIT_VEC_FUNC
#undef INIT_OTHER_DEFINES
#undef INIT_BASE_SIZES
#undef INIT_BASE_DEFINES
#undef INIT_BASE_INPUT_OUTPUT
};
};
}
// namespace operators
}
// namespace operators
...
...
paddle/fluid/operators/math/CMakeLists.txt
浏览文件 @
9cb8738f
...
@@ -75,6 +75,6 @@ endif()
...
@@ -75,6 +75,6 @@ endif()
cc_test
(
concat_test SRCS concat_test.cc DEPS concat_and_split
)
cc_test
(
concat_test SRCS concat_test.cc DEPS concat_and_split
)
cc_test
(
cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info
)
cc_test
(
cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info
)
cc_library
(
jit_kernel
cc_library
(
jit_kernel
SRCS jit_kernel.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_
lstm
.cc
SRCS jit_kernel.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_
rnn
.cc
DEPS cpu_info cblas
)
DEPS cpu_info cblas
)
cc_test
(
jit_kernel_test SRCS jit_kernel_test.cc DEPS jit_kernel
)
cc_test
(
jit_kernel_test SRCS jit_kernel_test.cc DEPS jit_kernel
)
paddle/fluid/operators/math/jit_kernel.h
浏览文件 @
9cb8738f
...
@@ -142,6 +142,15 @@ class LSTMKernel : public Kernel {
...
@@ -142,6 +142,15 @@ class LSTMKernel : public Kernel {
const
T
*
wp_data
=
nullptr
)
const
=
0
;
const
T
*
wp_data
=
nullptr
)
const
=
0
;
};
};
template
<
typename
T
>
class
GRUKernel
:
public
Kernel
{
public:
// compute h1 without h0
virtual
void
ComputeH1
(
T
*
gates
,
T
*
ht
)
const
=
0
;
virtual
void
ComputeHtPart1
(
T
*
gates
,
const
T
*
ht_1
,
T
*
ht
)
const
=
0
;
virtual
void
ComputeHtPart2
(
T
*
gates
,
const
T
*
ht_1
,
T
*
ht
)
const
=
0
;
};
}
// namespace jitkernel
}
// namespace jitkernel
}
// namespace math
}
// namespace math
}
// namespace operators
}
// namespace operators
...
...
paddle/fluid/operators/math/jit_kernel_
lstm
.cc
→
paddle/fluid/operators/math/jit_kernel_
rnn
.cc
浏览文件 @
9cb8738f
...
@@ -136,6 +136,21 @@ static std::shared_ptr<const VActKernel<T>> GetActKernel(
...
@@ -136,6 +136,21 @@ static std::shared_ptr<const VActKernel<T>> GetActKernel(
return
nullptr
;
return
nullptr
;
}
}
template
<
jit
::
cpu_isa_t
isa
>
static
std
::
unique_ptr
<
AVXAct
>
GetAVXAct
(
const
std
::
string
&
type
)
{
if
(
type
==
"sigmoid"
)
{
return
std
::
unique_ptr
<
AVXAct
>
(
new
AVXActImpl
<
kSigmoid
,
isa
>
());
}
else
if
(
type
==
"relu"
)
{
return
std
::
unique_ptr
<
AVXAct
>
(
new
AVXActImpl
<
kRelu
,
isa
>
());
}
else
if
(
type
==
"tanh"
)
{
return
std
::
unique_ptr
<
AVXAct
>
(
new
AVXActImpl
<
kTanh
,
isa
>
());
}
else
if
(
type
==
"identity"
||
type
==
""
)
{
return
std
::
unique_ptr
<
AVXAct
>
(
new
AVXActImpl
<
kIdentity
,
isa
>
());
}
PADDLE_THROW
(
"Not support type: %s"
,
type
);
return
nullptr
;
}
/* LSTM JitKernel */
/* LSTM JitKernel */
template
<
typename
T
,
jit
::
cpu_isa_t
isa
,
jit_block
>
template
<
typename
T
,
jit
::
cpu_isa_t
isa
,
jit_block
>
class
LSTMKernelImpl
:
public
LSTMKernel
<
T
>
{
class
LSTMKernelImpl
:
public
LSTMKernel
<
T
>
{
...
@@ -192,61 +207,49 @@ class LSTMKernelImpl : public LSTMKernel<T> {
...
@@ -192,61 +207,49 @@ class LSTMKernelImpl : public LSTMKernel<T> {
#endif
#endif
};
};
#define INTRI8_FLOAT(isa) \
#define INTRI8_FLOAT(isa) \
template <> \
template <> \
LSTMKernelImpl<float, isa, kEQ8>::LSTMKernelImpl( \
LSTMKernelImpl<float, isa, kEQ8>::LSTMKernelImpl( \
const std::string& act_gate, const std::string& act_cand, \
const std::string& act_gate, const std::string& act_cand, \
const std::string& act_cell, int d) \
const std::string& act_cell, int d) \
: LSTMKernel<float>() { \
: LSTMKernel<float>() { \
auto GetAVXAct = [&](const std::string& type) -> std::unique_ptr<AVXAct> { \
avx_act_gate_ = GetAVXAct<isa>(act_gate); \
if (type == "sigmoid") { \
avx_act_cand_ = GetAVXAct<isa>(act_cand); \
return std::unique_ptr<AVXAct>(new AVXActImpl<kSigmoid, isa>()); \
avx_act_cell_ = GetAVXAct<isa>(act_cell); \
} else if (type == "relu") { \
} \
return std::unique_ptr<AVXAct>(new AVXActImpl<kRelu, isa>()); \
template <> \
} else if (type == "tanh") { \
void LSTMKernelImpl<float, isa, kEQ8>::ComputeCtHt( \
return std::unique_ptr<AVXAct>(new AVXActImpl<kTanh, isa>()); \
float* gates, const float* ct_1, float* ct, float* ht, \
} else if (type == "identity" || type == "") { \
const float* wp_data, float* checked) const { \
return std::unique_ptr<AVXAct>(new AVXActImpl<kIdentity, isa>()); \
/* gates: W_ch, W_ih, W_fh, W_oh */
\
} \
__m256 c, i, f, o; \
PADDLE_THROW("Not support type: %s", type); \
c = _mm256_loadu_ps(gates); \
}; \
i = _mm256_loadu_ps(gates + 8); \
avx_act_gate_ = GetAVXAct(act_gate); \
f = _mm256_loadu_ps(gates + 16); \
avx_act_cand_ = GetAVXAct(act_cand); \
o = _mm256_loadu_ps(gates + 24); \
avx_act_cell_ = GetAVXAct(act_cell); \
/* C_t = C_t-1 * fgated + cand_gated * igated*/
\
} \
c = _mm256_mul_ps(avx_act_cand_->Compute(c), avx_act_gate_->Compute(i)); \
template <> \
i = _mm256_loadu_ps(ct_1); \
void LSTMKernelImpl<float, isa, kEQ8>::ComputeCtHt( \
f = _mm256_mul_ps(i, avx_act_gate_->Compute(f)); \
float* gates, const float* ct_1, float* ct, float* ht, \
f = _mm256_add_ps(c, f); \
const float* wp_data, float* checked) const { \
_mm256_storeu_ps(ct, f); \
/* gates: W_ch, W_ih, W_fh, W_oh */
\
/* H_t = act_cell(C_t) * ogated */
\
__m256 c, i, f, o; \
o = _mm256_mul_ps(avx_act_cell_->Compute(f), avx_act_gate_->Compute(o)); \
c = _mm256_loadu_ps(gates); \
_mm256_storeu_ps(ht, o); \
i = _mm256_loadu_ps(gates + 8); \
} \
f = _mm256_loadu_ps(gates + 16); \
template <> \
o = _mm256_loadu_ps(gates + 24); \
void LSTMKernelImpl<float, isa, kEQ8>::ComputeC1H1( \
/* C_t = C_t-1 * fgated + cand_gated * igated*/
\
float* gates, float* ct, float* ht, const float* wp_data) const { \
c = _mm256_mul_ps(avx_act_cand_->Compute(c), avx_act_gate_->Compute(i)); \
__m256 c, i, o; \
i = _mm256_loadu_ps(ct_1); \
c = _mm256_loadu_ps(gates); \
f = _mm256_mul_ps(i, avx_act_gate_->Compute(f)); \
i = _mm256_loadu_ps(gates + 8); \
f = _mm256_add_ps(c, f); \
o = _mm256_loadu_ps(gates + 24); \
_mm256_storeu_ps(ct, f); \
/* C_t = igated * cgated*/
\
/* H_t = act_cell(C_t) * ogated */
\
c = _mm256_mul_ps(avx_act_gate_->Compute(i), avx_act_cand_->Compute(c)); \
o = _mm256_mul_ps(avx_act_cell_->Compute(f), avx_act_gate_->Compute(o)); \
_mm256_storeu_ps(ct, c); \
_mm256_storeu_ps(ht, o); \
/* H_t = act_cell(C_t) * ogated */
\
} \
o = _mm256_mul_ps(avx_act_cell_->Compute(c), avx_act_gate_->Compute(o)); \
template <> \
_mm256_storeu_ps(ht, o); \
void LSTMKernelImpl<float, isa, kEQ8>::ComputeC1H1( \
float* gates, float* ct, float* ht, const float* wp_data) const { \
__m256 c, i, o; \
c = _mm256_loadu_ps(gates); \
i = _mm256_loadu_ps(gates + 8); \
o = _mm256_loadu_ps(gates + 24); \
/* C_t = igated * cgated*/
\
c = _mm256_mul_ps(avx_act_gate_->Compute(i), avx_act_cand_->Compute(c)); \
_mm256_storeu_ps(ct, c); \
/* H_t = act_cell(C_t) * ogated */
\
o = _mm256_mul_ps(avx_act_cell_->Compute(c), avx_act_gate_->Compute(o)); \
_mm256_storeu_ps(ht, o); \
}
}
// TODO(TJ): optimize keq16
// TODO(TJ): optimize keq16
...
@@ -354,6 +357,126 @@ REGISTER_JITKERNEL_ARGS(lstm, LSTMKernel, JITKERNEL_DECLARE_LSTM,
...
@@ -354,6 +357,126 @@ REGISTER_JITKERNEL_ARGS(lstm, LSTMKernel, JITKERNEL_DECLARE_LSTM,
#undef JITKERNEL_DECLARE_LSTM
#undef JITKERNEL_DECLARE_LSTM
#undef JITKERNEL_KEY_LSTM
#undef JITKERNEL_KEY_LSTM
#undef JITKERNEL_NEW_LSTM_IMPL
#undef JITKERNEL_NEW_LSTM_IMPL
/* GRU JitKernel */
template
<
typename
T
,
jit
::
cpu_isa_t
isa
,
jit_block
>
class
GRUKernelImpl
:
public
GRUKernel
<
T
>
{
public:
explicit
GRUKernelImpl
(
const
std
::
string
&
act_gate
,
const
std
::
string
&
act_state
,
int
d
)
:
GRUKernel
<
T
>
()
{
d_
=
d
;
d2_
=
d
*
2
;
act_gate_d2_
=
GetActKernel
<
T
>
(
act_gate
,
d2_
);
act_gate_d_
=
GetActKernel
<
T
>
(
act_gate
,
d
);
act_state_d_
=
GetActKernel
<
T
>
(
act_state
,
d
);
vmul_d_
=
KernelPool
::
Instance
().
template
Get
<
VMulKernel
<
T
>
>
(
d
);
}
void
ComputeH1
(
T
*
gates
,
T
*
ht
)
const
override
{
act_gate_d_
->
Compute
(
gates
,
gates
);
act_state_d_
->
Compute
(
gates
+
d2_
,
gates
+
d2_
);
vmul_d_
->
Compute
(
gates
,
gates
+
d2_
,
ht
);
}
void
ComputeHtPart1
(
T
*
gates
,
const
T
*
ht_1
,
T
*
ht
)
const
override
{
// W: {W_update, W_reset; W_state}
act_gate_d2_
->
Compute
(
gates
,
gates
);
vmul_d_
->
Compute
(
ht_1
,
gates
+
d_
,
ht
);
}
void
ComputeHtPart2
(
T
*
gates
,
const
T
*
ht_1
,
T
*
ht
)
const
override
{
T
*
y
=
gates
+
d2_
;
act_state_d_
->
Compute
(
y
,
y
);
// out = zt*ht~ + (1-zt)*ht_1
for
(
int
i
=
0
;
i
<
d_
;
++
i
)
{
ht
[
i
]
=
gates
[
i
]
*
y
[
i
]
+
(
static_cast
<
T
>
(
1
)
-
gates
[
i
])
*
ht_1
[
i
];
}
}
private:
int
d_
,
d2_
;
std
::
shared_ptr
<
const
VActKernel
<
T
>>
act_gate_d2_
,
act_gate_d_
,
act_state_d_
;
std
::
shared_ptr
<
const
VMulKernel
<
T
>>
vmul_d_
;
#ifdef __AVX__
std
::
unique_ptr
<
const
AVXAct
>
avx_act_gate_
,
avx_act_state_
;
#endif
};
#define INTRI8_FLOAT(isa) \
template <> \
GRUKernelImpl<float, isa, kEQ8>::GRUKernelImpl( \
const std::string& act_gate, const std::string& act_state, int d) \
: GRUKernel<float>() { \
avx_act_gate_ = GetAVXAct<isa>(act_gate); \
avx_act_state_ = GetAVXAct<isa>(act_state); \
} \
template <> \
void GRUKernelImpl<float, isa, kEQ8>::ComputeH1(float* gates, float* ht) \
const { \
__m256 u, s; \
/* W: {W_update, W_reset; W_state} */
\
u = _mm256_loadu_ps(gates); \
s = _mm256_loadu_ps(gates + 16); \
s = _mm256_mul_ps(avx_act_gate_->Compute(u), avx_act_state_->Compute(s)); \
_mm256_storeu_ps(ht, s); \
} \
template <> \
void GRUKernelImpl<float, isa, kEQ8>::ComputeHtPart1( \
float* gates, const float* ht_1, float* ht) const { \
/* not exactly equal the any implementation */
\
__m256 r, ht0; \
r = _mm256_loadu_ps(gates + 8); \
ht0 = _mm256_loadu_ps(ht_1); \
r = _mm256_mul_ps(avx_act_gate_->Compute(r), ht0); \
_mm256_storeu_ps(ht, r); \
} \
template <> \
void GRUKernelImpl<float, isa, kEQ8>::ComputeHtPart2( \
float* gates, const float* ht_1, float* ht) const { \
/* not exactly equal the any implementation */
\
__m256 u, s, ht0; \
u = _mm256_loadu_ps(gates); \
s = _mm256_loadu_ps(gates + 16); \
ht0 = _mm256_loadu_ps(ht_1); \
u = avx_act_gate_->Compute(u); \
s = _mm256_mul_ps(u, avx_act_state_->Compute(s)); \
u = _mm256_sub_ps(_mm256_set1_ps(1.f), u); \
u = _mm256_mul_ps(u, ht0); \
u = _mm256_add_ps(s, u); \
_mm256_storeu_ps(ht, u); \
}
#ifdef __AVX__
INTRI8_FLOAT
(
jit
::
avx
);
#endif
#ifdef __AVX2__
INTRI8_FLOAT
(
jit
::
avx2
);
#endif
#ifdef __AVX512F__
INTRI8_FLOAT
(
jit
::
avx512f
);
#endif
#define JITKERNEL_DECLARE_GRU(ker_class, ker_dtype) \
template <> \
std::shared_ptr<const GRUKernel<ker_dtype>> KernelPool::Get< \
GRUKernel<ker_dtype>, const std::string&, const std::string&, int>( \
const std::string& act_gate, const std::string& act_state, int d)
#define JITKERNEL_KEY_GRU(ker_key, dtype_key) \
#ker_key #dtype_key + std::to_string(d) + act_gate + act_state
#define JITKERNEL_NEW_GRU_IMPL(ker, dtype, isa, k) \
p = std::dynamic_pointer_cast<ker<dtype>>( \
std::make_shared<ker##Impl<dtype, isa, k>>(act_gate, act_state, d));
REGISTER_JITKERNEL_ARGS
(
gru
,
GRUKernel
,
JITKERNEL_DECLARE_GRU
,
JITKERNEL_KEY_GRU
,
JITKERNEL_NEW_GRU_IMPL
);
#undef INTRI8_FLOAT
#undef JITKERNEL_NEW_GRU_IMPL
#undef JITKERNEL_KEY_GRU
#undef JITKERNEL_DECLARE_GRU
}
// namespace jitkernel
}
// namespace jitkernel
}
// namespace math
}
// namespace math
}
// namespace operators
}
// namespace operators
...
...
python/paddle/fluid/tests/unittests/test_fusion_gru_op.py
浏览文件 @
9cb8738f
...
@@ -125,6 +125,12 @@ class TestFusionGRUOpMD2(TestFusionGRUOp):
...
@@ -125,6 +125,12 @@ class TestFusionGRUOpMD2(TestFusionGRUOp):
self
.
D
=
8
self
.
D
=
8
class
TestFusionGRUOpMD3
(
TestFusionGRUOp
):
def
set_confs
(
self
):
self
.
M
=
17
self
.
D
=
15
class
TestFusionGRUOpBS1
(
TestFusionGRUOp
):
class
TestFusionGRUOpBS1
(
TestFusionGRUOp
):
def
set_confs
(
self
):
def
set_confs
(
self
):
self
.
lod
=
[[
3
]]
self
.
lod
=
[[
3
]]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录