未验证 提交 99ffeffe 编写于 作者: L lzzyzlbb 提交者: GitHub

[npu]Add argsort op (#34865)

* add rmsprop npu

* add argsort npu

* add argsort npu

* modify according to review

* modify sharedatawith according to review

* modify reshape according to review

* rm dygraph=false
上级 ef517a56
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/argsort_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class ArgsortNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input = ctx.Input<framework::Tensor>("X");
auto* output = ctx.Output<framework::Tensor>("Out");
output->mutable_data<T>(ctx.GetPlace());
auto* indices = ctx.Output<framework::Tensor>("Indices");
indices->mutable_data<int32_t>(ctx.GetPlace());
int32_t axis = ctx.Attr<int>("axis");
auto in_dims = indices->dims();
axis = (axis < 0) ? (in_dims.size() + axis) : axis;
bool descending = ctx.Attr<bool>("descending");
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
framework::NPUAttributeMap sort_attr_input = {
{"axis", static_cast<int32_t>(-1)}, {"descending", descending}};
if (axis == -1 || axis + 1 == in_dims.size()) {
const auto& sort_runner =
NpuOpRunner("Sort", {*input}, {*output, *indices}, sort_attr_input);
sort_runner.Run(stream);
} else {
// transpose
std::vector<int> trans;
for (int i = 0; i < axis; i++) {
trans.push_back(i);
}
trans.push_back(in_dims.size() - 1);
for (int i = axis + 1; i < in_dims.size() - 1; i++) {
trans.push_back(i);
}
trans.push_back(axis);
framework::DDim trans_dims(in_dims);
for (size_t i = 0; i < trans.size(); i++) {
trans_dims[i] = in_dims[trans[i]];
}
framework::NPUAttributeMap trans_attr_input = {{"perm", trans}};
Tensor trans_input;
trans_input.mutable_data<T>(trans_dims, ctx.GetPlace());
const auto& trans_input_runner =
NpuOpRunner("TransposeD", {*input}, {trans_input}, trans_attr_input);
trans_input_runner.Run(stream);
Tensor trans_indices;
trans_indices.mutable_data<int32_t>(trans_dims, ctx.GetPlace());
const auto& trans_indice_runner = NpuOpRunner(
"TransposeD", {*indices}, {trans_indices}, trans_attr_input);
trans_indice_runner.Run(stream);
Tensor trans_output;
trans_output.mutable_data<T>(trans_dims, ctx.GetPlace());
const auto& trans_output_runner = NpuOpRunner(
"TransposeD", {*output}, {trans_output}, trans_attr_input);
trans_output_runner.Run(stream);
const auto& sort_runner =
NpuOpRunner("Sort", {trans_input}, {trans_output, trans_indices},
sort_attr_input);
sort_runner.Run(stream);
// transpose back
const auto& trans_indices_back_runner = NpuOpRunner(
"TransposeD", {trans_indices}, {*indices}, trans_attr_input);
trans_indices_back_runner.Run(stream);
const auto& trans_output_back_runner = NpuOpRunner(
"TransposeD", {trans_output}, {*output}, trans_attr_input);
trans_output_back_runner.Run(stream);
}
}
};
template <typename Type>
static void ReshapeNPU(const framework::Tensor* input,
const std::vector<Type>& input_shapes,
framework::Tensor* output) {
output->ShareDataWith(*input);
output->Resize(framework::make_ddim(std::move(input_shapes)));
}
template <typename T, typename Type>
static void FullAssignNPU(const framework::ExecutionContext& ctx,
Type ind_lastdim, Type outer_dim,
const framework::DDim& trans_dims,
const framework::Tensor* input,
const framework::Tensor* indices,
framework::Tensor* t_out) {
// reshape input
Type input_shape = ind_lastdim * outer_dim;
std::vector<Type> input_shapes = {input_shape};
Tensor input_reshape_tensor(input->type());
ReshapeNPU<Type>(input, input_shapes, &input_reshape_tensor);
// reshape index
std::vector<Type> index_shapes = {outer_dim, ind_lastdim};
framework::DDim ind_2d = framework::make_ddim({outer_dim, ind_lastdim});
Tensor ind_2d_tensor(indices->type());
ReshapeNPU<Type>(indices, index_shapes, &ind_2d_tensor);
// range_flatten_index
std::vector<int32_t> range_flatten_index;
for (Type i = 0; i < input_shape; i += ind_lastdim) {
range_flatten_index.push_back(static_cast<int32_t>(i));
}
Tensor range_flatten_index_tensor(framework::proto::VarType::INT32);
range_flatten_index_tensor.Resize(framework::make_ddim({outer_dim}));
range_flatten_index_tensor.mutable_data<int32_t>(
{static_cast<int>(range_flatten_index.size())}, ctx.GetPlace());
TensorFromVector(range_flatten_index, ctx.device_context(),
&range_flatten_index_tensor);
Tensor range_flatten_index_expand_tensor(range_flatten_index_tensor.type());
std::vector<Type> flatten_shape = {outer_dim, 1};
ReshapeNPU<Type>(&range_flatten_index_tensor, flatten_shape,
&range_flatten_index_expand_tensor);
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
Tensor ind_2d_add_tensor;
ind_2d_add_tensor.mutable_data<int32_t>(ind_2d, ctx.GetPlace());
const auto& runner_ind_2d_tensor = NpuOpRunner(
std::string("Add"), {ind_2d_tensor, range_flatten_index_expand_tensor},
{ind_2d_add_tensor}, {});
runner_ind_2d_tensor.Run(stream);
Tensor ind_reshape_tensor(ind_2d_add_tensor.type());
ReshapeNPU<Type>(&ind_2d_add_tensor, input_shapes, &ind_reshape_tensor);
Tensor ind_reshape_expand_tensor(ind_reshape_tensor.type());
std::vector<Type> ind_shape = {input_shape, 1};
ReshapeNPU<Type>(&ind_reshape_tensor, ind_shape, &ind_reshape_expand_tensor);
// expand_index
Tensor input_scatter_tensor;
input_scatter_tensor.Resize({input_shape});
input_scatter_tensor.mutable_data<T>(ctx.GetPlace());
Tensor input_scatter_tensor_ori;
input_scatter_tensor_ori.Resize({input_shape});
input_scatter_tensor_ori.mutable_data<T>(ctx.GetPlace());
std::vector<Type> trans_shapes;
for (int i = 0; i < trans_dims.size(); i++) {
trans_shapes.push_back(trans_dims[i]);
}
NpuOpRunner runner_scatter;
runner_scatter.SetType("TensorScatterUpdate")
.AddInput(input_scatter_tensor_ori)
.AddInput(ind_reshape_expand_tensor)
.AddInput(input_reshape_tensor)
.AddOutput(input_scatter_tensor);
runner_scatter.Run(stream);
framework::TensorCopy(input_scatter_tensor, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(),
t_out);
t_out->Resize(framework::make_ddim(trans_shapes));
}
template <typename DeviceContext, typename T>
class ArgsortGradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* indices = ctx.Input<Tensor>("Indices");
auto* dX = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dO = ctx.Input<Tensor>(framework::GradVarName("Out"));
int axis = ctx.Attr<int>("axis");
auto in_dims = indices->dims();
axis = (axis < 0) ? (in_dims.size() + axis) : axis;
auto place = ctx.GetPlace();
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
dX->mutable_data<T>(ctx.GetPlace());
Tensor dxt;
dxt.mutable_data<T>(dX->dims(), place);
const auto& runner_flatten =
NpuOpRunner(std::string("Flatten"), {*dX}, {dxt}, {});
runner_flatten.Run(stream);
FillNpuTensorWithConstant<T>(&dxt, static_cast<T>(0));
if (dO->numel() == 0) return;
// Do full assig n
if (axis == -1 || axis + 1 == in_dims.size()) {
const int64_t outer_dim = framework::product(
framework::slice_ddim(in_dims, 0, in_dims.size() - 1));
const int64_t ind_lastdim = in_dims[in_dims.size() - 1];
FullAssignNPU<T, int64_t>(ctx, ind_lastdim, outer_dim, in_dims, dO,
indices, dX);
} else {
// If not full assign do transpose
std::vector<int> trans;
for (int i = 0; i < axis; i++) {
trans.push_back(i);
}
trans.push_back(in_dims.size() - 1);
for (int i = axis + 1; i < in_dims.size() - 1; i++) {
trans.push_back(i);
}
trans.push_back(axis);
framework::DDim trans_dims(in_dims);
for (size_t i = 0; i < trans.size(); i++) {
trans_dims[i] = in_dims[trans[i]];
}
std::vector<int> axis;
for (size_t i = 0; i < trans.size(); i++) {
axis.push_back(in_dims[trans[i]]);
}
framework::NPUAttributeMap attr_input = {{"perm", trans}};
Tensor trans_dO;
trans_dO.mutable_data<T>(trans_dims, ctx.GetPlace());
Tensor trans_ind;
trans_ind.mutable_data<int32_t>(trans_dims, ctx.GetPlace());
// Do transpose
const auto& runner_transpose_dx = NpuOpRunner(
std::string("TransposeD"), {*dO}, {trans_dO}, {attr_input});
runner_transpose_dx.Run(stream);
const auto& runner_transpose_ind = NpuOpRunner(
std::string("TransposeD"), {*indices}, {trans_ind}, {attr_input});
runner_transpose_ind.Run(stream);
const int64_t outer_dim = framework::product(
framework::slice_ddim(trans_dims, 0, trans_dims.size() - 1));
const int64_t ind_lastdim = trans_dims[trans_dims.size() - 1];
Tensor tmp_out;
tmp_out.mutable_data<T>(trans_dims, ctx.GetPlace());
FullAssignNPU<T, int64_t>(ctx, ind_lastdim, outer_dim, trans_dims,
&trans_dO, &trans_ind, &tmp_out);
// transpose back
const auto& runner_transpose_out = NpuOpRunner(
std::string("TransposeD"), {tmp_out}, {*dX}, {attr_input});
runner_transpose_out.Run(stream);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_NPU_KERNEL(
argsort, ops::ArgsortNPUKernel<plat::NPUDeviceContext, float>,
ops::ArgsortNPUKernel<plat::NPUDeviceContext, plat::float16>);
REGISTER_OP_NPU_KERNEL(argsort_grad,
ops::ArgsortGradNPUKernel<plat::NPUDeviceContext, float>,
ops::ArgsortGradNPUKernel<plat::NPUDeviceContext,
paddle::platform::float16>);
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest, _set_use_system_allocator
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid import ParamAttr
from paddle.fluid.framework import Program, grad_var_name
from paddle.fluid.executor import Executor
from paddle.fluid.backward import append_backward
paddle.enable_static()
class TestArgsortOp(OpTest):
def setUp(self):
self.set_npu()
self.op_type = "argsort"
self.place = paddle.NPUPlace(0)
self.init_dtype()
self.init_inputshape()
self.init_axis()
self.init_direction()
self.x = np.random.random(self.input_shape).astype(self.dtype)
self.inputs = {"X": self.x}
self.attrs = {"axis": self.axis, "descending": self.descending}
self.get_output()
self.outputs = {"Out": self.sorted_x, "Indices": self.indices}
def get_output(self):
if self.descending:
self.indices = np.flip(
np.argsort(
self.x, kind='heapsort', axis=self.axis), self.axis)
self.sorted_x = np.flip(
np.sort(
self.x, kind='heapsort', axis=self.axis), self.axis)
else:
self.indices = np.argsort(self.x, kind='heapsort', axis=self.axis)
self.sorted_x = np.sort(self.x, kind='heapsort', axis=self.axis)
def set_npu(self):
self.__class__.use_npu = True
self.__class__.no_need_check_grad = True
def init_kernel_type(self):
self.use_mkldnn = False
def init_inputshape(self):
self.input_shape = (2, 2, 2, 3, 3)
def init_dtype(self):
self.dtype = np.float16
def init_axis(self):
self.axis = -1
def test_check_output(self):
self.check_output_with_place(self.place)
def init_direction(self):
self.descending = False
class TestArgsortOpAxis0NPU(TestArgsortOp):
def init_axis(self):
self.axis = 0
class TestArgsortOpAxis1NPU(TestArgsortOp):
def init_axis(self):
self.axis = 1
class TestArgsortOpAxis2NPU(TestArgsortOp):
def init_axis(self):
self.axis = 2
class TestArgsortOpAxisNeg1NPU(TestArgsortOp):
def init_axis(self):
self.axis = -1
class TestArgsortOpAxisNeg2NPU(TestArgsortOp):
def init_axis(self):
self.axis = -2
class TestArgsortOpDescendingAxisNPU(TestArgsortOp):
def init_direction(self):
self.descending = True
class TestArgsortOpDescendingAxis0NPU(TestArgsortOpAxis0NPU):
def init_direction(self):
self.descending = True
class TestArgsortOpDescendingAxis1NPU(TestArgsortOpAxis1NPU):
def init_direction(self):
self.descending = True
class TestArgsortOpDescendingAxis2NPU(TestArgsortOpAxis2NPU):
def init_direction(self):
self.descending = True
class TestArgsortOpDescendingAxisNeg1NPU(TestArgsortOpAxisNeg1NPU):
def init_direction(self):
self.descending = True
class TestArgsortOpDescendingAxisNeg2NPU(TestArgsortOpAxisNeg2NPU):
def init_direction(self):
self.descending = True
# liurui25: argsort of npu has bug with type fp32,
# it will change the type from fp32 to fp16,
# so the check_output_with_place add thw atol
# this test is only used to test the grad
# issue: https://gitee.com/ascend/modelzoo/issues/I44I7K
class TestArgsortOpAxis0NPUFP32(TestArgsortOp):
def init_axis(self):
self.axis = 0
def init_dtype(self):
self.dtype = np.float32
def test_check_output(self):
self.check_output_with_place(self.place, atol=1e-2)
def set_npu(self):
self.__class__.use_npu = True
def test_check_grad(self):
self.check_grad_with_place(self.place, ["X"], "Out")
class TestArgsortOpAxis1NPUFP32(TestArgsortOpAxis0NPUFP32):
def init_axis(self):
self.axis = 1
class TestArgsortOpAxis2NPUFP32(TestArgsortOpAxis0NPUFP32):
def init_axis(self):
self.axis = 2
class TestArgsortOpAxisNeg1NPUFP32(TestArgsortOpAxis0NPUFP32):
def init_axis(self):
self.axis = -1
class TestArgsortOpAxisNeg2NPUFP32(TestArgsortOpAxis0NPUFP32):
def init_axis(self):
self.axis = -2
class TestArgsortOpDescendingAxisNPUFP32(TestArgsortOpAxis0NPUFP32):
def init_direction(self):
self.descending = True
class TestArgsortOpDescendingAxis0NPUFP32(TestArgsortOpAxis0NPUFP32):
def init_direction(self):
self.descending = True
class TestArgsortOpDescendingAxis1NPUFP32(TestArgsortOpAxis1NPUFP32):
def init_direction(self):
self.descending = True
class TestArgsortOpDescendingAxis2NPUFP32(TestArgsortOpAxis2NPUFP32):
def init_direction(self):
self.descending = True
class TestArgsortOpDescendingAxisNeg1NPUFP32(TestArgsortOpAxisNeg1NPUFP32):
def init_direction(self):
self.descending = True
class TestArgsortOpDescendingAxisNeg2NPUFP32(TestArgsortOpAxisNeg2NPUFP32):
def init_direction(self):
self.descending = True
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册