Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
95f66c26
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
95f66c26
编写于
6月 14, 2022
作者:
F
freeliuzc
提交者:
GitHub
6月 14, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Use tempfile to place all the temporary files. Modify some code structure. (#43376)
上级
59f89236
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
166 addition
and
120 deletion
+166
-120
python/paddle/fluid/tests/unittests/test_directory_migration.py
.../paddle/fluid/tests/unittests/test_directory_migration.py
+11
-2
python/paddle/fluid/tests/unittests/test_imperative_deepcf.py
...on/paddle/fluid/tests/unittests/test_imperative_deepcf.py
+108
-100
python/paddle/fluid/tests/unittests/test_imperative_gnn.py
python/paddle/fluid/tests/unittests/test_imperative_gnn.py
+1
-0
python/paddle/fluid/tests/unittests/test_input_spec.py
python/paddle/fluid/tests/unittests/test_input_spec.py
+11
-3
python/paddle/fluid/tests/unittests/test_layout_autotune.py
python/paddle/fluid/tests/unittests/test_layout_autotune.py
+6
-5
python/paddle/fluid/tests/unittests/test_optimizer.py
python/paddle/fluid/tests/unittests/test_optimizer.py
+15
-6
python/paddle/fluid/tests/unittests/test_traced_layer_err_msg.py
...paddle/fluid/tests/unittests/test_traced_layer_err_msg.py
+14
-4
未找到文件。
python/paddle/fluid/tests/unittests/test_directory_migration.py
浏览文件 @
95f66c26
...
...
@@ -17,14 +17,22 @@ from __future__ import print_function
import
os
import
sys
import
time
import
tempfile
import
subprocess
import
unittest
import
numpy
as
np
import
paddle
class
TestDirectory
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
temp_dir
=
tempfile
.
TemporaryDirectory
()
def
tearDown
(
self
):
self
.
temp_dir
.
cleanup
()
def
get_import_command
(
self
,
module
):
paths
=
module
.
split
(
'.'
)
if
len
(
paths
)
==
1
:
...
...
@@ -77,7 +85,7 @@ class TestDirectory(unittest.TestCase):
'paddle.static.nn.spectral_norm'
,
'paddle.static.nn.embedding'
]
import_file
=
'run_import_modules.py'
import_file
=
os
.
path
.
join
(
self
.
temp_dir
.
name
,
'run_import_modules.py'
)
with
open
(
import_file
,
"w"
)
as
wb
:
for
module
in
new_directory
:
...
...
@@ -137,7 +145,8 @@ class TestDirectory(unittest.TestCase):
'paddle.declarative.spectral_norm'
,
'paddle.declarative.embedding'
]
import_file
=
'run_old_import_modules.py'
import_file
=
os
.
path
.
join
(
self
.
temp_dir
.
name
,
'run_old_import_modules.py'
)
with
open
(
import_file
,
"w"
)
as
wb
:
cmd_context_count
=
"""
...
...
python/paddle/fluid/tests/unittests/test_imperative_deepcf.py
浏览文件 @
95f66c26
...
...
@@ -26,13 +26,6 @@ from paddle.fluid.dygraph.base import to_variable
from
paddle.fluid.dygraph
import
Linear
from
paddle.fluid.framework
import
_test_eager_guard
# Can use Amusic dataset as the DeepCF describes.
DATA_PATH
=
os
.
environ
.
get
(
'DATA_PATH'
,
''
)
BATCH_SIZE
=
int
(
os
.
environ
.
get
(
'BATCH_SIZE'
,
128
))
NUM_BATCHES
=
int
(
os
.
environ
.
get
(
'NUM_BATCHES'
,
5
))
NUM_EPOCHES
=
int
(
os
.
environ
.
get
(
'NUM_EPOCHES'
,
1
))
class
DMF
(
fluid
.
Layer
):
...
...
@@ -129,84 +122,90 @@ class DeepCF(fluid.Layer):
return
prediction
def
get_data
():
user_ids
=
[]
item_ids
=
[]
labels
=
[]
NUM_USERS
=
100
NUM_ITEMS
=
1000
matrix
=
np
.
zeros
([
NUM_USERS
,
NUM_ITEMS
],
dtype
=
np
.
float32
)
class
TestDygraphDeepCF
(
unittest
.
TestCase
):
for
uid
in
range
(
NUM_USERS
):
for
iid
in
range
(
NUM_ITEMS
):
label
=
float
(
random
.
randint
(
1
,
6
)
==
1
)
def
setUp
(
self
):
# Can use Amusic dataset as the DeepCF describes.
self
.
data_path
=
os
.
environ
.
get
(
'DATA_PATH'
,
''
)
self
.
batch_size
=
int
(
os
.
environ
.
get
(
'BATCH_SIZE'
,
128
))
self
.
num_batches
=
int
(
os
.
environ
.
get
(
'NUM_BATCHES'
,
5
))
self
.
num_epoches
=
int
(
os
.
environ
.
get
(
'NUM_EPOCHES'
,
1
))
def
get_data
(
self
):
user_ids
=
[]
item_ids
=
[]
labels
=
[]
NUM_USERS
=
100
NUM_ITEMS
=
1000
matrix
=
np
.
zeros
([
NUM_USERS
,
NUM_ITEMS
],
dtype
=
np
.
float32
)
for
uid
in
range
(
NUM_USERS
):
for
iid
in
range
(
NUM_ITEMS
):
label
=
float
(
random
.
randint
(
1
,
6
)
==
1
)
user_ids
.
append
(
uid
)
item_ids
.
append
(
iid
)
labels
.
append
(
label
)
matrix
[
uid
,
iid
]
=
label
indices
=
np
.
arange
(
len
(
user_ids
))
np
.
random
.
shuffle
(
indices
)
users_np
=
np
.
array
(
user_ids
,
dtype
=
np
.
int32
)[
indices
]
items_np
=
np
.
array
(
item_ids
,
dtype
=
np
.
int32
)[
indices
]
labels_np
=
np
.
array
(
labels
,
dtype
=
np
.
float32
)[
indices
]
return
np
.
expand_dims
(
users_np
,
-
1
),
\
np
.
expand_dims
(
items_np
,
-
1
),
\
np
.
expand_dims
(
labels_np
,
-
1
),
NUM_USERS
,
NUM_ITEMS
,
matrix
def
load_data
(
self
):
sys
.
stderr
.
write
(
'loading from %s
\n
'
%
self
.
data_path
)
likes
=
dict
()
num_users
=
-
1
num_items
=
-
1
with
open
(
self
.
data_path
,
'r'
)
as
f
:
for
l
in
f
.
readlines
():
uid
,
iid
,
rating
=
[
int
(
v
)
for
v
in
l
.
split
(
'
\t
'
)]
num_users
=
max
(
num_users
,
uid
+
1
)
num_items
=
max
(
num_items
,
iid
+
1
)
if
float
(
rating
)
>
0.0
:
likes
[(
uid
,
iid
)]
=
1.0
user_ids
=
[]
item_ids
=
[]
labels
=
[]
matrix
=
np
.
zeros
([
num_users
,
num_items
],
dtype
=
np
.
float32
)
for
uid
,
iid
in
likes
.
keys
():
user_ids
.
append
(
uid
)
item_ids
.
append
(
iid
)
labels
.
append
(
label
)
matrix
[
uid
,
iid
]
=
label
indices
=
np
.
arange
(
len
(
user_ids
))
np
.
random
.
shuffle
(
indices
)
users_np
=
np
.
array
(
user_ids
,
dtype
=
np
.
int32
)[
indices
]
items_np
=
np
.
array
(
item_ids
,
dtype
=
np
.
int32
)[
indices
]
labels_np
=
np
.
array
(
labels
,
dtype
=
np
.
float32
)[
indices
]
return
np
.
expand_dims
(
users_np
,
-
1
),
\
np
.
expand_dims
(
items_np
,
-
1
),
\
np
.
expand_dims
(
labels_np
,
-
1
),
NUM_USERS
,
NUM_ITEMS
,
matrix
def
load_data
(
DATA_PATH
):
sys
.
stderr
.
write
(
'loading from %s
\n
'
%
DATA_PATH
)
likes
=
dict
()
num_users
=
-
1
num_items
=
-
1
with
open
(
DATA_PATH
,
'r'
)
as
f
:
for
l
in
f
.
readlines
():
uid
,
iid
,
rating
=
[
int
(
v
)
for
v
in
l
.
split
(
'
\t
'
)]
num_users
=
max
(
num_users
,
uid
+
1
)
num_items
=
max
(
num_items
,
iid
+
1
)
if
float
(
rating
)
>
0.0
:
likes
[(
uid
,
iid
)]
=
1.0
user_ids
=
[]
item_ids
=
[]
labels
=
[]
matrix
=
np
.
zeros
([
num_users
,
num_items
],
dtype
=
np
.
float32
)
for
uid
,
iid
in
likes
.
keys
():
user_ids
.
append
(
uid
)
item_ids
.
append
(
iid
)
labels
.
append
(
1.0
)
matrix
[
uid
,
iid
]
=
1.0
negative
=
0
while
negative
<
3
:
nuid
=
random
.
randint
(
0
,
num_users
-
1
)
niid
=
random
.
randint
(
0
,
num_items
-
1
)
if
(
nuid
,
niid
)
not
in
likes
:
negative
+=
1
user_ids
.
append
(
nuid
)
item_ids
.
append
(
niid
)
labels
.
append
(
0.0
)
indices
=
np
.
arange
(
len
(
user_ids
))
np
.
random
.
shuffle
(
indices
)
users_np
=
np
.
array
(
user_ids
,
dtype
=
np
.
int32
)[
indices
]
items_np
=
np
.
array
(
item_ids
,
dtype
=
np
.
int32
)[
indices
]
labels_np
=
np
.
array
(
labels
,
dtype
=
np
.
float32
)[
indices
]
return
np
.
expand_dims
(
users_np
,
-
1
),
\
np
.
expand_dims
(
items_np
,
-
1
),
\
np
.
expand_dims
(
labels_np
,
-
1
),
num_users
,
num_items
,
matrix
class
TestDygraphDeepCF
(
unittest
.
TestCase
):
labels
.
append
(
1.0
)
matrix
[
uid
,
iid
]
=
1.0
negative
=
0
while
negative
<
3
:
nuid
=
random
.
randint
(
0
,
num_users
-
1
)
niid
=
random
.
randint
(
0
,
num_items
-
1
)
if
(
nuid
,
niid
)
not
in
likes
:
negative
+=
1
user_ids
.
append
(
nuid
)
item_ids
.
append
(
niid
)
labels
.
append
(
0.0
)
indices
=
np
.
arange
(
len
(
user_ids
))
np
.
random
.
shuffle
(
indices
)
users_np
=
np
.
array
(
user_ids
,
dtype
=
np
.
int32
)[
indices
]
items_np
=
np
.
array
(
item_ids
,
dtype
=
np
.
int32
)[
indices
]
labels_np
=
np
.
array
(
labels
,
dtype
=
np
.
float32
)[
indices
]
return
np
.
expand_dims
(
users_np
,
-
1
),
\
np
.
expand_dims
(
items_np
,
-
1
),
\
np
.
expand_dims
(
labels_np
,
-
1
),
num_users
,
num_items
,
matrix
def
test_deefcf
(
self
):
seed
=
90
if
DATA_PATH
:
if
self
.
data_path
:
(
users_np
,
items_np
,
labels_np
,
num_users
,
num_items
,
matrix
)
=
load_data
(
DATA_PATH
)
matrix
)
=
self
.
load_data
(
)
else
:
(
users_np
,
items_np
,
labels_np
,
num_users
,
num_items
,
matrix
)
=
get_data
()
matrix
)
=
self
.
get_data
()
paddle
.
seed
(
seed
)
paddle
.
framework
.
random
.
_manual_program_seed
(
seed
)
startup
=
fluid
.
Program
()
...
...
@@ -228,17 +227,19 @@ class TestDygraphDeepCF(unittest.TestCase):
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
exe
.
run
(
startup
)
for
e
in
range
(
NUM_EPOCHES
):
for
e
in
range
(
self
.
num_epoches
):
sys
.
stderr
.
write
(
'epoch %d
\n
'
%
e
)
for
slice
in
range
(
0
,
BATCH_SIZE
*
NUM_BATCHES
,
BATCH_SIZE
):
if
slice
+
BATCH_SIZE
>=
users_np
.
shape
[
0
]:
for
slice
in
range
(
0
,
self
.
batch_size
*
self
.
num_batches
,
self
.
batch_size
):
if
slice
+
self
.
batch_size
>=
users_np
.
shape
[
0
]:
break
static_loss
=
exe
.
run
(
main
,
feed
=
{
users
.
name
:
users_np
[
slice
:
slice
+
BATCH_SIZE
],
items
.
name
:
items_np
[
slice
:
slice
+
BATCH_SIZE
],
labels
.
name
:
labels_np
[
slice
:
slice
+
BATCH_SIZE
]
users
.
name
:
users_np
[
slice
:
slice
+
self
.
batch_size
],
items
.
name
:
items_np
[
slice
:
slice
+
self
.
batch_size
],
labels
.
name
:
labels_np
[
slice
:
slice
+
self
.
batch_size
]
},
fetch_list
=
[
loss
])[
0
]
sys
.
stderr
.
write
(
'static loss %s
\n
'
%
static_loss
)
...
...
@@ -250,18 +251,20 @@ class TestDygraphDeepCF(unittest.TestCase):
deepcf
=
DeepCF
(
num_users
,
num_items
,
matrix
)
adam
=
fluid
.
optimizer
.
AdamOptimizer
(
0.01
,
parameter_list
=
deepcf
.
parameters
())
for
e
in
range
(
NUM_EPOCHES
):
for
e
in
range
(
self
.
num_epoches
):
sys
.
stderr
.
write
(
'epoch %d
\n
'
%
e
)
for
slice
in
range
(
0
,
BATCH_SIZE
*
NUM_BATCHES
,
BATCH_SIZE
):
if
slice
+
BATCH_SIZE
>=
users_np
.
shape
[
0
]:
for
slice
in
range
(
0
,
self
.
batch_size
*
self
.
num_batches
,
self
.
batch_size
):
if
slice
+
self
.
batch_size
>=
users_np
.
shape
[
0
]:
break
prediction
=
deepcf
(
to_variable
(
users_np
[
slice
:
slice
+
BATCH_SIZE
]),
to_variable
(
items_np
[
slice
:
slice
+
BATCH_SIZE
]))
to_variable
(
users_np
[
slice
:
slice
+
self
.
batch_size
]),
to_variable
(
items_np
[
slice
:
slice
+
self
.
batch_size
]))
loss
=
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
log_loss
(
prediction
,
to_variable
(
labels_np
[
slice
:
slice
+
BATCH_SIZE
])))
to_variable
(
labels_np
[
slice
:
slice
+
self
.
batch_size
])))
loss
.
backward
()
adam
.
minimize
(
loss
)
deepcf
.
clear_gradients
()
...
...
@@ -276,18 +279,20 @@ class TestDygraphDeepCF(unittest.TestCase):
adam2
=
fluid
.
optimizer
.
AdamOptimizer
(
0.01
,
parameter_list
=
deepcf2
.
parameters
())
fluid
.
set_flags
({
'FLAGS_sort_sum_gradient'
:
True
})
for
e
in
range
(
NUM_EPOCHES
):
for
e
in
range
(
self
.
num_epoches
):
sys
.
stderr
.
write
(
'epoch %d
\n
'
%
e
)
for
slice
in
range
(
0
,
BATCH_SIZE
*
NUM_BATCHES
,
BATCH_SIZE
):
if
slice
+
BATCH_SIZE
>=
users_np
.
shape
[
0
]:
for
slice
in
range
(
0
,
self
.
batch_size
*
self
.
num_batches
,
self
.
batch_size
):
if
slice
+
self
.
batch_size
>=
users_np
.
shape
[
0
]:
break
prediction2
=
deepcf2
(
to_variable
(
users_np
[
slice
:
slice
+
BATCH_SIZE
]),
to_variable
(
items_np
[
slice
:
slice
+
BATCH_SIZE
]))
to_variable
(
users_np
[
slice
:
slice
+
self
.
batch_size
]),
to_variable
(
items_np
[
slice
:
slice
+
self
.
batch_size
]))
loss2
=
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
log_loss
(
prediction2
,
to_variable
(
labels_np
[
slice
:
slice
+
BATCH_SIZE
])))
to_variable
(
labels_np
[
slice
:
slice
+
self
.
batch_size
])))
loss2
.
backward
()
adam2
.
minimize
(
loss2
)
deepcf2
.
clear_gradients
()
...
...
@@ -306,19 +311,22 @@ class TestDygraphDeepCF(unittest.TestCase):
adam
=
fluid
.
optimizer
.
AdamOptimizer
(
0.01
,
parameter_list
=
deepcf
.
parameters
())
for
e
in
range
(
NUM_EPOCHES
):
for
e
in
range
(
self
.
num_epoches
):
sys
.
stderr
.
write
(
'epoch %d
\n
'
%
e
)
for
slice
in
range
(
0
,
BATCH_SIZE
*
NUM_BATCHES
,
BATCH_SIZE
):
if
slice
+
BATCH_SIZE
>=
users_np
.
shape
[
0
]:
for
slice
in
range
(
0
,
self
.
batch_size
*
self
.
num_batches
,
self
.
batch_size
):
if
slice
+
self
.
batch_size
>=
users_np
.
shape
[
0
]:
break
prediction
=
deepcf
(
to_variable
(
users_np
[
slice
:
slice
+
BATCH_SIZE
]),
to_variable
(
items_np
[
slice
:
slice
+
BATCH_SIZE
]))
to_variable
(
users_np
[
slice
:
slice
+
self
.
batch_size
]),
to_variable
(
items_np
[
slice
:
slice
+
self
.
batch_size
]))
loss
=
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
log_loss
(
prediction
,
to_variable
(
labels_np
[
slice
:
slice
+
BATCH_SIZE
])))
self
.
batch_size
])))
loss
.
backward
()
adam
.
minimize
(
loss
)
deepcf
.
clear_gradients
()
...
...
python/paddle/fluid/tests/unittests/test_imperative_gnn.py
浏览文件 @
95f66c26
...
...
@@ -177,4 +177,5 @@ class TestDygraphGNN(unittest.TestCase):
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_input_spec.py
浏览文件 @
95f66c26
...
...
@@ -12,8 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
unittest
import
tempfile
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.static
import
InputSpec
...
...
@@ -160,6 +163,10 @@ class TestNetWithNonTensorSpec(unittest.TestCase):
self
.
out_num
=
16
self
.
x_spec
=
paddle
.
static
.
InputSpec
([
-
1
,
16
],
name
=
'x'
)
self
.
x
=
paddle
.
randn
([
4
,
16
])
self
.
temp_dir
=
tempfile
.
TemporaryDirectory
()
def
tearDown
(
self
):
self
.
temp_dir
.
cleanup
()
@
classmethod
def
setUpClass
(
cls
):
...
...
@@ -182,7 +189,7 @@ class TestNetWithNonTensorSpec(unittest.TestCase):
self
.
check_result
(
specs
,
'list'
)
def
check_result
(
self
,
specs
,
path
):
path
=
'./net_non_tensor_'
+
path
path
=
os
.
path
.
join
(
self
.
temp_dir
.
name
,
'./net_non_tensor_'
,
path
)
net
=
NetWithNonTensorSpec
(
self
.
in_num
,
self
.
out_num
)
net
.
eval
()
...
...
@@ -218,7 +225,7 @@ class TestNetWithNonTensorSpec(unittest.TestCase):
net
=
paddle
.
jit
.
to_static
(
net
,
input_spec
=
specs
)
net
.
eval
()
path
=
'./net_twice'
path
=
os
.
path
.
join
(
self
.
temp_dir
.
name
,
'./net_twice'
)
# NOTE: check input_specs_compatible
new_specs
=
[
self
.
x_spec
,
True
,
"bn"
,
10
]
...
...
@@ -264,6 +271,7 @@ class TestNetWithNonTensorSpecWithPrune(unittest.TestCase):
self
.
y_spec
=
paddle
.
static
.
InputSpec
([
16
],
name
=
'y'
)
self
.
x
=
paddle
.
randn
([
4
,
16
])
self
.
y
=
paddle
.
randn
([
16
])
self
.
temp_dir
=
tempfile
.
TemporaryDirectory
()
@
classmethod
def
setUpClass
(
cls
):
...
...
@@ -271,7 +279,7 @@ class TestNetWithNonTensorSpecWithPrune(unittest.TestCase):
def
test_non_tensor_with_prune
(
self
):
specs
=
[
self
.
x_spec
,
self
.
y_spec
,
True
]
path
=
'./net_non_tensor_prune_'
path
=
os
.
path
.
join
(
self
.
temp_dir
.
name
,
'./net_non_tensor_prune_'
)
net
=
NetWithNonTensorSpecPrune
(
self
.
in_num
,
self
.
out_num
)
net
.
eval
()
...
...
python/paddle/fluid/tests/unittests/test_layout_autotune.py
浏览文件 @
95f66c26
...
...
@@ -12,14 +12,15 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
os
import
json
import
tempfile
import
unittest
import
warnings
import
numpy
import
paddle
import
paddle.nn.functional
as
F
import
tempfile
import
warnings
import
json
import
os
from
paddle.fluid.framework
import
_enable_legacy_dygraph
_enable_legacy_dygraph
()
...
...
python/paddle/fluid/tests/unittests/test_optimizer.py
浏览文件 @
95f66c26
...
...
@@ -14,6 +14,8 @@
from
__future__
import
print_function
import
os
import
tempfile
import
unittest
import
paddle.fluid
as
fluid
...
...
@@ -29,8 +31,6 @@ import paddle
from
paddle.io
import
Dataset
import
numpy
paddle
.
enable_static
()
class
TestOptimizer
(
unittest
.
TestCase
):
...
...
@@ -1279,6 +1279,12 @@ class TestMasterWeightSaveForFP16(unittest.TestCase):
Master weights will be saved by optimizer::state_dict.
'''
def
setUp
(
self
):
self
.
temp_dir
=
tempfile
.
TemporaryDirectory
()
def
tearDown
(
self
):
self
.
temp_dir
.
cleanup
()
def
check_with_opt_state_dict
(
self
,
use_save_load
=
True
):
paddle
.
seed
(
100
)
numpy
.
random
.
seed
(
100
)
...
...
@@ -1340,10 +1346,12 @@ class TestMasterWeightSaveForFP16(unittest.TestCase):
optimizer
.
clear_grad
(
set_to_zero
=
False
)
if
use_save_load
and
i
==
5
:
paddle
.
save
(
model
.
state_dict
(),
"model.pdparams"
)
paddle
.
save
(
optimizer
.
state_dict
(),
"opt.pdopt"
)
model
.
set_state_dict
(
paddle
.
load
(
"model.pdparams"
))
optimizer
.
set_state_dict
(
paddle
.
load
(
"opt.pdopt"
))
model_path
=
os
.
path
.
join
(
self
.
temp_dir
.
name
,
"model.pdparams"
)
optimizer_path
=
os
.
path
.
join
(
self
.
temp_dir
.
name
,
"opt.pdopt"
)
paddle
.
save
(
model
.
state_dict
(),
model_path
)
paddle
.
save
(
optimizer
.
state_dict
(),
optimizer_path
)
model
.
set_state_dict
(
paddle
.
load
(
model_path
))
optimizer
.
set_state_dict
(
paddle
.
load
(
optimizer_path
))
return
loss
.
numpy
()
...
...
@@ -1359,4 +1367,5 @@ class TestMasterWeightSaveForFP16(unittest.TestCase):
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_traced_layer_err_msg.py
浏览文件 @
95f66c26
...
...
@@ -13,12 +13,14 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
numpy
as
np
import
tempfile
import
unittest
import
paddle
import
paddle.fluid
as
fluid
import
unittest
import
paddle.nn
as
nn
import
os
class
SimpleFCLayer
(
nn
.
Layer
):
...
...
@@ -54,6 +56,10 @@ class TestTracedLayerErrMsg(unittest.TestCase):
self
.
fc_size
=
2
self
.
layer
=
self
.
_train_simple_net
()
self
.
type_str
=
'class'
self
.
temp_dir
=
tempfile
.
TemporaryDirectory
()
def
tearDown
(
self
):
self
.
temp_dir
.
cleanup
()
def
test_trace_err
(
self
):
if
fluid
.
framework
.
in_dygraph_mode
():
...
...
@@ -122,7 +128,7 @@ class TestTracedLayerErrMsg(unittest.TestCase):
dygraph_out
,
traced_layer
=
fluid
.
dygraph
.
TracedLayer
.
trace
(
self
.
layer
,
[
in_x
])
path
=
'./traced_layer_err_msg'
path
=
os
.
path
.
join
(
self
.
temp_dir
.
name
,
'./traced_layer_err_msg'
)
with
self
.
assertRaises
(
TypeError
)
as
e
:
traced_layer
.
save_inference_model
([
0
])
self
.
assertEqual
(
...
...
@@ -193,11 +199,15 @@ class TestTracedLayerSaveInferenceModel(unittest.TestCase):
"""test save_inference_model will automaticlly create non-exist dir"""
def
setUp
(
self
):
self
.
save_path
=
"./nonexist_dir/fc"
self
.
temp_dir
=
tempfile
.
TemporaryDirectory
()
self
.
save_path
=
os
.
path
.
join
(
self
.
temp_dir
.
name
,
"./nonexist_dir/fc"
)
import
shutil
if
os
.
path
.
exists
(
os
.
path
.
dirname
(
self
.
save_path
)):
shutil
.
rmtree
(
os
.
path
.
dirname
(
self
.
save_path
))
def
tearDown
(
self
):
self
.
temp_dir
.
cleanup
()
def
test_mkdir_when_input_path_non_exist
(
self
):
if
fluid
.
framework
.
in_dygraph_mode
():
return
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录