Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
99b3727d
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
99b3727d
编写于
6月 28, 2022
作者:
Y
Yuang Liu
提交者:
GitHub
6月 28, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[fused_transformer] update transformer fustion for dygraph, test=allcases (#43858)
上级
72116696
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
167 addition
and
9 deletion
+167
-9
python/paddle/fluid/dygraph/amp/auto_cast.py
python/paddle/fluid/dygraph/amp/auto_cast.py
+4
-0
python/paddle/fluid/tests/unittests/test_fused_transformer_with_amp_decorator.py
...ts/unittests/test_fused_transformer_with_amp_decorator.py
+74
-0
python/paddle/incubate/nn/functional/fused_transformer.py
python/paddle/incubate/nn/functional/fused_transformer.py
+4
-2
python/paddle/incubate/nn/layer/fused_transformer.py
python/paddle/incubate/nn/layer/fused_transformer.py
+85
-7
未找到文件。
python/paddle/fluid/dygraph/amp/auto_cast.py
浏览文件 @
99b3727d
...
...
@@ -173,6 +173,10 @@ def pure_fp16_initialize(models):
paddle
.
nn
.
BatchNorm2D
,
paddle
.
nn
.
BatchNorm3D
,
paddle
.
nn
.
LayerNorm
,
paddle
.
nn
.
SyncBatchNorm
)):
continue
if
isinstance
(
layer
,
(
paddle
.
incubate
.
nn
.
FusedFeedForward
,
paddle
.
incubate
.
nn
.
FusedMultiHeadAttention
)):
layer
.
_amp_decorate
(
dtype
=
'float16'
)
continue
layer
.
_to_impl
(
dtype
=
'float16'
,
include_sublayers
=
False
,
floating_only
=
True
)
...
...
python/paddle/fluid/tests/unittests/test_fused_transformer_with_amp_decorator.py
0 → 100644
浏览文件 @
99b3727d
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
paddle.nn
as
nn
from
paddle.incubate.nn.layer.fused_transformer
import
FusedMultiHeadAttention
,
FusedFeedForward
import
unittest
class
PreModel
(
nn
.
Layer
):
def
__init__
(
self
):
super
(
PreModel
,
self
).
__init__
()
self
.
attn
=
FusedMultiHeadAttention
(
embed_dim
=
1024
,
num_heads
=
16
,
normalize_before
=
False
,
)
self
.
ffn
=
FusedFeedForward
(
d_model
=
1024
,
dim_feedforward
=
4096
,
normalize_before
=
False
)
def
forward
(
self
,
x
):
x
=
self
.
attn
(
x
)
x
=
self
.
ffn
(
x
)
class
PostModel
(
nn
.
Layer
):
def
__init__
(
self
):
super
(
PostModel
,
self
).
__init__
()
self
.
attn
=
FusedMultiHeadAttention
(
embed_dim
=
1024
,
num_heads
=
16
,
normalize_before
=
True
,
)
self
.
ffn
=
FusedFeedForward
(
d_model
=
1024
,
dim_feedforward
=
4096
,
normalize_before
=
True
)
def
forward
(
self
,
x
):
x
=
self
.
attn
(
x
)
x
=
self
.
ffn
(
x
)
class
TestFusedTransformerWithAmpDecorator
(
unittest
.
TestCase
):
def
get_model
(
self
):
self
.
pre_model
=
PreModel
()
self
.
post_model
=
PostModel
()
def
test_run
(
self
):
self
.
get_model
()
pre_model
=
paddle
.
amp
.
decorate
(
models
=
self
.
pre_model
,
level
=
'O2'
,
save_dtype
=
'float32'
)
post_model
=
paddle
.
amp
.
decorate
(
models
=
self
.
post_model
,
level
=
'O2'
,
save_dtype
=
'float32'
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/incubate/nn/functional/fused_transformer.py
浏览文件 @
99b3727d
...
...
@@ -526,8 +526,10 @@ def fused_multi_head_attention(x,
0
]
==
3
,
"The shape of qkv_weight should be [3, num_head, head_dim, embed_dim]."
assert
qkv_weight
.
shape
[
3
]
==
x
.
shape
[
2
],
"The 3rd dim of qkv_weight and 2nd dim of x should be the same, i.e., embed_dim."
assert
qkv_weight
.
shape
[
1
]
*
qkv_weight
.
shape
[
2
]
==
qkv_weight
.
shape
[
3
],
"embed_dim must be divisible by num_heads."
if
ring_id
==
-
1
:
# under mp, the num head will be split, this equation will not hold
assert
qkv_weight
.
shape
[
1
]
*
qkv_weight
.
shape
[
2
]
==
qkv_weight
.
shape
[
3
],
"embed_dim must be divisible by num_heads."
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
_
,
cache_kv_out
,
final_out
=
_C_ops
.
fused_attention
(
x
,
pre_ln_scale
,
pre_ln_bias
,
qkv_weight
,
qkv_bias
,
cache_kv
,
...
...
python/paddle/incubate/nn/layer/fused_transformer.py
浏览文件 @
99b3727d
...
...
@@ -18,8 +18,11 @@ from paddle.framework import ParamAttr
import
paddle
from
paddle.nn.layer.transformer
import
_convert_attention_mask
,
_convert_param_attr_to_list
from
paddle.nn.initializer
import
Constant
import
collections
from
paddle.fluid.dygraph
import
no_grad
from
paddle.fluid.framework
import
convert_np_dtype_to_dtype_
,
_non_static_mode
from
paddle.fluid.core
import
VarDesc
from
paddle.fluid
import
core
import
numpy
as
np
# for distributed tensor model parallel
...
...
@@ -29,11 +32,48 @@ def _set_var_distributed(var):
var
.
is_distributed
=
True
# NOTE: use current_block and find_var_recursive to support while_loop
startup_block
=
paddle
.
static
.
default_startup_program
().
current_block
()
main_block
=
paddle
.
static
.
default_main_program
().
current_block
()
startup_block
.
_find_var_recursive
(
var
.
name
).
is_distributed
=
True
main_block
.
_find_var_recursive
(
var
.
name
).
is_distributed
=
True
if
not
_non_static_mode
():
# NOTE: use current_block and find_var_recursive to support while_loop
startup_block
=
paddle
.
static
.
default_startup_program
().
current_block
()
main_block
=
paddle
.
static
.
default_main_program
().
current_block
()
startup_block
.
_find_var_recursive
(
var
.
name
).
is_distributed
=
True
main_block
.
_find_var_recursive
(
var
.
name
).
is_distributed
=
True
def
_to_dtype
(
t
,
dtype
):
# this function is a prune of Layer._transform function to fix fused op under amp.decorator(O2)
if
not
paddle
.
is_floating_point
(
t
):
return
t
if
type
(
dtype
)
is
not
VarDesc
.
VarType
:
dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
if
t
.
place
.
is_gpu_place
():
size_dtype
=
core
.
size_of_dtype
(
dtype
)
waiting_alloc_memory
=
(
(
np
.
prod
(
t
.
shape
)
*
size_dtype
)
/
256
+
1
)
*
256
*
1.2
gpu_memory_available
=
core
.
gpu_memory_available
()
if
gpu_memory_available
<
waiting_alloc_memory
:
t_used
=
t
.
_copy_to
(
paddle
.
CPUPlace
(),
False
)
t
.
value
().
get_tensor
().
_clear
()
else
:
t_used
=
t
else
:
t_used
=
t
if
dtype
is
not
None
and
dtype
!=
t_used
.
dtype
:
with
paddle
.
fluid
.
framework
.
_dygraph_place_guard
(
place
=
t_used
.
place
):
t_casted
=
t_used
.
cast
(
dtype
=
dtype
)
else
:
t_casted
=
t_used
new_t
=
t_casted
dst_tensor
=
t
.
value
().
get_tensor
()
src_tensor
=
new_t
.
value
().
get_tensor
()
dst_tensor
.
_share_data_with
(
src_tensor
)
return
t
class
FusedBiasDropoutResidualLayerNorm
(
Layer
):
...
...
@@ -374,6 +414,25 @@ class FusedMultiHeadAttention(Layer):
self
.
attn_dropout_rate
,
self
.
_epsilon
,
self
.
kdim
,
self
.
vdim
,
self
.
normalize_before
,
self
.
need_weights
,
self
.
_dtype
,
name_str
)
def
_amp_decorate
(
self
,
dtype
):
# tmp fix for amp.decorator(O2)
layer_norm_params_id
=
[]
if
self
.
normalize_before
:
layer_norm_params_id
.
append
(
id
(
self
.
pre_ln_scale
))
layer_norm_params_id
.
append
(
id
(
self
.
pre_ln_bias
))
else
:
layer_norm_params_id
.
append
(
id
(
self
.
ln_scale
))
layer_norm_params_id
.
append
(
id
(
self
.
ln_bias
))
for
key
,
param
in
self
.
_parameters
.
items
():
if
id
(
param
)
in
layer_norm_params_id
:
continue
if
param
is
not
None
:
with
no_grad
():
param_applied
=
_to_dtype
(
param
,
dtype
)
self
.
_dtype
=
dtype
class
FusedFeedForward
(
Layer
):
"""
...
...
@@ -559,6 +618,25 @@ class FusedFeedForward(Layer):
self
.
_epsilon
,
self
.
_act_method
,
self
.
_act_dropout_rate
,
self
.
_normalize_before
,
self
.
_dtype
,
name_str
)
def
_amp_decorate
(
self
,
dtype
):
# tmp fix for amp.decorator(O2)
layer_norm_params_id
=
[]
if
self
.
_normalize_before
:
layer_norm_params_id
.
append
(
id
(
self
.
_ln1_scale
))
layer_norm_params_id
.
append
(
id
(
self
.
_ln1_bias
))
else
:
layer_norm_params_id
.
append
(
id
(
self
.
_ln2_scale
))
layer_norm_params_id
.
append
(
id
(
self
.
_ln2_bias
))
for
key
,
param
in
self
.
_parameters
.
items
():
if
id
(
param
)
in
layer_norm_params_id
:
continue
if
param
is
not
None
:
with
no_grad
():
param_applied
=
_to_dtype
(
param
,
dtype
)
self
.
_dtype
=
dtype
class
FusedTransformerEncoderLayer
(
Layer
):
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录