未验证 提交 99ea0a9c 编写于 作者: Z zhaoying9105 提交者: GitHub

[MLU]: add roi_align and roi_align_grad kernel (#43757)

上级 c0cf5cb7
......@@ -4557,5 +4557,75 @@ MLUCnnlDCNDesc::~MLUCnnlDCNDesc() {
diff_input));
}
/* static */ void MLUCnnl::RoiAlign(const ExecutionContext& ctx,
const int pooled_height,
const int pooled_width,
const int sampling_ratio,
const float spatial_scale,
const bool aligned,
const cnnlTensorDescriptor_t input_desc,
const void* input,
const cnnlTensorDescriptor_t boxes_desc,
const void* boxes,
const cnnlTensorDescriptor_t output_desc,
void* output) {
cnnlRoiAlignDescriptor_t roialign_desc;
PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateRoiAlignDescriptor(&roialign_desc));
const int pool_mode = 1; // average pooling mode
PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetRoiAlignDescriptor_v2(roialign_desc,
pooled_height,
pooled_width,
sampling_ratio,
spatial_scale,
pool_mode,
aligned));
cnnlHandle_t handle = GetHandleFromCTX(ctx);
PADDLE_ENFORCE_MLU_SUCCESS(cnnlRoiAlign_v2(handle,
roialign_desc,
input_desc,
input,
boxes_desc,
boxes,
output_desc,
output,
nullptr,
nullptr,
nullptr,
nullptr));
PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroyRoiAlignDescriptor(roialign_desc));
}
/* static */ void MLUCnnl::RoiAlignBackward(
const ExecutionContext& ctx,
const int sampling_ratio,
const float spatial_scale,
const bool aligned,
const cnnlTensorDescriptor_t grads_desc,
const void* grads,
const cnnlTensorDescriptor_t boxes_desc,
const void* boxes,
const cnnlTensorDescriptor_t grads_image_desc,
void* grads_image) {
cnnlHandle_t handle = GetHandleFromCTX(ctx);
const int pool_mode = 1; // average pooling mode
PADDLE_ENFORCE_MLU_SUCCESS(cnnlRoiAlignBackward_v2(handle,
grads_desc,
grads,
boxes_desc,
boxes,
nullptr,
nullptr,
nullptr,
nullptr,
spatial_scale,
sampling_ratio,
aligned,
pool_mode,
grads_image_desc,
grads_image));
}
} // namespace operators
} // namespace paddle
......@@ -1860,6 +1860,30 @@ class MLUCnnl {
const void* pos_weight,
const cnnlTensorDescriptor_t diff_input_desc,
void* diff_input);
static void RoiAlign(const ExecutionContext& ctx,
const int pooled_height,
const int pooled_width,
const int sampling_ratio,
const float spatial_scale,
const bool aligned,
const cnnlTensorDescriptor_t input_desc,
const void* input,
const cnnlTensorDescriptor_t boxes_desc,
const void* boxes,
const cnnlTensorDescriptor_t output_desc,
void* output);
static void RoiAlignBackward(const ExecutionContext& ctx,
const int sampling_ratio,
const float spatial_scale,
const bool aligned,
const cnnlTensorDescriptor_t grads_desc,
const void* grads,
const cnnlTensorDescriptor_t boxes_desc,
const void* boxes,
const cnnlTensorDescriptor_t grads_image_desc,
void* grads_image);
};
template <typename T>
......
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
template <typename T>
class ROIAlignOpMLUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* in = ctx.Input<Tensor>("X");
auto* rois = ctx.Input<LoDTensor>("ROIs");
auto* out = ctx.Output<Tensor>("Out");
out->mutable_data<T>(ctx.GetPlace());
out->set_layout(framework::DataLayout::kNHWC);
auto pooled_height = ctx.Attr<int>("pooled_height");
auto pooled_width = ctx.Attr<int>("pooled_width");
auto spatial_scale = ctx.Attr<float>("spatial_scale");
auto sampling_ratio = ctx.Attr<int>("sampling_ratio");
auto aligned = ctx.Attr<bool>("aligned");
const auto& in_dims = in->dims();
int batch_size = in_dims[0];
int rois_num = rois->dims()[0];
if (rois_num == 0) return;
auto cplace = platform::CPUPlace();
std::vector<int> roi_batch_id_list(rois_num);
int rois_batch_size = 0;
if (ctx.HasInput("RoisNum")) {
auto* rois_num_t = ctx.Input<Tensor>("RoisNum");
rois_batch_size = rois_num_t->numel();
PADDLE_ENFORCE_EQ(
rois_batch_size,
batch_size,
platform::errors::InvalidArgument(
"The batch size of rois and the batch size of images "
" must be the same. But received the batch size of rois is %d, "
"and the batch size of images is %d",
rois_batch_size,
batch_size));
std::vector<int> rois_num_list(rois_batch_size);
memory::Copy(cplace,
rois_num_list.data(),
ctx.GetPlace(),
rois_num_t->data<int>(),
sizeof(int) * rois_batch_size,
nullptr /*stream*/);
int last_idx = 0;
for (int i = 0; i < rois_batch_size; i++) {
int end_idx = last_idx + rois_num_list[i];
for (int j = last_idx; j < end_idx; j++) {
roi_batch_id_list[j] = i;
}
last_idx = end_idx;
}
} else {
auto lod = rois->lod();
PADDLE_ENFORCE_EQ(lod.empty(),
false,
platform::errors::InvalidArgument(
"Input(ROIs) Tensor of ROIAlignOp "
"does not contain LoD information."));
auto rois_lod = lod.back();
rois_batch_size = rois_lod.size() - 1;
PADDLE_ENFORCE_EQ(rois_batch_size,
batch_size,
platform::errors::InvalidArgument(
"The rois_batch_size and imgs "
"batch_size must be the same. But received "
"rois_batch_size = %d, "
"batch_size = %d",
rois_batch_size,
batch_size));
int rois_num_with_lod = rois_lod[rois_batch_size];
PADDLE_ENFORCE_EQ(
rois_num,
rois_num_with_lod,
platform::errors::InvalidArgument(
"The actual number of rois and the number of rois "
"provided from Input(RoIsLoD) in RoIAlign must be the same."
" But received actual number of rois is %d, and the number "
"of rois from RoIsLoD is %d",
rois_num,
rois_num_with_lod));
for (int i = 0; i < rois_batch_size; i++) {
int start_idx = rois_lod[i];
int end_idx = rois_lod[i + 1];
for (int j = start_idx; j < end_idx; j++) {
roi_batch_id_list[j] = i;
}
}
}
// only support float32 for now
Tensor rois_cpu(framework::TransToPhiDataType(VT::FP32));
rois_cpu.Resize({rois_num, 4});
rois_cpu.mutable_data<T>(ctx.GetPlace());
auto& dev_ctx = ctx.template device_context<platform::MLUDeviceContext>();
framework::TensorCopy(*rois, cplace, dev_ctx, &rois_cpu);
dev_ctx.Wait();
T* rois_cpu_ptr = rois_cpu.mutable_data<T>(platform::CPUPlace());
// boxes; [batch_idx, x1, y1, x2, y2]
Tensor boxes_cpu(framework::TransToPhiDataType(VT::FP32));
Tensor boxes_mlu(framework::TransToPhiDataType(VT::FP32));
boxes_cpu.Resize({rois_num, 5});
boxes_mlu.Resize({rois_num, 5});
T* boxes_cpu_ptr = boxes_cpu.mutable_data<T>(platform::CPUPlace());
boxes_mlu.mutable_data<T>(ctx.GetPlace());
for (int i = 0; i < rois_num; ++i) {
boxes_cpu_ptr[i * 5 + 0] = static_cast<T>(roi_batch_id_list[i]);
boxes_cpu_ptr[i * 5 + 1] = rois_cpu_ptr[i * 4 + 0];
boxes_cpu_ptr[i * 5 + 2] = rois_cpu_ptr[i * 4 + 1];
boxes_cpu_ptr[i * 5 + 3] = rois_cpu_ptr[i * 4 + 2];
boxes_cpu_ptr[i * 5 + 4] = rois_cpu_ptr[i * 4 + 3];
}
// copy boxes_cpu to boxes_mlu
framework::TensorCopy(boxes_cpu, ctx.GetPlace(), dev_ctx, &boxes_mlu);
dev_ctx.Wait();
const std::vector<int> perm_to_nhwc = {0, 2, 3, 1};
const std::vector<int> perm_to_nchw = {0, 3, 1, 2};
Tensor input_nhwc(in->type());
Tensor output_nhwc(out->type());
TransposeFromMLUTensor<T>(
ctx, perm_to_nhwc, in, &input_nhwc, true /*need_reshape_or_alloc*/);
auto output_dims = out->dims();
output_nhwc.mutable_data<T>(
{output_dims[0], output_dims[2], output_dims[3], output_dims[1]},
ctx.GetPlace());
MLUCnnlTensorDesc input_desc(
input_nhwc, CNNL_LAYOUT_NHWC, ToCnnlDataType(input_nhwc.dtype()));
MLUCnnlTensorDesc boxes_desc(boxes_mlu);
MLUCnnlTensorDesc out_desc(
output_nhwc, CNNL_LAYOUT_NHWC, ToCnnlDataType(output_nhwc.dtype()));
MLUCnnl::RoiAlign(ctx,
pooled_height,
pooled_width,
sampling_ratio,
spatial_scale,
aligned,
input_desc.get(),
GetBasePtr(&input_nhwc),
boxes_desc.get(),
GetBasePtr(&boxes_mlu),
out_desc.get(),
GetBasePtr(&output_nhwc));
TransposeFromMLUTensor<T>(
ctx, perm_to_nchw, &output_nhwc, out, false /*need_reshape_or_alloc*/);
};
};
template <typename T>
class ROIAlignGradOpMLUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* rois = ctx.Input<LoDTensor>("ROIs");
auto* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* in_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
auto spatial_scale = ctx.Attr<T>("spatial_scale");
auto sampling_ratio = ctx.Attr<int>("sampling_ratio");
auto aligned = ctx.Attr<bool>("aligned");
int rois_num = rois->dims()[0];
if (!in_grad) {
return;
}
in_grad->mutable_data<T>(ctx.GetPlace());
std::vector<int> roi_batch_id_list(rois_num);
auto cplace = platform::CPUPlace();
int rois_batch_size = 0;
if (ctx.HasInput("RoisNum")) {
auto* rois_num_t = ctx.Input<Tensor>("RoisNum");
rois_batch_size = rois_num_t->numel();
std::vector<int> rois_num_list(rois_batch_size);
memory::Copy(cplace,
rois_num_list.data(),
ctx.GetPlace(),
rois_num_t->data<int>(),
sizeof(int) * rois_batch_size,
nullptr /*stream*/);
int last_idx = 0;
for (int i = 0; i < rois_batch_size; i++) {
int end_idx = last_idx + rois_num_list[i];
for (int j = last_idx; j < end_idx; j++) {
roi_batch_id_list[j] = i;
}
last_idx = end_idx;
}
} else {
auto rois_lod = rois->lod().back();
rois_batch_size = rois_lod.size() - 1;
for (int i = 0; i < rois_batch_size; i++) {
int start_idx = rois_lod[i];
int end_idx = rois_lod[i + 1];
for (int j = start_idx; j < end_idx; j++) {
roi_batch_id_list[j] = i;
}
}
}
Tensor rois_cpu(framework::TransToPhiDataType(VT::FP32));
rois_cpu.Resize({rois_num, 4});
rois_cpu.mutable_data<T>(ctx.GetPlace());
auto& dev_ctx = ctx.template device_context<platform::MLUDeviceContext>();
framework::TensorCopy(*rois, cplace, dev_ctx, &rois_cpu);
dev_ctx.Wait();
T* rois_cpu_ptr = rois_cpu.mutable_data<T>(platform::CPUPlace());
// boxes; [batch_idx, x1, y1, x2, y2]
Tensor boxes_cpu(framework::TransToPhiDataType(VT::FP32));
Tensor boxes_mlu(framework::TransToPhiDataType(VT::FP32));
boxes_cpu.Resize({rois_num, 5});
boxes_mlu.Resize({rois_num, 5});
T* boxes_cpu_ptr = boxes_cpu.mutable_data<T>(platform::CPUPlace());
boxes_mlu.mutable_data<T>(ctx.GetPlace());
for (int i = 0; i < rois_num; ++i) {
boxes_cpu_ptr[i * 5 + 0] = static_cast<T>(roi_batch_id_list[i]);
boxes_cpu_ptr[i * 5 + 1] = rois_cpu_ptr[i * 4 + 0];
boxes_cpu_ptr[i * 5 + 2] = rois_cpu_ptr[i * 4 + 1];
boxes_cpu_ptr[i * 5 + 3] = rois_cpu_ptr[i * 4 + 2];
boxes_cpu_ptr[i * 5 + 4] = rois_cpu_ptr[i * 4 + 3];
}
// copy boxes_cpu to boxes_mlu
framework::TensorCopy(boxes_cpu, ctx.GetPlace(), dev_ctx, &boxes_mlu);
dev_ctx.Wait();
const std::vector<int> perm_to_nhwc = {0, 2, 3, 1};
const std::vector<int> perm_to_nchw = {0, 3, 1, 2};
Tensor grads_nhwc(out_grad->type());
Tensor grads_image_nhwc(in_grad->type());
TransposeFromMLUTensor<T>(ctx,
perm_to_nhwc,
out_grad,
&grads_nhwc,
true /*need_reshape_or_alloc*/);
auto grads_image_dims = in_grad->dims();
grads_image_nhwc.mutable_data<T>({grads_image_dims[0],
grads_image_dims[2],
grads_image_dims[3],
grads_image_dims[1]},
ctx.GetPlace());
MLUCnnlTensorDesc grads_desc(
grads_nhwc, CNNL_LAYOUT_NHWC, ToCnnlDataType(grads_nhwc.dtype()));
MLUCnnlTensorDesc boxes_desc(boxes_mlu);
MLUCnnlTensorDesc grads_image_desc(
grads_image_nhwc,
CNNL_LAYOUT_NHWC,
ToCnnlDataType(grads_image_nhwc.dtype()));
MLUCnnl::RoiAlignBackward(ctx,
sampling_ratio,
spatial_scale,
aligned,
grads_desc.get(),
GetBasePtr(&grads_nhwc),
boxes_desc.get(),
GetBasePtr(&boxes_mlu),
grads_image_desc.get(),
GetBasePtr(&grads_image_nhwc));
TransposeFromMLUTensor<T>(ctx,
perm_to_nchw,
&grads_image_nhwc,
in_grad,
false /*need_reshape_or_alloc*/);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_MLU_KERNEL(roi_align, ops::ROIAlignOpMLUKernel<float>);
REGISTER_OP_MLU_KERNEL(roi_align_grad, ops::ROIAlignGradOpMLUKernel<float>);
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import math
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
paddle.enable_static()
np.random.seed(1243)
class TestROIAlignMLUOp(OpTest):
def set_data(self):
self.init_test_case()
self.make_rois()
self.calc_roi_align()
seq_len = self.rois_lod[0]
self.inputs = {
'X': self.x,
'ROIs': self.rois[:, 1:5],
'RoisNum': np.asarray(seq_len).astype('int32')
}
# print("self.inputs: ",self.inputs)
self.attrs = {
'spatial_scale': self.spatial_scale,
'pooled_height': self.pooled_height,
'pooled_width': self.pooled_width,
'sampling_ratio': self.sampling_ratio,
'aligned': self.aligned
}
self.outputs = {'Out': self.out_data}
def init_test_case(self):
self.batch_size = 3
self.channels = 3
self.height = 8
self.width = 6
# n, c, h, w
self.x_dim = (self.batch_size, self.channels, self.height, self.width)
self.spatial_scale = 1.0 / 2.0
self.pooled_height = 2
self.pooled_width = 2
self.sampling_ratio = 2
self.aligned = False
self.x = np.random.random(self.x_dim).astype('float32')
def pre_calc(self, x_i, roi_xmin, roi_ymin, roi_bin_grid_h, roi_bin_grid_w,
bin_size_h, bin_size_w):
count = roi_bin_grid_h * roi_bin_grid_w
bilinear_pos = np.zeros(
[self.channels, self.pooled_height, self.pooled_width, count, 4],
np.float32)
bilinear_w = np.zeros([self.pooled_height, self.pooled_width, count, 4],
np.float32)
for ph in range(self.pooled_width):
for pw in range(self.pooled_height):
c = 0
for iy in range(roi_bin_grid_h):
y = roi_ymin + ph * bin_size_h + (iy + 0.5) * \
bin_size_h / roi_bin_grid_h
for ix in range(roi_bin_grid_w):
x = roi_xmin + pw * bin_size_w + (ix + 0.5) * \
bin_size_w / roi_bin_grid_w
if y < -1.0 or y > self.height or \
x < -1.0 or x > self.width:
continue
if y <= 0:
y = 0
if x <= 0:
x = 0
y_low = int(y)
x_low = int(x)
if y_low >= self.height - 1:
y = y_high = y_low = self.height - 1
else:
y_high = y_low + 1
if x_low >= self.width - 1:
x = x_high = x_low = self.width - 1
else:
x_high = x_low + 1
ly = y - y_low
lx = x - x_low
hy = 1 - ly
hx = 1 - lx
for ch in range(self.channels):
bilinear_pos[ch, ph, pw, c, 0] = x_i[ch, y_low,
x_low]
bilinear_pos[ch, ph, pw, c, 1] = x_i[ch, y_low,
x_high]
bilinear_pos[ch, ph, pw, c, 2] = x_i[ch, y_high,
x_low]
bilinear_pos[ch, ph, pw, c, 3] = x_i[ch, y_high,
x_high]
bilinear_w[ph, pw, c, 0] = hy * hx
bilinear_w[ph, pw, c, 1] = hy * lx
bilinear_w[ph, pw, c, 2] = ly * hx
bilinear_w[ph, pw, c, 3] = ly * lx
c = c + 1
return bilinear_pos, bilinear_w
def calc_roi_align(self):
self.out_data = np.zeros(
(self.rois_num, self.channels, self.pooled_height,
self.pooled_width)).astype('float32')
offset = 0.5 if self.aligned else 0.
for i in range(self.rois_num):
roi = self.rois[i]
roi_batch_id = int(roi[0])
x_i = self.x[roi_batch_id]
roi_xmin = roi[1] * self.spatial_scale - offset
roi_ymin = roi[2] * self.spatial_scale - offset
roi_xmax = roi[3] * self.spatial_scale - offset
roi_ymax = roi[4] * self.spatial_scale - offset
roi_width = roi_xmax - roi_xmin
roi_height = roi_ymax - roi_ymin
if not self.aligned:
roi_width = max(roi_width, 1)
roi_height = max(roi_height, 1)
bin_size_h = float(roi_height) / float(self.pooled_height)
bin_size_w = float(roi_width) / float(self.pooled_width)
roi_bin_grid_h = self.sampling_ratio if self.sampling_ratio > 0 else \
math.ceil(roi_height / self.pooled_height)
roi_bin_grid_w = self.sampling_ratio if self.sampling_ratio > 0 else \
math.ceil(roi_width / self.pooled_width)
count = max(int(roi_bin_grid_h * roi_bin_grid_w), 1)
pre_size = count * self.pooled_width * self.pooled_height
bilinear_pos, bilinear_w = self.pre_calc(x_i, roi_xmin, roi_ymin,
int(roi_bin_grid_h),
int(roi_bin_grid_w),
bin_size_h, bin_size_w)
for ch in range(self.channels):
align_per_bin = (bilinear_pos[ch] * bilinear_w).sum(axis=-1)
output_val = align_per_bin.mean(axis=-1)
self.out_data[i, ch, :, :] = output_val
def make_rois(self):
rois = []
self.rois_lod = [[]]
for bno in range(self.batch_size):
# for i in range(bno + 1):
# self.rois_lod[0].append(bno)
self.rois_lod[0].append(1)
x1 = np.random.randint(
0, self.width // self.spatial_scale - self.pooled_width)
y1 = np.random.randint(
0, self.height // self.spatial_scale - self.pooled_height)
x2 = np.random.randint(x1 + self.pooled_width,
self.width // self.spatial_scale)
y2 = np.random.randint(y1 + self.pooled_height,
self.height // self.spatial_scale)
roi = [bno, x1, y1, x2, y2]
rois.append(roi)
self.rois_num = len(rois)
self.rois = np.array(rois).astype("float32")
def setUp(self):
self.op_type = "roi_align"
self.__class__.use_mlu = True
self.place = paddle.MLUPlace(0)
self.set_data()
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad(self):
self.check_grad_with_place(self.place, ['X'], 'Out')
class TestROIAlignOpWithMinusSample(TestROIAlignMLUOp):
def init_test_case(self):
self.batch_size = 3
self.channels = 3
self.height = 8
self.width = 6
# n, c, h, w
self.x_dim = (self.batch_size, self.channels, self.height, self.width)
self.spatial_scale = 1.0 / 2.0
self.pooled_height = 2
self.pooled_width = 2
self.sampling_ratio = -1
self.aligned = False
self.x = np.random.random(self.x_dim).astype('float32')
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册