提交 94eea16e 编写于 作者: T typhoonzero

fix sendrecv port bind

上级 3fd92662
......@@ -186,7 +186,8 @@ void AsyncGRPCServer::WaitClientGet(int count) {
void AsyncGRPCServer::RunSyncUpdate() {
::grpc::ServerBuilder builder;
builder.AddListeningPort(address_, ::grpc::InsecureServerCredentials());
builder.AddListeningPort(address_, ::grpc::InsecureServerCredentials(),
&selected_port_);
builder.SetMaxSendMessageSize(std::numeric_limits<int>::max());
builder.SetMaxReceiveMessageSize(std::numeric_limits<int>::max());
builder.RegisterService(&service_);
......@@ -196,7 +197,8 @@ void AsyncGRPCServer::RunSyncUpdate() {
cq_prefetch_ = builder.AddCompletionQueue();
server_ = builder.BuildAndStart();
LOG(INFO) << "Server listening on " << address_ << std::endl;
LOG(INFO) << "Server listening on " << address_
<< " selected port: " << selected_port_;
std::function<void()> send_register =
std::bind(&AsyncGRPCServer::TryToRegisterNewSendOne, this);
......@@ -242,6 +244,9 @@ void AsyncGRPCServer::TryToRegisterNewSendOne() {
VLOG(3) << "shutdown, do not TryToRegisterNewSendOne";
return;
}
while (scope_ == nullptr) {
sleep(0.01);
}
RequestSend* send = new RequestSend(&service_, cq_send_.get(), scope_,
&var_recv_queue_, dev_ctx_);
VLOG(4) << "Create RequestSend status:" << send->Status();
......
......@@ -62,6 +62,8 @@ class AsyncGRPCServer final {
void SetExecutor(framework::Executor *executor) { executor_ = executor; }
int GetSelectedPort() { return selected_port_; }
const ReceivedMessage Get() { return this->var_recv_queue_.Pop(); }
void Push(const std::string &msg_name) {
......@@ -109,6 +111,7 @@ class AsyncGRPCServer final {
int prefetch_blk_id_;
framework::ProgramDesc *program_;
framework::Executor *executor_;
int selected_port_;
};
}; // namespace detail
......
......@@ -12,185 +12,145 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <stdint.h>
#include <ostream>
#include <thread>
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/threadpool.h"
#include "paddle/fluid/operators/detail/grpc_server.h"
#include "paddle/fluid/operators/listen_and_serv_op.h"
namespace paddle {
namespace operators {
constexpr char kOptimizeBlock[] = "OptimizeBlock";
void RunServer(std::shared_ptr<detail::AsyncGRPCServer> service) {
service->RunSyncUpdate();
VLOG(4) << "RunServer thread end";
}
static void CreateTensorFromMessageType(framework::Variable *var,
sendrecv::VarType var_type) {
if (var_type == sendrecv::VarType::LOD_TENSOR) {
var->GetMutable<framework::LoDTensor>();
} else if (var_type == sendrecv::VarType::SELECTED_ROWS) {
var->GetMutable<framework::SelectedRows>();
} else {
PADDLE_THROW(
"VariableMessage type %d is not in "
"[LoDTensor, SelectedRows]",
var_type);
}
ListenAndServOp::ListenAndServOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
int ListenAndServOp::GetSelectedPort() {
return rpc_service_->GetSelectedPort();
}
static void ParallelExecuteBlocks(const std::vector<size_t> &parallel_blkids,
framework::Executor *executor,
framework::ProgramDesc *program,
framework::Scope *scope) {
std::vector<std::future<void>> fs;
for (size_t idx : parallel_blkids) {
fs.push_back(framework::Async([&executor, &program, &scope, idx]() {
int run_block = idx; // thread local
try {
executor->Run(*program, scope, run_block, false, false);
} catch (std::exception &e) {
LOG(ERROR) << "run sub program error " << e.what();
}
}));
}
for (size_t i = 0; i < fs.size(); ++i) fs[i].wait();
void ListenAndServOp::Stop() {
rpc_service_->Push(LISTEN_TERMINATE_MESSAGE);
server_thread_->join();
}
class ListenAndServOp : public framework::OperatorBase {
public:
ListenAndServOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {
if (!rpc_service_) {
std::string endpoint = Attr<std::string>("endpoint");
rpc_service_.reset(new detail::AsyncGRPCServer(endpoint));
server_thread_.reset(new std::thread(RunServer, rpc_service_));
}
}
void ListenAndServOp::RunImpl(const framework::Scope &scope,
const platform::Place &dev_place) const {
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto &dev_ctx = *pool.Get(dev_place);
framework::Scope &recv_scope = scope.NewScope();
LOG(INFO) << "created recv scope: " << &recv_scope;
void Stop() override {
rpc_service_->Push(LISTEN_TERMINATE_MESSAGE);
server_thread_->join();
if (!rpc_service_) {
std::string endpoint = Attr<std::string>("endpoint");
rpc_service_.reset(new detail::AsyncGRPCServer(endpoint));
}
void RunImpl(const framework::Scope &scope,
const platform::Place &dev_place) const override {
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto &dev_ctx = *pool.Get(dev_place);
framework::Scope &recv_scope = scope.NewScope();
// FIXME(Yancey1989): initialize rpc server with lazy mode.
rpc_service_->SetScope(&recv_scope);
rpc_service_->SetDevCtx(&dev_ctx);
auto ins = Inputs("X");
auto fan_in = Attr<int>("Fanin");
auto *block = Attr<framework::BlockDesc *>(kOptimizeBlock);
auto *program = block->Program();
int num_blocks = program->Size();
PADDLE_ENFORCE_GE(num_blocks, 2,
"server program should have at least 2 blocks");
framework::Executor executor(dev_place);
// TODO(qiao) set proper fields for table lookup and update
rpc_service_->SetExecutor(&executor);
rpc_service_->SetPrefetchBlkdId(0);
rpc_service_->SetProgram(program);
// TODO(typhoonzero): change this to a while_op for every cluster-batch.
bool exit_flag = false;
// Record received sparse variables, so that
// we could reset those after execute optimize program
std::vector<framework::Variable *> sparse_vars;
while (!exit_flag) {
// Get from multiple trainers, we don't care about the order in which
// the gradients arrives, just add suffix 0~n and merge the gradient.
rpc_service_->SetCond(0);
size_t recv_var_cnt = 0;
int batch_barrier = 0;
while (batch_barrier != fan_in) {
const detail::ReceivedMessage v = rpc_service_->Get();
auto recv_var_name = v.first;
if (recv_var_name == LISTEN_TERMINATE_MESSAGE) {
LOG(INFO) << "received terminate message and exit";
exit_flag = true;
break;
} else if (recv_var_name == BATCH_BARRIER_MESSAGE) {
VLOG(3) << "recv batch barrier message";
batch_barrier++;
continue;
} else {
VLOG(3) << "received grad: " << recv_var_name;
recv_var_cnt++;
auto var = v.second->GetVar();
if (var == nullptr) {
LOG(ERROR) << "Can not find server side var: " << recv_var_name;
PADDLE_THROW("Can not find server side var");
}
if (var->IsType<framework::SelectedRows>()) {
sparse_vars.push_back(var);
}
}
}
if (exit_flag) {
rpc_service_->SetCond(1);
rpc_service_->ShutDown();
auto ins = Inputs("X");
auto fan_in = Attr<int>("Fanin");
auto *block = Attr<framework::BlockDesc *>(kOptimizeBlock);
auto *program = block->Program();
size_t num_blocks = program->Size();
PADDLE_ENFORCE_GE(num_blocks, 2,
"server program should have at least 2 blocks");
framework::Executor executor(dev_place);
// FIXME(Yancey1989): initialize rpc server with lazy mode.
rpc_service_->SetScope(&recv_scope);
rpc_service_->SetDevCtx(&dev_ctx);
// TODO(qiao) set proper fields for table lookup and update
rpc_service_->SetExecutor(&executor);
rpc_service_->SetPrefetchBlkdId(0);
rpc_service_->SetProgram(program);
// start the server listening after all member initialized.
server_thread_.reset(new std::thread(RunServer, rpc_service_));
// FIXME(typhoonzero): do we need to wait until the server port is ready?
sleep(5);
// TODO(typhoonzero): change this to a while_op for every cluster-batch.
bool exit_flag = false;
// Record received sparse variables, so that
// we could reset those after execute optimize program
std::vector<framework::Variable *> sparse_vars;
while (!exit_flag) {
// Get from multiple trainers, we don't care about the order in which
// the gradients arrives, just add suffix 0~n and merge the gradient.
rpc_service_->SetCond(0);
size_t recv_var_cnt = 0;
int batch_barrier = 0;
while (batch_barrier != fan_in) {
const detail::ReceivedMessage v = rpc_service_->Get();
auto recv_var_name = v.first;
if (recv_var_name == LISTEN_TERMINATE_MESSAGE) {
LOG(INFO) << "received terminate message and exit";
exit_flag = true;
break;
}
// NOTE: if is_gpu_place, CUDA kernels are laugched by multiple threads
// and this will still work.
// The optimize blocks which have the same parent ID would run parallel
// TODO(Yancey1989): need to use ParallelExecutor for future
size_t last_parent_blkid = program->Block(1).Parent();
std::vector<size_t> parallel_blkids;
parallel_blkids.push_back(1);
double ts = detail::GetTimestamp();
for (size_t blkid = 2; blkid < num_blocks; ++blkid) {
if (program->Block(blkid).Parent() != last_parent_blkid) {
for (size_t idx : parallel_blkids) VLOG(3) << idx;
ParallelExecuteBlocks(parallel_blkids, &executor, program,
&recv_scope);
parallel_blkids.clear();
last_parent_blkid = program->Block(blkid).Parent();
} else if (recv_var_name == BATCH_BARRIER_MESSAGE) {
VLOG(3) << "recv batch barrier message";
batch_barrier++;
continue;
} else {
VLOG(3) << "received grad: " << recv_var_name;
recv_var_cnt++;
auto var = v.second->GetVar();
if (var == nullptr) {
LOG(ERROR) << "Can not find server side var: " << recv_var_name;
PADDLE_THROW("Can not find server side var");
}
if (var->IsType<framework::SelectedRows>()) {
sparse_vars.push_back(var);
}
parallel_blkids.push_back(blkid);
}
ParallelExecuteBlocks(parallel_blkids, &executor, program, &recv_scope);
VLOG(3) << "run all blocks spent " << detail::GetTimestamp() - ts
<< "(ms)";
// Reset the received sparse variables, the sum operator would not
// sum the input sparse variables which rows is empty at the next
// mini-batch.
// TODO(Yancey1989): move the reset action into an operator, we couldn't
// have any hide logic in the operator.
for (auto &var : sparse_vars) {
var->GetMutable<framework::SelectedRows>()->mutable_rows()->clear();
}
}
if (exit_flag) {
rpc_service_->SetCond(1);
// FIXME(typhoonzero): use another condition to sync wait clients get.
rpc_service_->WaitClientGet(fan_in);
sparse_vars.clear();
} // while(true)
}
rpc_service_->ShutDown();
break;
}
protected:
std::shared_ptr<detail::AsyncGRPCServer> rpc_service_;
std::shared_ptr<std::thread> server_thread_;
};
// NOTE: if is_gpu_place, CUDA kernels are laugched by multiple threads
// and this will still work.
// The optimize blocks which have the same parent ID would run parallel
// TODO(Yancey1989): need to use ParallelExecutor for future
int32_t last_parent_blkid = program->Block(1).Parent();
std::vector<size_t> parallel_blkids;
parallel_blkids.push_back(1);
double ts = detail::GetTimestamp();
for (size_t blkid = 2; blkid < num_blocks; ++blkid) {
if (program->Block(blkid).Parent() != last_parent_blkid) {
for (size_t idx : parallel_blkids) VLOG(3) << idx;
ParallelExecuteBlocks(parallel_blkids, &executor, program, &recv_scope);
parallel_blkids.clear();
last_parent_blkid = program->Block(blkid).Parent();
}
parallel_blkids.push_back(blkid);
}
ParallelExecuteBlocks(parallel_blkids, &executor, program, &recv_scope);
VLOG(3) << "run all blocks spent " << detail::GetTimestamp() - ts << "(ms)";
// Reset the received sparse variables, the sum operator would not
// sum the input sparse variables which rows is empty at the next
// mini-batch.
// TODO(Yancey1989): move the reset action into an operator, we couldn't
// have any hide logic in the operator.
for (auto &var : sparse_vars) {
var->GetMutable<framework::SelectedRows>()->mutable_rows()->clear();
}
rpc_service_->SetCond(1);
// FIXME(typhoonzero): use another condition to sync wait clients get.
rpc_service_->WaitClientGet(fan_in);
sparse_vars.clear();
} // while(true)
}
class ListenAndServOpMaker : public framework::OpProtoAndCheckerMaker {
public:
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <stdint.h>
#include <ostream>
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/threadpool.h"
#include "paddle/fluid/operators/detail/grpc_server.h"
namespace paddle {
namespace operators {
constexpr char kOptimizeBlock[] = "OptimizeBlock";
void RunServer(std::shared_ptr<detail::AsyncGRPCServer> service);
static void CreateTensorFromMessageType(framework::Variable *var,
sendrecv::VarType var_type) {
if (var_type == sendrecv::VarType::LOD_TENSOR) {
var->GetMutable<framework::LoDTensor>();
} else if (var_type == sendrecv::VarType::SELECTED_ROWS) {
var->GetMutable<framework::SelectedRows>();
} else {
PADDLE_THROW(
"VariableMessage type %d is not in "
"[LoDTensor, SelectedRows]",
var_type);
}
}
static void ParallelExecuteBlocks(const std::vector<size_t> &parallel_blkids,
framework::Executor *executor,
framework::ProgramDesc *program,
framework::Scope *scope) {
std::vector<std::future<void>> fs;
for (size_t idx : parallel_blkids) {
fs.push_back(framework::Async([&executor, &program, &scope, idx]() {
int run_block = idx; // thread local
try {
executor->Run(*program, scope, run_block, false, false);
} catch (std::exception &e) {
LOG(ERROR) << "run sub program error " << e.what();
}
}));
}
for (size_t i = 0; i < fs.size(); ++i) fs[i].wait();
}
class ListenAndServOp : public framework::OperatorBase {
public:
ListenAndServOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs);
int GetSelectedPort();
void Stop() override;
void RunImpl(const framework::Scope &scope,
const platform::Place &dev_place) const override;
protected:
mutable std::shared_ptr<detail::AsyncGRPCServer> rpc_service_;
mutable std::shared_ptr<std::thread> server_thread_;
};
} // namespace operators
} // namespace paddle
......@@ -20,6 +20,7 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/operators/listen_and_serv_op.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/string/printf.h"
......@@ -34,6 +35,7 @@ namespace m = paddle::operators::math;
// global for simplicity.
std::unique_ptr<f::OperatorBase> listen_and_serv_op;
int selected_port;
void InitTensorsInScope(f::Scope &scope, p::CPUPlace &place) {
p::CPUDeviceContext ctx(place);
......@@ -128,14 +130,16 @@ void StartServerNet(bool is_sparse) {
AddOp("sum", {{"X", {"x0", "x1"}}}, {{"Out", {"Out"}}}, {}, optimize_block);
f::AttributeMap attrs;
attrs.insert({"endpoint", std::string("127.0.0.1:6174")});
attrs.insert({"endpoint", std::string("127.0.0.1:0")});
attrs.insert({"Fanin", 1});
attrs.insert({"ParamList", std::vector<std::string>({"Out"})});
attrs.insert({"GradList", std::vector<std::string>({"x1"})});
attrs.insert({"OptimizeBlock", optimize_block});
listen_and_serv_op =
f::OpRegistry::CreateOp("listen_and_serv", {{"X", {"x1"}}}, {}, attrs);
LOG(INFO) << "selected port before run " << selected_port;
listen_and_serv_op->Run(scope, place);
LOG(INFO) << "server exit";
}
TEST(SendRecvOp, CPUDense) {
......@@ -149,12 +153,19 @@ TEST(SendRecvOp, CPUDense) {
scope.Var("RPC_CLIENT_VAR");
f::AttributeMap attrs;
attrs.insert({"endpoints", std::vector<std::string>({"127.0.0.1:6174"})});
attrs.insert({"epmap", std::vector<std::string>({"127.0.0.1:6174"})});
selected_port = static_cast<paddle::operators::ListenAndServOp *>(
listen_and_serv_op.get())
->GetSelectedPort();
LOG(INFO) << "selected port " << selected_port;
std::string endpoint = paddle::string::Sprintf("127.0.0.1:%d", selected_port);
attrs.insert({"endpoints", std::vector<std::string>({endpoint})});
attrs.insert({"epmap", std::vector<std::string>({endpoint})});
auto send_op = f::OpRegistry::CreateOp(
"send", {{"X", {"x1"}}},
{{"Out", {"Out"}}, {"RPCClient", {"RPC_CLIENT_VAR"}}}, attrs);
LOG(INFO) << "before run " << endpoint;
send_op->Run(scope, place);
LOG(INFO) << "end run";
auto in_var = scope.Var("x1");
auto tensor = in_var->GetMutable<f::LoDTensor>();
......@@ -167,6 +178,7 @@ TEST(SendRecvOp, CPUDense) {
for (int64_t i = 0; i < target->numel(); ++i) {
EXPECT_EQ(expected[i] * 2, actual[i]);
}
LOG(INFO) << "before stop";
listen_and_serv_op->Stop();
server_thread.join();
listen_and_serv_op.reset(nullptr);
......@@ -182,8 +194,13 @@ TEST(SendRecvOp, CPUSparse) {
InitSelectedRowsInScope(scope, place);
scope.Var("RPC_CLIENT_VAR");
f::AttributeMap attrs;
attrs.insert({"endpoints", std::vector<std::string>({"127.0.0.1:6174"})});
attrs.insert({"epmap", std::vector<std::string>({"127.0.0.1:6174"})});
selected_port = static_cast<paddle::operators::ListenAndServOp *>(
listen_and_serv_op.get())
->GetSelectedPort();
LOG(INFO) << "selected port " << selected_port;
std::string endpoint = paddle::string::Sprintf("127.0.0.1:%d", selected_port);
attrs.insert({"endpoints", std::vector<std::string>({endpoint})});
attrs.insert({"epmap", std::vector<std::string>({endpoint})});
auto send_op = f::OpRegistry::CreateOp(
"send", {{"X", {"x1"}}},
{{"Out", {"Out"}}, {"RPCClient", {"RPC_CLIENT_VAR"}}}, attrs);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册
新手
引导
客服 返回
顶部