未验证 提交 98f8fa4c 编写于 作者: L lyq 提交者: GitHub

[Phi] Migrate box coder to phi. (#44550)

上级 ab198b45
......@@ -29,12 +29,11 @@ function(detection_library TARGET_NAME)
endfunction()
if(WITH_ASCEND_CL)
detection_library(box_coder_op SRCS box_coder_op.cc box_coder_op.cu
box_coder_op_npu.cc)
detection_library(box_coder_op SRCS box_coder_op.cc box_coder_op_npu.cc)
detection_library(density_prior_box_op SRCS density_prior_box_op.cc
density_prior_box_op.cu density_prior_box_op_npu.cc)
else()
detection_library(box_coder_op SRCS box_coder_op.cc box_coder_op.cu)
detection_library(box_coder_op SRCS box_coder_op.cc)
detection_library(density_prior_box_op SRCS density_prior_box_op.cc
density_prior_box_op.cu)
endif()
......
......@@ -9,135 +9,19 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/detection/box_coder_op.h"
#include <vector>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/ternary.h"
namespace paddle {
namespace operators {
class BoxCoderOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE_EQ(
ctx->HasInput("PriorBox"),
true,
platform::errors::NotFound(
"Input(PriorBox) of BoxCoder operator is not found."));
PADDLE_ENFORCE_EQ(
ctx->HasInput("TargetBox"),
true,
platform::errors::NotFound(
"Input(TargetBox) of BoxCoder operator is not found."));
PADDLE_ENFORCE_EQ(
ctx->HasOutput("OutputBox"),
true,
platform::errors::NotFound(
"Output(OutputBox) of BoxCoder operator is not found."));
auto prior_box_dims = ctx->GetInputDim("PriorBox");
auto target_box_dims = ctx->GetInputDim("TargetBox");
if (ctx->IsRuntime()) {
PADDLE_ENFORCE_EQ(prior_box_dims.size(),
2,
platform::errors::InvalidArgument(
"The rank of Input PriorBox in BoxCoder operator "
"must be 2. But received rank = %d",
prior_box_dims.size()));
PADDLE_ENFORCE_EQ(prior_box_dims[1],
4,
platform::errors::InvalidArgument(
"The second dimension of PriorBox in BoxCoder "
"operator must be 4. But received dimension = %d",
prior_box_dims[1]));
if (ctx->HasInput("PriorBoxVar")) {
auto prior_box_var_dims = ctx->GetInputDim("PriorBoxVar");
PADDLE_ENFORCE_EQ(
prior_box_var_dims.size(),
2,
platform::errors::InvalidArgument(
"The rank of Input(PriorBoxVar) in BoxCoder operator"
" should be 2. But received rank = %d",
prior_box_var_dims.size()));
PADDLE_ENFORCE_EQ(
prior_box_dims,
prior_box_var_dims,
platform::errors::InvalidArgument(
"The dimension of Input(PriorBoxVar) should be equal to"
"the dimension of Input(PriorBox) in BoxCoder operator "
"when the rank is 2."));
}
}
auto code_type = GetBoxCodeType(ctx->Attrs().Get<std::string>("code_type"));
int axis = ctx->Attrs().Get<int>("axis");
if (code_type == BoxCodeType::kEncodeCenterSize) {
PADDLE_ENFORCE_EQ(target_box_dims.size(),
2,
platform::errors::InvalidArgument(
"The rank of Input TargetBox in BoxCoder operator "
"must be 2. But received rank is %d",
target_box_dims.size()));
PADDLE_ENFORCE_EQ(target_box_dims[1],
4,
platform::errors::InvalidArgument(
"The second dimension of TargetBox in BoxCoder "
"operator is 4. But received dimension is %d",
target_box_dims[1]));
ctx->SetOutputDim(
"OutputBox",
phi::make_ddim({target_box_dims[0], prior_box_dims[0], 4}));
} else if (code_type == BoxCodeType::kDecodeCenterSize) {
PADDLE_ENFORCE_EQ(target_box_dims.size(),
3,
platform::errors::InvalidArgument(
"The rank of Input TargetBox in BoxCoder "
"operator must be 3. But received rank is %d",
target_box_dims.size()));
PADDLE_ENFORCE_EQ(axis == 0 || axis == 1,
true,
platform::errors::InvalidArgument(
"axis in BoxCoder operator must be 0 or 1."
"But received axis = %d",
axis));
if (ctx->IsRuntime()) {
if (axis == 0) {
PADDLE_ENFORCE_EQ(
target_box_dims[1],
prior_box_dims[0],
platform::errors::InvalidArgument(
"When axis is 0, The second "
"dimension of TargetBox in BoxCoder "
"should be equal to the first dimension of PriorBox."));
} else if (axis == 1) {
PADDLE_ENFORCE_EQ(
target_box_dims[0],
prior_box_dims[0],
platform::errors::InvalidArgument(
"When axis is 1, The first "
"dimension of TargetBox in BoxCoder "
"should be equal to the first dimension of PriorBox."));
}
PADDLE_ENFORCE_EQ(target_box_dims[2],
prior_box_dims[1],
platform::errors::InvalidArgument(
"The third dimension of TargetBox"
" in BoxCoder should be equal to the "
"second dimension of PriorBox."));
}
ctx->ShareDim("TargetBox", /*->*/ "OutputBox");
}
if (code_type == BoxCodeType::kDecodeCenterSize && axis == 1) {
ctx->ShareLoD("PriorBox", /*->*/ "OutputBox");
} else {
ctx->ShareLoD("TargetBox", /*->*/ "OutputBox");
}
}
};
class BoxCoderOpMaker : public framework::OpProtoAndCheckerMaker {
......@@ -245,12 +129,15 @@ box will broadcast to target box along the assigned axis.
} // namespace paddle
namespace ops = paddle::operators;
DECLARE_INFER_SHAPE_FUNCTOR(box_coder,
BoxCoderInferShapeFunctor,
PD_INFER_META(phi::BoxCoderInferMeta));
REGISTER_OPERATOR(
box_coder,
ops::BoxCoderOp,
ops::BoxCoderOpMaker,
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OP_CPU_KERNEL(box_coder,
ops::BoxCoderKernel<phi::CPUContext, float>,
ops::BoxCoderKernel<phi::CPUContext, double>);
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>,
BoxCoderInferShapeFunctor);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace paddle {
namespace operators {
enum class BoxCodeType { kEncodeCenterSize = 0, kDecodeCenterSize = 1 };
inline BoxCodeType GetBoxCodeType(const std::string &type) {
PADDLE_ENFORCE_EQ(
(type == "encode_center_size") || (type == "decode_center_size"),
true,
platform::errors::InvalidArgument(
"The 'code_type' attribute in BoxCoder"
" must be 'encode_center_size' or 'decode_center_size'. "
"But received 'code_type' is %s",
type));
if (type == "encode_center_size") {
return BoxCodeType::kEncodeCenterSize;
} else {
return BoxCodeType::kDecodeCenterSize;
}
}
template <typename DeviceContext, typename T>
class BoxCoderKernel : public framework::OpKernel<T> {
public:
void EncodeCenterSize(const framework::Tensor *target_box,
const framework::Tensor *prior_box,
const framework::Tensor *prior_box_var,
const bool normalized,
const std::vector<float> variance,
T *output) const {
int64_t row = target_box->dims()[0];
int64_t col = prior_box->dims()[0];
int64_t len = prior_box->dims()[1];
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(2)
#endif
for (int64_t i = 0; i < row; ++i) {
for (int64_t j = 0; j < col; ++j) {
auto *target_box_data = target_box->data<T>();
auto *prior_box_data = prior_box->data<T>();
size_t offset = i * col * len + j * len;
T prior_box_width = prior_box_data[j * len + 2] -
prior_box_data[j * len] + (normalized == false);
T prior_box_height = prior_box_data[j * len + 3] -
prior_box_data[j * len + 1] +
(normalized == false);
T prior_box_center_x = prior_box_data[j * len] + prior_box_width / 2;
T prior_box_center_y =
prior_box_data[j * len + 1] + prior_box_height / 2;
T target_box_center_x =
(target_box_data[i * len + 2] + target_box_data[i * len]) / 2;
T target_box_center_y =
(target_box_data[i * len + 3] + target_box_data[i * len + 1]) / 2;
T target_box_width = target_box_data[i * len + 2] -
target_box_data[i * len] + (normalized == false);
T target_box_height = target_box_data[i * len + 3] -
target_box_data[i * len + 1] +
(normalized == false);
output[offset] =
(target_box_center_x - prior_box_center_x) / prior_box_width;
output[offset + 1] =
(target_box_center_y - prior_box_center_y) / prior_box_height;
output[offset + 2] =
std::log(std::fabs(target_box_width / prior_box_width));
output[offset + 3] =
std::log(std::fabs(target_box_height / prior_box_height));
}
}
if (prior_box_var) {
const T *prior_box_var_data = prior_box_var->data<T>();
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(3)
#endif
for (int64_t i = 0; i < row; ++i) {
for (int64_t j = 0; j < col; ++j) {
for (int k = 0; k < 4; ++k) {
size_t offset = i * col * len + j * len;
int prior_var_offset = j * len;
output[offset + k] /= prior_box_var_data[prior_var_offset + k];
}
}
}
} else if (!(variance.empty())) {
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(3)
#endif
for (int64_t i = 0; i < row; ++i) {
for (int64_t j = 0; j < col; ++j) {
for (int k = 0; k < 4; ++k) {
size_t offset = i * col * len + j * len;
output[offset + k] /= static_cast<T>(variance[k]);
}
}
}
}
}
template <int axis, int var_size>
void DecodeCenterSize(const framework::Tensor *target_box,
const framework::Tensor *prior_box,
const framework::Tensor *prior_box_var,
const bool normalized,
std::vector<float> variance,
T *output) const {
int64_t row = target_box->dims()[0];
int64_t col = target_box->dims()[1];
int64_t len = target_box->dims()[2];
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(2)
#endif
for (int64_t i = 0; i < row; ++i) {
for (int64_t j = 0; j < col; ++j) {
auto *target_box_data = target_box->data<T>();
auto *prior_box_data = prior_box->data<T>();
T var_data[4] = {1., 1., 1., 1.};
T *var_ptr = var_data;
size_t offset = i * col * len + j * len;
int prior_box_offset = axis == 0 ? j * len : i * len;
T prior_box_width = prior_box_data[prior_box_offset + 2] -
prior_box_data[prior_box_offset] +
(normalized == false);
T prior_box_height = prior_box_data[prior_box_offset + 3] -
prior_box_data[prior_box_offset + 1] +
(normalized == false);
T prior_box_center_x =
prior_box_data[prior_box_offset] + prior_box_width / 2;
T prior_box_center_y =
prior_box_data[prior_box_offset + 1] + prior_box_height / 2;
T target_box_center_x = 0, target_box_center_y = 0;
T target_box_width = 0, target_box_height = 0;
int prior_var_offset = axis == 0 ? j * len : i * len;
if (var_size == 2) {
std::memcpy(var_ptr,
prior_box_var->data<T>() + prior_var_offset,
4 * sizeof(T));
} else if (var_size == 1) {
var_ptr = reinterpret_cast<T *>(variance.data());
}
T box_var_x = *var_ptr;
T box_var_y = *(var_ptr + 1);
T box_var_w = *(var_ptr + 2);
T box_var_h = *(var_ptr + 3);
target_box_center_x =
box_var_x * target_box_data[offset] * prior_box_width +
prior_box_center_x;
target_box_center_y =
box_var_y * target_box_data[offset + 1] * prior_box_height +
prior_box_center_y;
target_box_width =
std::exp(box_var_w * target_box_data[offset + 2]) * prior_box_width;
target_box_height = std::exp(box_var_h * target_box_data[offset + 3]) *
prior_box_height;
output[offset] = target_box_center_x - target_box_width / 2;
output[offset + 1] = target_box_center_y - target_box_height / 2;
output[offset + 2] =
target_box_center_x + target_box_width / 2 - (normalized == false);
output[offset + 3] =
target_box_center_y + target_box_height / 2 - (normalized == false);
}
}
}
void Compute(const framework::ExecutionContext &context) const override {
auto *prior_box = context.Input<framework::Tensor>("PriorBox");
auto *prior_box_var = context.Input<framework::Tensor>("PriorBoxVar");
auto *target_box = context.Input<framework::LoDTensor>("TargetBox");
auto *output_box = context.Output<framework::Tensor>("OutputBox");
std::vector<float> variance = context.Attr<std::vector<float>>("variance");
const int axis = context.Attr<int>("axis");
if (target_box->lod().size()) {
PADDLE_ENFORCE_EQ(target_box->lod().size(),
1UL,
platform::errors::InvalidArgument(
"Input(TargetBox) of BoxCoder operator "
"supports LoD with only one level. But received "
"level = %d",
target_box->lod().size()));
}
if (prior_box_var) {
PADDLE_ENFORCE_EQ(variance.empty(),
true,
platform::errors::InvalidArgument(
"Input 'PriorBoxVar' and attribute 'variance' "
"of BoxCoder operator should not be used at the "
"same time."));
}
if (!(variance.empty())) {
PADDLE_ENFORCE_EQ(static_cast<int>(variance.size()),
4,
platform::errors::InvalidArgument(
"Size of attribute 'variance' of BoxCoder "
"operator should be 4. But received "
"size = %d",
variance.size()));
}
auto code_type = GetBoxCodeType(context.Attr<std::string>("code_type"));
bool normalized = context.Attr<bool>("box_normalized");
auto row = target_box->dims()[0];
auto col = prior_box->dims()[0];
if (code_type == BoxCodeType::kDecodeCenterSize) {
col = target_box->dims()[1];
}
auto len = prior_box->dims()[1];
output_box->mutable_data<T>({row, col, len}, context.GetPlace());
T *output = output_box->data<T>();
if (code_type == BoxCodeType::kEncodeCenterSize) {
EncodeCenterSize(
target_box, prior_box, prior_box_var, normalized, variance, output);
} else if (code_type == BoxCodeType::kDecodeCenterSize) {
if (prior_box_var) {
if (axis == 0) {
DecodeCenterSize<0, 2>(target_box,
prior_box,
prior_box_var,
normalized,
variance,
output);
} else {
DecodeCenterSize<1, 2>(target_box,
prior_box,
prior_box_var,
normalized,
variance,
output);
}
} else if (!(variance.empty())) {
if (axis == 0) {
DecodeCenterSize<0, 1>(target_box,
prior_box,
prior_box_var,
normalized,
variance,
output);
} else {
DecodeCenterSize<1, 1>(target_box,
prior_box,
prior_box_var,
normalized,
variance,
output);
}
} else {
if (axis == 0) {
DecodeCenterSize<0, 0>(target_box,
prior_box,
prior_box_var,
normalized,
variance,
output);
} else {
DecodeCenterSize<1, 0>(target_box,
prior_box,
prior_box_var,
normalized,
variance,
output);
}
}
}
}
};
} // namespace operators
} // namespace paddle
......@@ -9,8 +9,11 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/detection/box_coder_op.h"
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
#include "paddle/phi/kernels/impl/box_coder.h"
namespace paddle {
namespace operators {
......@@ -407,10 +410,11 @@ class BoxCoderNPUKernel : public framework::OpKernel<T> {
" supports LoD with one level."));
}
auto code_type = GetBoxCodeType(ctx.Attr<std::string>("code_type"));
auto code_type =
phi::funcs::GetBoxCodeType(ctx.Attr<std::string>("code_type"));
bool normalized = ctx.Attr<bool>("box_normalized");
if (code_type == BoxCodeType::kEncodeCenterSize) {
if (code_type == phi::funcs::BoxCodeType::kEncodeCenterSize) {
BoxCoderEnc<T>(ctx,
target_box,
prior_box,
......
......@@ -326,6 +326,16 @@
kernel :
func : bitwise_xor
# box_coder
- api : box_coder
args : (Tensor prior_box, Tensor prior_box_var, Tensor target_box, str code_type, bool box_normalized, int axis, float[] variance)
output : Tensor(output_box)
infer_meta :
func : BoxCoderInferMeta
kernel :
func : box_coder
optional : prior_box_var
# brelu
- api : brelu
args : (Tensor x, float t_min, float t_max)
......
......@@ -19,6 +19,7 @@ limitations under the License. */
#include "paddle/phi/common/layout.h"
#include "paddle/phi/core/ddim.h"
#include "paddle/phi/kernels/funcs/common_shape.h"
#include "paddle/phi/kernels/impl/box_coder.h"
namespace phi {
......@@ -145,6 +146,115 @@ void AddmmInferMeta(const MetaTensor& input,
out->set_dtype(input.dtype());
}
void BoxCoderInferMeta(const MetaTensor& prior_box,
const MetaTensor& prior_box_var,
const MetaTensor& target_box,
const std::string& code_type,
bool box_normalized,
int axis,
const std::vector<float>& variance,
MetaTensor* output_box,
MetaConfig config) {
auto prior_box_dims = prior_box.dims();
auto target_box_dims = target_box.dims();
if (config.is_runtime) {
PADDLE_ENFORCE_EQ(prior_box_dims.size(),
2,
phi::errors::InvalidArgument(
"The rank of Input PriorBox in BoxCoder operator "
"must be 2. But received rank = %d",
prior_box_dims.size()));
PADDLE_ENFORCE_EQ(prior_box_dims[1],
4,
phi::errors::InvalidArgument(
"The second dimension of PriorBox in BoxCoder "
"operator must be 4. But received dimension = %d",
prior_box_dims[1]));
if (prior_box_var) {
auto prior_box_var_dims = prior_box_var.dims();
PADDLE_ENFORCE_EQ(
prior_box_var_dims.size(),
2,
phi::errors::InvalidArgument(
"The rank of Input(PriorBoxVar) in BoxCoder operator"
" should be 2. But received rank = %d",
prior_box_var_dims.size()));
PADDLE_ENFORCE_EQ(
prior_box_dims,
prior_box_var_dims,
phi::errors::InvalidArgument(
"The dimension of Input(PriorBoxVar) should be equal to"
"the dimension of Input(PriorBox) in BoxCoder operator "
"when the rank is 2."));
}
}
auto box_code_type = phi::funcs::GetBoxCodeType(code_type);
if (box_code_type == phi::funcs::BoxCodeType::kEncodeCenterSize) {
PADDLE_ENFORCE_EQ(target_box_dims.size(),
2,
phi::errors::InvalidArgument(
"The rank of Input TargetBox in BoxCoder operator "
"must be 2. But received rank is %d",
target_box_dims.size()));
PADDLE_ENFORCE_EQ(target_box_dims[1],
4,
phi::errors::InvalidArgument(
"The second dimension of TargetBox in BoxCoder "
"operator is 4. But received dimension is %d",
target_box_dims[1]));
output_box->set_dims({target_box_dims[0], prior_box_dims[0], 4});
} else if (box_code_type == phi::funcs::BoxCodeType::kDecodeCenterSize) {
PADDLE_ENFORCE_EQ(target_box_dims.size(),
3,
phi::errors::InvalidArgument(
"The rank of Input TargetBox in BoxCoder "
"operator must be 3. But received rank is %d",
target_box_dims.size()));
PADDLE_ENFORCE_EQ(
axis == 0 || axis == 1,
true,
phi::errors::InvalidArgument("axis in BoxCoder operator must be 0 or 1."
"But received axis = %d",
axis));
if (config.is_runtime) {
if (axis == 0) {
PADDLE_ENFORCE_EQ(
target_box_dims[1],
prior_box_dims[0],
phi::errors::InvalidArgument(
"When axis is 0, The second "
"dimension of TargetBox in BoxCoder "
"should be equal to the first dimension of PriorBox."));
} else if (axis == 1) {
PADDLE_ENFORCE_EQ(
target_box_dims[0],
prior_box_dims[0],
phi::errors::InvalidArgument(
"When axis is 1, The first "
"dimension of TargetBox in BoxCoder "
"should be equal to the first dimension of PriorBox."));
}
PADDLE_ENFORCE_EQ(
target_box_dims[2],
prior_box_dims[1],
phi::errors::InvalidArgument("The third dimension of TargetBox"
" in BoxCoder should be equal to the "
"second dimension of PriorBox."));
}
output_box->share_dims(target_box);
}
if (box_code_type == phi::funcs::BoxCodeType::kDecodeCenterSize &&
axis == 1) {
output_box->share_lod(prior_box);
} else {
output_box->share_lod(target_box);
}
output_box->set_dtype(target_box.dtype());
}
void ArangeInferMeta(const MetaTensor& start,
const MetaTensor& end,
const MetaTensor& step,
......
......@@ -52,6 +52,16 @@ void ArangeInferMeta(const MetaTensor& start,
const MetaTensor& step,
MetaTensor* out);
void BoxCoderInferMeta(const MetaTensor& prior_box,
const MetaTensor& prior_box_var,
const MetaTensor& target_box,
const std::string& code_type,
bool box_normalized,
int axis,
const std::vector<float>& variance,
MetaTensor* output_box,
MetaConfig config = MetaConfig());
void InstanceNormInferMeta(const MetaTensor& x,
const MetaTensor& scale,
const MetaTensor& bias,
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "paddle/phi/core/dense_tensor.h"
namespace phi {
template <typename T, typename Context>
void BoxCoderKernel(const Context& dev_ctx,
const DenseTensor& prior_box,
const paddle::optional<DenseTensor>& prior_box_var,
const DenseTensor& target_box,
const std::string& code_type,
bool box_normalized,
int axis,
const std::vector<float>& variance,
DenseTensor* output_box);
} // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/box_coder_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/impl/box_coder.h"
namespace phi {
template <typename T>
void EncodeCenterSize(const DenseTensor *target_box,
const DenseTensor *prior_box,
const DenseTensor *prior_box_var,
const bool normalized,
const std::vector<float> variance,
T *output) {
int64_t row = target_box->dims()[0];
int64_t col = prior_box->dims()[0];
int64_t len = prior_box->dims()[1];
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(2)
#endif
for (int64_t i = 0; i < row; ++i) {
for (int64_t j = 0; j < col; ++j) {
auto *target_box_data = target_box->data<T>();
auto *prior_box_data = prior_box->data<T>();
size_t offset = i * col * len + j * len;
T prior_box_width = prior_box_data[j * len + 2] -
prior_box_data[j * len] + (normalized == false);
T prior_box_height = prior_box_data[j * len + 3] -
prior_box_data[j * len + 1] + (normalized == false);
T prior_box_center_x = prior_box_data[j * len] + prior_box_width / 2;
T prior_box_center_y = prior_box_data[j * len + 1] + prior_box_height / 2;
T target_box_center_x =
(target_box_data[i * len + 2] + target_box_data[i * len]) / 2;
T target_box_center_y =
(target_box_data[i * len + 3] + target_box_data[i * len + 1]) / 2;
T target_box_width = target_box_data[i * len + 2] -
target_box_data[i * len] + (normalized == false);
T target_box_height = target_box_data[i * len + 3] -
target_box_data[i * len + 1] +
(normalized == false);
output[offset] =
(target_box_center_x - prior_box_center_x) / prior_box_width;
output[offset + 1] =
(target_box_center_y - prior_box_center_y) / prior_box_height;
output[offset + 2] =
std::log(std::fabs(target_box_width / prior_box_width));
output[offset + 3] =
std::log(std::fabs(target_box_height / prior_box_height));
}
}
if (prior_box_var) {
const T *prior_box_var_data = prior_box_var->data<T>();
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(3)
#endif
for (int64_t i = 0; i < row; ++i) {
for (int64_t j = 0; j < col; ++j) {
for (int k = 0; k < 4; ++k) {
size_t offset = i * col * len + j * len;
int prior_var_offset = j * len;
output[offset + k] /= prior_box_var_data[prior_var_offset + k];
}
}
}
} else if (!(variance.empty())) {
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(3)
#endif
for (int64_t i = 0; i < row; ++i) {
for (int64_t j = 0; j < col; ++j) {
for (int k = 0; k < 4; ++k) {
size_t offset = i * col * len + j * len;
output[offset + k] /= static_cast<T>(variance[k]);
}
}
}
}
}
template <typename T, int axis, int var_size>
void DecodeCenterSize(const DenseTensor *target_box,
const DenseTensor *prior_box,
const DenseTensor *prior_box_var,
const bool normalized,
std::vector<float> variance,
T *output) {
int64_t row = target_box->dims()[0];
int64_t col = target_box->dims()[1];
int64_t len = target_box->dims()[2];
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(2)
#endif
for (int64_t i = 0; i < row; ++i) {
for (int64_t j = 0; j < col; ++j) {
auto *target_box_data = target_box->data<T>();
auto *prior_box_data = prior_box->data<T>();
T var_data[4] = {1., 1., 1., 1.};
T *var_ptr = var_data;
size_t offset = i * col * len + j * len;
int prior_box_offset = axis == 0 ? j * len : i * len;
T prior_box_width = prior_box_data[prior_box_offset + 2] -
prior_box_data[prior_box_offset] +
(normalized == false);
T prior_box_height = prior_box_data[prior_box_offset + 3] -
prior_box_data[prior_box_offset + 1] +
(normalized == false);
T prior_box_center_x =
prior_box_data[prior_box_offset] + prior_box_width / 2;
T prior_box_center_y =
prior_box_data[prior_box_offset + 1] + prior_box_height / 2;
T target_box_center_x = 0, target_box_center_y = 0;
T target_box_width = 0, target_box_height = 0;
int prior_var_offset = axis == 0 ? j * len : i * len;
if (var_size == 2) {
std::memcpy(var_ptr,
prior_box_var->data<T>() + prior_var_offset,
4 * sizeof(T));
} else if (var_size == 1) {
var_ptr = reinterpret_cast<T *>(variance.data());
}
T box_var_x = *var_ptr;
T box_var_y = *(var_ptr + 1);
T box_var_w = *(var_ptr + 2);
T box_var_h = *(var_ptr + 3);
target_box_center_x =
box_var_x * target_box_data[offset] * prior_box_width +
prior_box_center_x;
target_box_center_y =
box_var_y * target_box_data[offset + 1] * prior_box_height +
prior_box_center_y;
target_box_width =
std::exp(box_var_w * target_box_data[offset + 2]) * prior_box_width;
target_box_height =
std::exp(box_var_h * target_box_data[offset + 3]) * prior_box_height;
output[offset] = target_box_center_x - target_box_width / 2;
output[offset + 1] = target_box_center_y - target_box_height / 2;
output[offset + 2] =
target_box_center_x + target_box_width / 2 - (normalized == false);
output[offset + 3] =
target_box_center_y + target_box_height / 2 - (normalized == false);
}
}
}
template <typename T, typename Context>
void BoxCoderKernel(const Context &dev_ctx,
const DenseTensor &prior_box,
const paddle::optional<DenseTensor> &prior_box_var,
const DenseTensor &target_box,
const std::string &code_type_str,
bool normalized,
int axis,
const std::vector<float> &variance,
DenseTensor *output_box) {
if (target_box.lod().size()) {
PADDLE_ENFORCE_EQ(target_box.lod().size(),
1UL,
phi::errors::InvalidArgument(
"Input(TargetBox) of BoxCoder operator "
"supports LoD with only one level. But received "
"level = %d",
target_box.lod().size()));
}
if (prior_box_var) {
PADDLE_ENFORCE_EQ(variance.empty(),
true,
phi::errors::InvalidArgument(
"Input 'PriorBoxVar' and attribute 'variance' "
"of BoxCoder operator should not be used at the "
"same time."));
}
if (!(variance.empty())) {
PADDLE_ENFORCE_EQ(
static_cast<int>(variance.size()),
4,
phi::errors::InvalidArgument("Size of attribute 'variance' of BoxCoder "
"operator should be 4. But received "
"size = %d",
variance.size()));
}
auto code_type = phi::funcs::GetBoxCodeType(code_type_str);
auto row = target_box.dims()[0];
auto col = prior_box.dims()[0];
if (code_type == phi::funcs::BoxCodeType::kDecodeCenterSize) {
col = target_box.dims()[1];
}
auto len = prior_box.dims()[1];
output_box->Resize({row, col, len});
dev_ctx.template Alloc<T>(output_box);
T *output = output_box->data<T>();
if (code_type == phi::funcs::BoxCodeType::kEncodeCenterSize) {
EncodeCenterSize<T>(&target_box,
&prior_box,
prior_box_var.get_ptr(),
normalized,
variance,
output);
} else if (code_type == phi::funcs::BoxCodeType::kDecodeCenterSize) {
if (prior_box_var) {
if (axis == 0) {
DecodeCenterSize<T, 0, 2>(&target_box,
&prior_box,
prior_box_var.get_ptr(),
normalized,
variance,
output);
} else {
DecodeCenterSize<T, 1, 2>(&target_box,
&prior_box,
prior_box_var.get_ptr(),
normalized,
variance,
output);
}
} else if (!(variance.empty())) {
if (axis == 0) {
DecodeCenterSize<T, 0, 1>(&target_box,
&prior_box,
prior_box_var.get_ptr(),
normalized,
variance,
output);
} else {
DecodeCenterSize<T, 1, 1>(&target_box,
&prior_box,
prior_box_var.get_ptr(),
normalized,
variance,
output);
}
} else {
if (axis == 0) {
DecodeCenterSize<T, 0, 0>(&target_box,
&prior_box,
prior_box_var.get_ptr(),
normalized,
variance,
output);
} else {
DecodeCenterSize<T, 1, 0>(&target_box,
&prior_box,
prior_box_var.get_ptr(),
normalized,
variance,
output);
}
}
}
}
} // namespace phi
PD_REGISTER_KERNEL(
box_coder, CPU, ALL_LAYOUT, phi::BoxCoderKernel, float, double) {}
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/box_coder_kernel.h"
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/operators/detection/box_coder_op.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/box_coder.h"
namespace paddle {
namespace operators {
namespace phi {
template <typename T>
__global__ void EncodeCenterSizeKernel(const T* prior_box_data,
const T* prior_box_var_data,
const T* target_box_data,
__global__ void EncodeCenterSizeKernel(const T *prior_box_data,
const T *prior_box_var_data,
const T *target_box_data,
const int row,
const int col,
const int len,
const bool normalized,
const T prior_box_var_size,
const float* variance,
const float *variance,
const int var_size,
T* output) {
T *output) {
const int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < row * col) {
const int row_idx = idx / col;
......@@ -77,18 +83,18 @@ __global__ void EncodeCenterSizeKernel(const T* prior_box_data,
}
template <typename T>
__global__ void DecodeCenterSizeKernel(const T* prior_box_data,
const T* prior_box_var_data,
const T* target_box_data,
__global__ void DecodeCenterSizeKernel(const T *prior_box_data,
const T *prior_box_var_data,
const T *target_box_data,
const int row,
const int col,
const int len,
const bool normalized,
const T prior_box_var_size,
const float* variance,
const float *variance,
const int var_size,
const int axis,
T* output) {
T *output) {
const int idx = threadIdx.x + blockIdx.x * blockDim.x;
int prior_box_offset = 0;
if (idx < row * col) {
......@@ -141,108 +147,100 @@ __global__ void DecodeCenterSizeKernel(const T* prior_box_data,
}
}
template <typename DeviceContext, typename T>
class BoxCoderCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* prior_box = context.Input<framework::Tensor>("PriorBox");
auto* prior_box_var = context.Input<framework::Tensor>("PriorBoxVar");
auto* target_box = context.Input<framework::LoDTensor>("TargetBox");
auto* output_box = context.Output<framework::Tensor>("OutputBox");
std::vector<float> variance = context.Attr<std::vector<float>>("variance");
const T* prior_box_data = prior_box->data<T>();
const T* target_box_data = target_box->data<T>();
const T* prior_box_var_data = nullptr;
auto prior_box_var_size = 0;
if (prior_box_var) {
PADDLE_ENFORCE_EQ(variance.empty(),
true,
platform::errors::InvalidArgument(
"Input 'PriorBoxVar' and attribute 'variance'"
" of BoxCoder operator should not be used at the "
"same time."));
prior_box_var_data = prior_box_var->data<T>();
prior_box_var_size = prior_box_var->dims().size();
}
if (!(variance.empty())) {
PADDLE_ENFORCE_EQ(static_cast<int>(variance.size()),
4,
platform::errors::InvalidArgument(
"Size of attribute 'variance' in BoxCoder operator"
" should be 4. But received size is %d",
variance.size()));
}
if (target_box->lod().size()) {
PADDLE_ENFORCE_EQ(target_box->lod().size(),
1,
platform::errors::InvalidArgument(
"Input 'TargetBox' of BoxCoder operator only"
" supports LoD with one level."));
}
const int var_size = static_cast<int>(variance.size());
auto code_type = GetBoxCodeType(context.Attr<std::string>("code_type"));
bool normalized = context.Attr<bool>("box_normalized");
int axis = context.Attr<int>("axis");
template <typename T, typename Context>
void BoxCoderKernel(const Context &dev_ctx,
const DenseTensor &prior_box,
const paddle::optional<DenseTensor> &prior_box_var,
const DenseTensor &target_box,
const std::string &code_type_str,
bool normalized,
int axis,
const std::vector<float> &variance,
DenseTensor *output_box) {
const T *prior_box_data = prior_box.template data<T>();
const T *target_box_data = target_box.template data<T>();
const T *prior_box_var_data = nullptr;
auto prior_box_var_size = 0;
if (prior_box_var) {
PADDLE_ENFORCE_EQ(variance.empty(),
true,
phi::errors::InvalidArgument(
"Input 'PriorBoxVar' and attribute 'variance'"
" of BoxCoder operator should not be used at the "
"same time."));
prior_box_var_data = prior_box_var->data<T>();
prior_box_var_size = prior_box_var->dims().size();
}
if (!(variance.empty())) {
PADDLE_ENFORCE_EQ(static_cast<int>(variance.size()),
4,
phi::errors::InvalidArgument(
"Size of attribute 'variance' in BoxCoder operator"
" should be 4. But received size is %d",
variance.size()));
}
auto row = target_box->dims()[0];
auto col = prior_box->dims()[0];
if (code_type == BoxCodeType::kDecodeCenterSize) {
col = target_box->dims()[1];
}
auto len = prior_box->dims()[1];
int block = 512;
int grid = (row * col + block - 1) / block;
auto& device_ctx = context.cuda_device_context();
int bytes = var_size * sizeof(float);
auto dev_var = memory::Alloc(device_ctx, bytes);
float* dev_var_data = reinterpret_cast<float*>(dev_var->ptr());
auto cplace = platform::CPUPlace();
const auto gplace = context.GetPlace();
memory::Copy(
gplace, dev_var_data, cplace, &variance[0], bytes, device_ctx.stream());
output_box->mutable_data<T>({row, col, len}, context.GetPlace());
T* output = output_box->data<T>();
if (code_type == BoxCodeType::kEncodeCenterSize) {
EncodeCenterSizeKernel<T>
<<<grid, block, 0, device_ctx.stream()>>>(prior_box_data,
prior_box_var_data,
target_box_data,
row,
col,
len,
normalized,
prior_box_var_size,
dev_var_data,
var_size,
output);
} else if (code_type == BoxCodeType::kDecodeCenterSize) {
DecodeCenterSizeKernel<T>
<<<grid, block, 0, device_ctx.stream()>>>(prior_box_data,
prior_box_var_data,
target_box_data,
row,
col,
len,
normalized,
prior_box_var_size,
dev_var_data,
var_size,
axis,
output);
}
if (target_box.lod().size()) {
PADDLE_ENFORCE_EQ(target_box.lod().size(),
1,
phi::errors::InvalidArgument(
"Input 'TargetBox' of BoxCoder operator only"
" supports LoD with one level."));
}
};
const int var_size = static_cast<int>(variance.size());
auto code_type = phi::funcs::GetBoxCodeType(code_type_str);
auto row = target_box.dims()[0];
auto col = prior_box.dims()[0];
if (code_type == phi::funcs::BoxCodeType::kDecodeCenterSize) {
col = target_box.dims()[1];
}
auto len = prior_box.dims()[1];
int block = 512;
int grid = (row * col + block - 1) / block;
int bytes = var_size * sizeof(float);
auto dev_var = paddle::memory::Alloc(dev_ctx, bytes);
float *dev_var_data = reinterpret_cast<float *>(dev_var->ptr());
auto cplace = phi::CPUPlace();
const auto gplace = dev_ctx.GetPlace();
paddle::memory::Copy(
gplace, dev_var_data, cplace, &variance[0], bytes, dev_ctx.stream());
output_box->Resize({row, col, len});
dev_ctx.template Alloc<T>(output_box);
T *output = output_box->data<T>();
if (code_type == phi::funcs::BoxCodeType::kEncodeCenterSize) {
EncodeCenterSizeKernel<T>
<<<grid, block, 0, dev_ctx.stream()>>>(prior_box_data,
prior_box_var_data,
target_box_data,
row,
col,
len,
normalized,
prior_box_var_size,
dev_var_data,
var_size,
output);
} else if (code_type == phi::funcs::BoxCodeType::kDecodeCenterSize) {
DecodeCenterSizeKernel<T>
<<<grid, block, 0, dev_ctx.stream()>>>(prior_box_data,
prior_box_var_data,
target_box_data,
row,
col,
len,
normalized,
prior_box_var_size,
dev_var_data,
var_size,
axis,
output);
}
}
} // namespace operators
} // namespace paddle
} // namespace phi
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
box_coder,
ops::BoxCoderCUDAKernel<paddle::platform::CUDADeviceContext, float>,
ops::BoxCoderCUDAKernel<paddle::platform::CUDADeviceContext, double>);
PD_REGISTER_KERNEL(
box_coder, GPU, ALL_LAYOUT, phi::BoxCoderKernel, float, double) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/phi/core/enforce.h"
namespace phi {
namespace funcs {
enum class BoxCodeType { kEncodeCenterSize = 0, kDecodeCenterSize = 1 };
inline BoxCodeType GetBoxCodeType(const std::string &type) {
PADDLE_ENFORCE_EQ(
(type == "encode_center_size") || (type == "decode_center_size"),
true,
phi::errors::InvalidArgument(
"The 'code_type' attribute in BoxCoder"
" must be 'encode_center_size' or 'decode_center_size'. "
"But received 'code_type' is %s",
type));
if (type == "encode_center_size") {
return BoxCodeType::kEncodeCenterSize;
} else {
return BoxCodeType::kDecodeCenterSize;
}
}
} // namespace funcs
} // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace phi {
KernelSignature BoxCoderOpArgumentMapping(const ArgumentMappingContext& ctx) {
return KernelSignature("box_coder",
{"PriorBox", "PriorBoxVar", "TargetBox"},
{"code_type", "box_normalized", "axis", "variance"},
{"OutputBox"});
}
} // namespace phi
PD_REGISTER_ARG_MAPPING_FN(box_coder, phi::BoxCoderOpArgumentMapping);
......@@ -37,6 +37,7 @@ from functools import reduce
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
from paddle.utils import deprecated
from paddle import _C_ops
from ..framework import in_dygraph_mode
__all__ = [
'prior_box',
......@@ -948,6 +949,22 @@ def box_coder(prior_box,
'box_coder')
check_variable_and_dtype(target_box, 'target_box', ['float32', 'float64'],
'box_coder')
if in_dygraph_mode():
if isinstance(prior_box_var, Variable):
box_coder_op = _C_ops.final_state_box_coder(prior_box,
prior_box_var,
target_box, code_type,
box_normalized, axis,
[])
elif isinstance(prior_box_var, list):
box_coder_op = _C_ops.final_state_box_coder(prior_box, None,
target_box, code_type,
box_normalized, axis,
prior_box_var)
else:
raise TypeError(
"Input variance of box_coder must be Variable or lisz")
return box_coder_op
helper = LayerHelper("box_coder", **locals())
output_box = helper.create_variable_for_type_inference(
......
......@@ -19,6 +19,8 @@ import numpy as np
import sys
import math
from op_test import OpTest
import paddle
import paddle.fluid.core as core
def box_decoder(t_box, p_box, pb_v, output_box, norm, axis=0):
......@@ -105,10 +107,11 @@ def batch_box_coder(p_box, pb_v, t_box, lod, code_type, norm, axis=0):
class TestBoxCoderOp(OpTest):
def test_check_output(self):
self.check_output()
self.check_output(check_eager=True)
def setUp(self):
self.op_type = "box_coder"
self.python_api = paddle.fluid.layers.box_coder
lod = [[1, 1, 1, 1, 1]]
prior_box = np.random.random((81, 4)).astype('float32')
prior_box_var = np.random.random((81, 4)).astype('float32')
......@@ -132,9 +135,10 @@ class TestBoxCoderOp(OpTest):
class TestBoxCoderOpWithoutBoxVar(OpTest):
def test_check_output(self):
self.check_output()
self.check_output(check_eager=True)
def setUp(self):
self.python_api = paddle.fluid.layers.box_coder
self.op_type = "box_coder"
lod = [[0, 1, 2, 3, 4, 5]]
prior_box = np.random.random((81, 4)).astype('float32')
......@@ -147,6 +151,7 @@ class TestBoxCoderOpWithoutBoxVar(OpTest):
self.inputs = {
'PriorBox': prior_box,
'PriorBoxVar': prior_box_var,
'TargetBox': target_box,
}
self.attrs = {
......@@ -159,9 +164,10 @@ class TestBoxCoderOpWithoutBoxVar(OpTest):
class TestBoxCoderOpWithLoD(OpTest):
def test_check_output(self):
self.check_output()
self.check_output(check_eager=True)
def setUp(self):
self.python_api = paddle.fluid.layers.box_coder
self.op_type = "box_coder"
lod = [[10, 20, 20]]
prior_box = np.random.random((20, 4)).astype('float32')
......@@ -184,9 +190,10 @@ class TestBoxCoderOpWithLoD(OpTest):
class TestBoxCoderOpWithAxis(OpTest):
def test_check_output(self):
self.check_output()
self.check_output(check_eager=True)
def setUp(self):
self.python_api = paddle.fluid.layers.box_coder
self.op_type = "box_coder"
lod = [[1, 1, 1, 1, 1]]
prior_box = np.random.random((30, 4)).astype('float32')
......@@ -241,5 +248,43 @@ class TestBoxCoderOpWithVariance(OpTest):
self.outputs = {'OutputBox': output_box}
class TestBoxCoderOpWithVarianceDygraphAPI(unittest.TestCase):
def setUp(self):
self.lod = [[1, 1, 1, 1, 1]]
self.prior_box = np.random.random((30, 4)).astype('float32')
self.prior_box_var = np.random.random((4)).astype('float32')
self.target_box = np.random.random((30, 81, 4)).astype('float32')
self.code_type = "DecodeCenterSize"
self.box_normalized = False
self.axis = 1
self.output_ref = batch_box_coder(self.prior_box, self.prior_box_var,
self.target_box, self.lod[0],
self.code_type, self.box_normalized,
self.axis)
self.place = [paddle.CPUPlace()]
if core.is_compiled_with_cuda():
self.place.append(paddle.CUDAPlace(0))
def test_dygraph_api(self):
def run(place):
paddle.disable_static(place)
output_box = paddle.fluid.layers.box_coder(
paddle.to_tensor(self.prior_box),
self.prior_box_var.tolist(),
paddle.to_tensor(self.target_box),
"decode_center_size",
self.box_normalized,
axis=self.axis)
self.assertEqual(
np.allclose(np.sum(self.output_ref),
np.sum(output_box.numpy())), True)
paddle.enable_static()
for place in self.place:
run(place)
if __name__ == '__main__':
unittest.main()
......@@ -50,7 +50,8 @@ class TestL2LossOp(OpTest):
def test_check_grad(self):
self.check_grad(['X'],
'Out',
max_relative_error=self.max_relative_error)
max_relative_error=self.max_relative_error,
check_eager=True)
class TestL2LossDeterministic(unittest.TestCase):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册