未验证 提交 95f66c26 编写于 作者: F freeliuzc 提交者: GitHub

Use tempfile to place all the temporary files. Modify some code structure. (#43376)

上级 59f89236
......@@ -17,14 +17,22 @@ from __future__ import print_function
import os
import sys
import time
import tempfile
import subprocess
import unittest
import numpy as np
import paddle
class TestDirectory(unittest.TestCase):
def setUp(self):
self.temp_dir = tempfile.TemporaryDirectory()
def tearDown(self):
self.temp_dir.cleanup()
def get_import_command(self, module):
paths = module.split('.')
if len(paths) == 1:
......@@ -77,7 +85,7 @@ class TestDirectory(unittest.TestCase):
'paddle.static.nn.spectral_norm', 'paddle.static.nn.embedding'
]
import_file = 'run_import_modules.py'
import_file = os.path.join(self.temp_dir.name, 'run_import_modules.py')
with open(import_file, "w") as wb:
for module in new_directory:
......@@ -137,7 +145,8 @@ class TestDirectory(unittest.TestCase):
'paddle.declarative.spectral_norm', 'paddle.declarative.embedding'
]
import_file = 'run_old_import_modules.py'
import_file = os.path.join(self.temp_dir.name,
'run_old_import_modules.py')
with open(import_file, "w") as wb:
cmd_context_count = """
......
......@@ -26,13 +26,6 @@ from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph import Linear
from paddle.fluid.framework import _test_eager_guard
# Can use Amusic dataset as the DeepCF describes.
DATA_PATH = os.environ.get('DATA_PATH', '')
BATCH_SIZE = int(os.environ.get('BATCH_SIZE', 128))
NUM_BATCHES = int(os.environ.get('NUM_BATCHES', 5))
NUM_EPOCHES = int(os.environ.get('NUM_EPOCHES', 1))
class DMF(fluid.Layer):
......@@ -129,84 +122,90 @@ class DeepCF(fluid.Layer):
return prediction
def get_data():
user_ids = []
item_ids = []
labels = []
NUM_USERS = 100
NUM_ITEMS = 1000
matrix = np.zeros([NUM_USERS, NUM_ITEMS], dtype=np.float32)
class TestDygraphDeepCF(unittest.TestCase):
for uid in range(NUM_USERS):
for iid in range(NUM_ITEMS):
label = float(random.randint(1, 6) == 1)
def setUp(self):
# Can use Amusic dataset as the DeepCF describes.
self.data_path = os.environ.get('DATA_PATH', '')
self.batch_size = int(os.environ.get('BATCH_SIZE', 128))
self.num_batches = int(os.environ.get('NUM_BATCHES', 5))
self.num_epoches = int(os.environ.get('NUM_EPOCHES', 1))
def get_data(self):
user_ids = []
item_ids = []
labels = []
NUM_USERS = 100
NUM_ITEMS = 1000
matrix = np.zeros([NUM_USERS, NUM_ITEMS], dtype=np.float32)
for uid in range(NUM_USERS):
for iid in range(NUM_ITEMS):
label = float(random.randint(1, 6) == 1)
user_ids.append(uid)
item_ids.append(iid)
labels.append(label)
matrix[uid, iid] = label
indices = np.arange(len(user_ids))
np.random.shuffle(indices)
users_np = np.array(user_ids, dtype=np.int32)[indices]
items_np = np.array(item_ids, dtype=np.int32)[indices]
labels_np = np.array(labels, dtype=np.float32)[indices]
return np.expand_dims(users_np, -1), \
np.expand_dims(items_np, -1), \
np.expand_dims(labels_np, -1), NUM_USERS, NUM_ITEMS, matrix
def load_data(self):
sys.stderr.write('loading from %s\n' % self.data_path)
likes = dict()
num_users = -1
num_items = -1
with open(self.data_path, 'r') as f:
for l in f.readlines():
uid, iid, rating = [int(v) for v in l.split('\t')]
num_users = max(num_users, uid + 1)
num_items = max(num_items, iid + 1)
if float(rating) > 0.0:
likes[(uid, iid)] = 1.0
user_ids = []
item_ids = []
labels = []
matrix = np.zeros([num_users, num_items], dtype=np.float32)
for uid, iid in likes.keys():
user_ids.append(uid)
item_ids.append(iid)
labels.append(label)
matrix[uid, iid] = label
indices = np.arange(len(user_ids))
np.random.shuffle(indices)
users_np = np.array(user_ids, dtype=np.int32)[indices]
items_np = np.array(item_ids, dtype=np.int32)[indices]
labels_np = np.array(labels, dtype=np.float32)[indices]
return np.expand_dims(users_np, -1), \
np.expand_dims(items_np, -1), \
np.expand_dims(labels_np, -1), NUM_USERS, NUM_ITEMS, matrix
def load_data(DATA_PATH):
sys.stderr.write('loading from %s\n' % DATA_PATH)
likes = dict()
num_users = -1
num_items = -1
with open(DATA_PATH, 'r') as f:
for l in f.readlines():
uid, iid, rating = [int(v) for v in l.split('\t')]
num_users = max(num_users, uid + 1)
num_items = max(num_items, iid + 1)
if float(rating) > 0.0:
likes[(uid, iid)] = 1.0
user_ids = []
item_ids = []
labels = []
matrix = np.zeros([num_users, num_items], dtype=np.float32)
for uid, iid in likes.keys():
user_ids.append(uid)
item_ids.append(iid)
labels.append(1.0)
matrix[uid, iid] = 1.0
negative = 0
while negative < 3:
nuid = random.randint(0, num_users - 1)
niid = random.randint(0, num_items - 1)
if (nuid, niid) not in likes:
negative += 1
user_ids.append(nuid)
item_ids.append(niid)
labels.append(0.0)
indices = np.arange(len(user_ids))
np.random.shuffle(indices)
users_np = np.array(user_ids, dtype=np.int32)[indices]
items_np = np.array(item_ids, dtype=np.int32)[indices]
labels_np = np.array(labels, dtype=np.float32)[indices]
return np.expand_dims(users_np, -1), \
np.expand_dims(items_np, -1), \
np.expand_dims(labels_np, -1), num_users, num_items, matrix
class TestDygraphDeepCF(unittest.TestCase):
labels.append(1.0)
matrix[uid, iid] = 1.0
negative = 0
while negative < 3:
nuid = random.randint(0, num_users - 1)
niid = random.randint(0, num_items - 1)
if (nuid, niid) not in likes:
negative += 1
user_ids.append(nuid)
item_ids.append(niid)
labels.append(0.0)
indices = np.arange(len(user_ids))
np.random.shuffle(indices)
users_np = np.array(user_ids, dtype=np.int32)[indices]
items_np = np.array(item_ids, dtype=np.int32)[indices]
labels_np = np.array(labels, dtype=np.float32)[indices]
return np.expand_dims(users_np, -1), \
np.expand_dims(items_np, -1), \
np.expand_dims(labels_np, -1), num_users, num_items, matrix
def test_deefcf(self):
seed = 90
if DATA_PATH:
if self.data_path:
(users_np, items_np, labels_np, num_users, num_items,
matrix) = load_data(DATA_PATH)
matrix) = self.load_data()
else:
(users_np, items_np, labels_np, num_users, num_items,
matrix) = get_data()
matrix) = self.get_data()
paddle.seed(seed)
paddle.framework.random._manual_program_seed(seed)
startup = fluid.Program()
......@@ -228,17 +227,19 @@ class TestDygraphDeepCF(unittest.TestCase):
exe = fluid.Executor(fluid.CPUPlace(
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
exe.run(startup)
for e in range(NUM_EPOCHES):
for e in range(self.num_epoches):
sys.stderr.write('epoch %d\n' % e)
for slice in range(0, BATCH_SIZE * NUM_BATCHES, BATCH_SIZE):
if slice + BATCH_SIZE >= users_np.shape[0]:
for slice in range(0, self.batch_size * self.num_batches,
self.batch_size):
if slice + self.batch_size >= users_np.shape[0]:
break
static_loss = exe.run(
main,
feed={
users.name: users_np[slice:slice + BATCH_SIZE],
items.name: items_np[slice:slice + BATCH_SIZE],
labels.name: labels_np[slice:slice + BATCH_SIZE]
users.name: users_np[slice:slice + self.batch_size],
items.name: items_np[slice:slice + self.batch_size],
labels.name:
labels_np[slice:slice + self.batch_size]
},
fetch_list=[loss])[0]
sys.stderr.write('static loss %s\n' % static_loss)
......@@ -250,18 +251,20 @@ class TestDygraphDeepCF(unittest.TestCase):
deepcf = DeepCF(num_users, num_items, matrix)
adam = fluid.optimizer.AdamOptimizer(
0.01, parameter_list=deepcf.parameters())
for e in range(NUM_EPOCHES):
for e in range(self.num_epoches):
sys.stderr.write('epoch %d\n' % e)
for slice in range(0, BATCH_SIZE * NUM_BATCHES, BATCH_SIZE):
if slice + BATCH_SIZE >= users_np.shape[0]:
for slice in range(0, self.batch_size * self.num_batches,
self.batch_size):
if slice + self.batch_size >= users_np.shape[0]:
break
prediction = deepcf(
to_variable(users_np[slice:slice + BATCH_SIZE]),
to_variable(items_np[slice:slice + BATCH_SIZE]))
to_variable(users_np[slice:slice + self.batch_size]),
to_variable(items_np[slice:slice + self.batch_size]))
loss = fluid.layers.reduce_sum(
fluid.layers.log_loss(
prediction,
to_variable(labels_np[slice:slice + BATCH_SIZE])))
to_variable(labels_np[slice:slice +
self.batch_size])))
loss.backward()
adam.minimize(loss)
deepcf.clear_gradients()
......@@ -276,18 +279,20 @@ class TestDygraphDeepCF(unittest.TestCase):
adam2 = fluid.optimizer.AdamOptimizer(
0.01, parameter_list=deepcf2.parameters())
fluid.set_flags({'FLAGS_sort_sum_gradient': True})
for e in range(NUM_EPOCHES):
for e in range(self.num_epoches):
sys.stderr.write('epoch %d\n' % e)
for slice in range(0, BATCH_SIZE * NUM_BATCHES, BATCH_SIZE):
if slice + BATCH_SIZE >= users_np.shape[0]:
for slice in range(0, self.batch_size * self.num_batches,
self.batch_size):
if slice + self.batch_size >= users_np.shape[0]:
break
prediction2 = deepcf2(
to_variable(users_np[slice:slice + BATCH_SIZE]),
to_variable(items_np[slice:slice + BATCH_SIZE]))
to_variable(users_np[slice:slice + self.batch_size]),
to_variable(items_np[slice:slice + self.batch_size]))
loss2 = fluid.layers.reduce_sum(
fluid.layers.log_loss(
prediction2,
to_variable(labels_np[slice:slice + BATCH_SIZE])))
to_variable(labels_np[slice:slice +
self.batch_size])))
loss2.backward()
adam2.minimize(loss2)
deepcf2.clear_gradients()
......@@ -306,19 +311,22 @@ class TestDygraphDeepCF(unittest.TestCase):
adam = fluid.optimizer.AdamOptimizer(
0.01, parameter_list=deepcf.parameters())
for e in range(NUM_EPOCHES):
for e in range(self.num_epoches):
sys.stderr.write('epoch %d\n' % e)
for slice in range(0, BATCH_SIZE * NUM_BATCHES, BATCH_SIZE):
if slice + BATCH_SIZE >= users_np.shape[0]:
for slice in range(0, self.batch_size * self.num_batches,
self.batch_size):
if slice + self.batch_size >= users_np.shape[0]:
break
prediction = deepcf(
to_variable(users_np[slice:slice + BATCH_SIZE]),
to_variable(items_np[slice:slice + BATCH_SIZE]))
to_variable(users_np[slice:slice +
self.batch_size]),
to_variable(items_np[slice:slice +
self.batch_size]))
loss = fluid.layers.reduce_sum(
fluid.layers.log_loss(
prediction,
to_variable(labels_np[slice:slice +
BATCH_SIZE])))
self.batch_size])))
loss.backward()
adam.minimize(loss)
deepcf.clear_gradients()
......
......@@ -177,4 +177,5 @@ class TestDygraphGNN(unittest.TestCase):
if __name__ == '__main__':
paddle.enable_static()
unittest.main()
......@@ -12,8 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
import tempfile
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.static import InputSpec
......@@ -160,6 +163,10 @@ class TestNetWithNonTensorSpec(unittest.TestCase):
self.out_num = 16
self.x_spec = paddle.static.InputSpec([-1, 16], name='x')
self.x = paddle.randn([4, 16])
self.temp_dir = tempfile.TemporaryDirectory()
def tearDown(self):
self.temp_dir.cleanup()
@classmethod
def setUpClass(cls):
......@@ -182,7 +189,7 @@ class TestNetWithNonTensorSpec(unittest.TestCase):
self.check_result(specs, 'list')
def check_result(self, specs, path):
path = './net_non_tensor_' + path
path = os.path.join(self.temp_dir.name, './net_non_tensor_', path)
net = NetWithNonTensorSpec(self.in_num, self.out_num)
net.eval()
......@@ -218,7 +225,7 @@ class TestNetWithNonTensorSpec(unittest.TestCase):
net = paddle.jit.to_static(net, input_spec=specs)
net.eval()
path = './net_twice'
path = os.path.join(self.temp_dir.name, './net_twice')
# NOTE: check input_specs_compatible
new_specs = [self.x_spec, True, "bn", 10]
......@@ -264,6 +271,7 @@ class TestNetWithNonTensorSpecWithPrune(unittest.TestCase):
self.y_spec = paddle.static.InputSpec([16], name='y')
self.x = paddle.randn([4, 16])
self.y = paddle.randn([16])
self.temp_dir = tempfile.TemporaryDirectory()
@classmethod
def setUpClass(cls):
......@@ -271,7 +279,7 @@ class TestNetWithNonTensorSpecWithPrune(unittest.TestCase):
def test_non_tensor_with_prune(self):
specs = [self.x_spec, self.y_spec, True]
path = './net_non_tensor_prune_'
path = os.path.join(self.temp_dir.name, './net_non_tensor_prune_')
net = NetWithNonTensorSpecPrune(self.in_num, self.out_num)
net.eval()
......
......@@ -12,14 +12,15 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import os
import json
import tempfile
import unittest
import warnings
import numpy
import paddle
import paddle.nn.functional as F
import tempfile
import warnings
import json
import os
from paddle.fluid.framework import _enable_legacy_dygraph
_enable_legacy_dygraph()
......
......@@ -14,6 +14,8 @@
from __future__ import print_function
import os
import tempfile
import unittest
import paddle.fluid as fluid
......@@ -29,8 +31,6 @@ import paddle
from paddle.io import Dataset
import numpy
paddle.enable_static()
class TestOptimizer(unittest.TestCase):
......@@ -1279,6 +1279,12 @@ class TestMasterWeightSaveForFP16(unittest.TestCase):
Master weights will be saved by optimizer::state_dict.
'''
def setUp(self):
self.temp_dir = tempfile.TemporaryDirectory()
def tearDown(self):
self.temp_dir.cleanup()
def check_with_opt_state_dict(self, use_save_load=True):
paddle.seed(100)
numpy.random.seed(100)
......@@ -1340,10 +1346,12 @@ class TestMasterWeightSaveForFP16(unittest.TestCase):
optimizer.clear_grad(set_to_zero=False)
if use_save_load and i == 5:
paddle.save(model.state_dict(), "model.pdparams")
paddle.save(optimizer.state_dict(), "opt.pdopt")
model.set_state_dict(paddle.load("model.pdparams"))
optimizer.set_state_dict(paddle.load("opt.pdopt"))
model_path = os.path.join(self.temp_dir.name, "model.pdparams")
optimizer_path = os.path.join(self.temp_dir.name, "opt.pdopt")
paddle.save(model.state_dict(), model_path)
paddle.save(optimizer.state_dict(), optimizer_path)
model.set_state_dict(paddle.load(model_path))
optimizer.set_state_dict(paddle.load(optimizer_path))
return loss.numpy()
......@@ -1359,4 +1367,5 @@ class TestMasterWeightSaveForFP16(unittest.TestCase):
if __name__ == '__main__':
paddle.enable_static()
unittest.main()
......@@ -13,12 +13,14 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import numpy as np
import tempfile
import unittest
import paddle
import paddle.fluid as fluid
import unittest
import paddle.nn as nn
import os
class SimpleFCLayer(nn.Layer):
......@@ -54,6 +56,10 @@ class TestTracedLayerErrMsg(unittest.TestCase):
self.fc_size = 2
self.layer = self._train_simple_net()
self.type_str = 'class'
self.temp_dir = tempfile.TemporaryDirectory()
def tearDown(self):
self.temp_dir.cleanup()
def test_trace_err(self):
if fluid.framework.in_dygraph_mode():
......@@ -122,7 +128,7 @@ class TestTracedLayerErrMsg(unittest.TestCase):
dygraph_out, traced_layer = fluid.dygraph.TracedLayer.trace(
self.layer, [in_x])
path = './traced_layer_err_msg'
path = os.path.join(self.temp_dir.name, './traced_layer_err_msg')
with self.assertRaises(TypeError) as e:
traced_layer.save_inference_model([0])
self.assertEqual(
......@@ -193,11 +199,15 @@ class TestTracedLayerSaveInferenceModel(unittest.TestCase):
"""test save_inference_model will automaticlly create non-exist dir"""
def setUp(self):
self.save_path = "./nonexist_dir/fc"
self.temp_dir = tempfile.TemporaryDirectory()
self.save_path = os.path.join(self.temp_dir.name, "./nonexist_dir/fc")
import shutil
if os.path.exists(os.path.dirname(self.save_path)):
shutil.rmtree(os.path.dirname(self.save_path))
def tearDown(self):
self.temp_dir.cleanup()
def test_mkdir_when_input_path_non_exist(self):
if fluid.framework.in_dygraph_mode():
return
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册