Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
92afe146
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
92afe146
编写于
3月 24, 2022
作者:
Z
zhiboniu
提交者:
GitHub
3月 24, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
p_norm transfer to phi kernels (#40819)
上级
22a5035e
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
610 addition
and
426 deletion
+610
-426
paddle/fluid/operators/p_norm_op.cc
paddle/fluid/operators/p_norm_op.cc
+14
-65
paddle/fluid/operators/p_norm_op.cu
paddle/fluid/operators/p_norm_op.cu
+0
-222
paddle/fluid/operators/p_norm_op.h
paddle/fluid/operators/p_norm_op.h
+0
-138
paddle/fluid/operators/p_norm_op_npu.cc
paddle/fluid/operators/p_norm_op_npu.cc
+1
-1
paddle/phi/infermeta/unary.cc
paddle/phi/infermeta/unary.cc
+57
-0
paddle/phi/infermeta/unary.h
paddle/phi/infermeta/unary.h
+8
-0
paddle/phi/kernels/cpu/p_norm_grad_kernel.cc
paddle/phi/kernels/cpu/p_norm_grad_kernel.cc
+101
-0
paddle/phi/kernels/cpu/p_norm_kernel.cc
paddle/phi/kernels/cpu/p_norm_kernel.cc
+90
-0
paddle/phi/kernels/gpu/p_norm_grad_kernel.cu
paddle/phi/kernels/gpu/p_norm_grad_kernel.cu
+112
-0
paddle/phi/kernels/gpu/p_norm_kernel.cu
paddle/phi/kernels/gpu/p_norm_kernel.cu
+138
-0
paddle/phi/kernels/p_norm_grad_kernel.h
paddle/phi/kernels/p_norm_grad_kernel.h
+32
-0
paddle/phi/kernels/p_norm_kernel.h
paddle/phi/kernels/p_norm_kernel.h
+31
-0
paddle/phi/ops/compat/p_norm_sig.cc
paddle/phi/ops/compat/p_norm_sig.cc
+26
-0
未找到文件。
paddle/fluid/operators/p_norm_op.cc
浏览文件 @
92afe146
...
...
@@ -11,12 +11,15 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/p_norm_op.h"
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/unary.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -81,68 +84,11 @@ where, $\sum_i $ is calculated along the `axis` dimension.
class
PnormOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"p_norm"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Out"
),
"Output"
,
"Out"
,
"p_norm"
);
auto
x_dim
=
ctx
->
GetInputDim
(
"X"
);
auto
x_rank
=
x_dim
.
size
();
int
axis
=
ctx
->
Attrs
().
Get
<
int
>
(
"axis"
);
bool
keepdim
=
ctx
->
Attrs
().
Get
<
bool
>
(
"keepdim"
);
PADDLE_ENFORCE_GE
(
axis
,
-
x_rank
,
platform
::
errors
::
InvalidArgument
(
"Attr(axis) value should be in range [-R, R-1], R is "
"the rank of Input(X). But received axis: %d, R: %d. "
"Current Input(X)'s shape is=[%s]."
,
axis
,
x_rank
,
x_dim
));
PADDLE_ENFORCE_LT
(
axis
,
x_rank
,
platform
::
errors
::
InvalidArgument
(
"Attr(axis) value should be in range [-R, R-1], R is "
"the rank of Input(X). But received axis: %d, R: %d. "
"Current Input(X)'s shape is=[%s]."
,
axis
,
x_rank
,
x_dim
));
std
::
vector
<
int
>
reduce_dims
;
bool
asvector
=
ctx
->
Attrs
().
Get
<
bool
>
(
"asvector"
);
if
(
asvector
)
{
reduce_dims
.
emplace_back
(
1
);
if
(
keepdim
)
{
for
(
int
i
=
1
;
i
<
x_dim
.
size
();
++
i
)
{
reduce_dims
.
emplace_back
(
1
);
}
x_dim
=
phi
::
make_ddim
(
reduce_dims
);
}
}
else
{
if
(
axis
<
0
)
axis
=
x_dim
.
size
()
+
axis
;
for
(
int
i
=
0
;
i
<
x_dim
.
size
();
++
i
)
{
if
(
i
!=
axis
)
reduce_dims
.
emplace_back
(
x_dim
[
i
]);
}
if
(
reduce_dims
.
size
()
==
0
)
{
reduce_dims
.
emplace_back
(
1
);
}
}
x_dim
[
axis
]
=
1
;
if
(
keepdim
)
{
ctx
->
SetOutputDim
(
"Out"
,
x_dim
);
}
else
{
ctx
->
SetOutputDim
(
"Out"
,
phi
::
make_ddim
(
reduce_dims
));
}
}
};
class
PnormOpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"p_norm"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Out"
),
"Input"
,
"Out"
,
"p_norm"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input"
,
"Out@GRAD"
,
"p_norm"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
"Output"
,
"X@GRAD"
,
"p_norm"
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
}
};
template
<
typename
T
>
...
...
@@ -167,14 +113,17 @@ class PnormOpGradOpMaker : public framework::SingleGradOpMaker<T> {
namespace
ops
=
paddle
::
operators
;
using
CPU
=
paddle
::
platform
::
CPUDeviceContext
;
DECLARE_INFER_SHAPE_FUNCTOR
(
p_norm
,
PNormInferShapeFunctor
,
PD_INFER_META
(
phi
::
PNormInferMeta
));
DECLARE_INFER_SHAPE_FUNCTOR
(
p_norm_grad
,
PNormGradInferShapeFunctor
,
PD_INFER_META
(
phi
::
GeneralUnaryGradInferMeta
));
REGISTER_OPERATOR
(
p_norm
,
ops
::
PnormOp
,
ops
::
PnormOpMaker
,
ops
::
PnormOpGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
PnormOpGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OPERATOR
(
p_norm_grad
,
ops
::
PnormOpGrad
);
REGISTER_OP_CPU_KERNEL
(
p_norm
,
ops
::
PnormKernel
<
CPU
,
float
>
,
ops
::
PnormKernel
<
CPU
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
p_norm_grad
,
ops
::
PnormGradKernel
<
CPU
,
float
>
,
ops
::
PnormGradKernel
<
CPU
,
double
>
);
ops
::
PnormOpGradOpMaker
<
paddle
::
imperative
::
OpBase
>
,
PNormInferShapeFunctor
);
REGISTER_OPERATOR
(
p_norm_grad
,
ops
::
PnormOpGrad
,
PNormGradInferShapeFunctor
);
REGISTER_OP_VERSION
(
p_norm
)
.
AddCheckpoint
(
R"ROC(
...
...
paddle/fluid/operators/p_norm_op.cu
已删除
100644 → 0
浏览文件 @
22a5035e
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace
cub
=
hipcub
;
#endif
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
#include "paddle/fluid/operators/fc_op.h"
#include "paddle/fluid/operators/p_norm_op.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op.h"
#include "paddle/fluid/platform/float16.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
__device__
__forceinline__
int
sgn
(
T
val
)
{
return
(
T
(
0
)
<
val
)
-
(
val
<
T
(
0
));
}
__device__
__forceinline__
platform
::
float16
inline_abs
(
platform
::
float16
x
)
{
return
static_cast
<
platform
::
float16
>
(
abs
(
static_cast
<
float
>
(
x
)));
}
__device__
__forceinline__
platform
::
bfloat16
inline_abs
(
platform
::
bfloat16
x
)
{
return
static_cast
<
platform
::
bfloat16
>
(
abs
(
static_cast
<
float
>
(
x
)));
}
__device__
__forceinline__
float
inline_abs
(
float
x
)
{
return
abs
(
x
);
}
__device__
__forceinline__
double
inline_abs
(
double
x
)
{
return
abs
(
x
);
}
__device__
__forceinline__
int
inline_sign
(
platform
::
float16
x
)
{
return
sgn
<
platform
::
float16
>
(
x
);
}
__device__
__forceinline__
int
inline_sign
(
float
x
)
{
return
sgn
<
float
>
(
x
);
}
__device__
__forceinline__
int
inline_sign
(
double
x
)
{
return
sgn
<
double
>
(
x
);
}
__device__
__forceinline__
platform
::
float16
inline_pow
(
platform
::
float16
base
,
platform
::
float16
exponent
)
{
return
static_cast
<
platform
::
float16
>
(
pow
(
static_cast
<
float
>
(
base
),
static_cast
<
float
>
(
exponent
)));
}
__device__
__forceinline__
platform
::
bfloat16
inline_pow
(
platform
::
bfloat16
base
,
platform
::
bfloat16
exponent
)
{
return
static_cast
<
platform
::
bfloat16
>
(
pow
(
static_cast
<
float
>
(
base
),
static_cast
<
float
>
(
exponent
)));
}
__device__
__forceinline__
float
inline_pow
(
float
base
,
float
exponent
)
{
return
pow
(
base
,
exponent
);
}
__device__
__forceinline__
double
inline_pow
(
double
base
,
double
exponent
)
{
return
pow
(
base
,
exponent
);
}
template
<
typename
T
>
struct
NonzeroFunctor
{
HOSTDEVICE
explicit
inline
NonzeroFunctor
()
{}
HOSTDEVICE
inline
T
operator
()(
const
T
x
)
const
{
return
static_cast
<
T
>
(
static_cast
<
double
>
(
x
)
!=
0
);
}
};
template
<
typename
T
>
struct
AbsFunctor
{
HOSTDEVICE
explicit
inline
AbsFunctor
()
{}
HOSTDEVICE
inline
T
operator
()(
const
T
x
)
const
{
return
static_cast
<
T
>
(
inline_abs
(
x
));
}
};
template
<
typename
T
>
struct
UnsignedPowFunctor
{
HOSTDEVICE
explicit
inline
UnsignedPowFunctor
(
float
porder
)
{
this
->
porder
=
porder
;
}
HOSTDEVICE
inline
T
operator
()(
const
T
x
)
const
{
return
static_cast
<
T
>
(
inline_pow
(
inline_abs
(
x
),
static_cast
<
T
>
(
porder
)));
}
float
porder
;
};
template
<
typename
DeviceContext
,
typename
T
>
class
PnormCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in_x
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
out_norm
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
const
T
*
x
=
in_x
->
data
<
T
>
();
T
*
norm
=
out_norm
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
xdim
=
in_x
->
dims
();
float
porder
=
ctx
.
Attr
<
float
>
(
"porder"
);
bool
asvector
=
ctx
.
Attr
<
bool
>
(
"asvector"
);
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
std
::
vector
<
int
>
reduce_axis
=
{
axis
};
reduce_axis
=
GetReduceDim
(
reduce_axis
,
xdim
.
size
(),
asvector
);
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
using
MT
=
typename
details
::
MPTypeTrait
<
T
>::
Type
;
if
(
porder
==
0
)
{
TensorReduceImpl
<
T
,
T
,
kps
::
AddFunctor
,
NonzeroFunctor
<
T
>>
(
ctx
.
cuda_device_context
(),
*
in_x
,
out_norm
,
NonzeroFunctor
<
T
>
(),
reduce_axis
,
stream
);
}
else
if
(
porder
==
INFINITY
)
{
TensorReduceImpl
<
T
,
T
,
kps
::
MaxFunctor
,
AbsFunctor
<
T
>>
(
ctx
.
cuda_device_context
(),
*
in_x
,
out_norm
,
AbsFunctor
<
T
>
(),
reduce_axis
,
stream
);
}
else
if
(
porder
==
-
INFINITY
)
{
TensorReduceImpl
<
T
,
T
,
kps
::
MinFunctor
,
AbsFunctor
<
T
>>
(
ctx
.
cuda_device_context
(),
*
in_x
,
out_norm
,
AbsFunctor
<
T
>
(),
reduce_axis
,
stream
);
}
else
{
TensorReduceImpl
<
T
,
T
,
kps
::
AddFunctor
,
UnsignedPowFunctor
<
T
>>
(
ctx
.
cuda_device_context
(),
*
in_x
,
out_norm
,
UnsignedPowFunctor
<
T
>
(
porder
),
reduce_axis
,
stream
);
const
framework
::
Tensor
*
tmp_norm
=
out_norm
;
std
::
vector
<
const
framework
::
Tensor
*>
ins
=
{
tmp_norm
};
std
::
vector
<
framework
::
Tensor
*>
outs
=
{
out_norm
};
const
auto
&
cuda_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
paddle
::
operators
::
LaunchSameDimsElementwiseCudaKernel
<
T
>
(
cuda_ctx
,
ins
,
&
outs
,
UnsignedPowFunctor
<
T
>
(
1.
/
porder
));
}
}
};
template
<
typename
T
>
struct
AbsMaxAndMinGradFunctor
{
template
<
typename
DeviceContext
,
typename
X
,
typename
Y
,
typename
DX
,
typename
DY
,
typename
Dim
>
void
operator
()(
const
DeviceContext
&
place
,
X
*
x
,
Y
*
y
,
DX
*
dx
,
DY
*
dy
,
const
Dim
&
dim
,
int
size
)
{
dx
->
device
(
place
)
=
dy
->
broadcast
(
dim
)
*
(
*
x
).
sign
()
*
((
*
x
).
abs
()
==
y
->
broadcast
(
dim
)).
template
cast
<
T
>();
}
};
template
<
typename
T
>
struct
PNormGradFunctor
{
HOSTDEVICE
explicit
inline
PNormGradFunctor
(
float
porder
)
{
this
->
porder
=
static_cast
<
T
>
(
porder
-
1.
);
}
template
<
typename
DeviceContext
,
typename
X
,
typename
Y
,
typename
DX
,
typename
DY
,
typename
Dim
>
void
operator
()(
const
DeviceContext
&
place
,
X
*
x
,
Y
*
y
,
DX
*
dx
,
DY
*
dy
,
const
Dim
&
dim
,
int
size
)
{
dx
->
device
(
place
)
=
(
*
x
).
abs
().
pow
(
this
->
porder
)
*
(
*
x
).
sign
()
*
dy
->
broadcast
(
dim
)
*
(
*
y
).
pow
(
-
this
->
porder
).
broadcast
(
dim
);
}
T
porder
;
};
template
<
typename
DeviceContext
,
typename
T
,
typename
AttrType
=
T
>
class
PnormGradCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in_x
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
in_norm
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Out"
);
auto
*
in_norm_dy
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
out_dx
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
T
*
dx
=
out_dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
xdim
=
in_x
->
dims
();
float
porder
=
ctx
.
Attr
<
float
>
(
"porder"
);
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
bool
reduce_all
=
(
in_norm
->
numel
()
==
1
);
if
(
axis
<
0
)
axis
=
xdim
.
size
()
+
axis
;
const
std
::
vector
<
int
>
dims
=
{
axis
};
auto
&
cuda_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
if
(
porder
==
0
)
{
phi
::
funcs
::
SetConstant
<
DeviceContext
,
T
>
set_zero
;
set_zero
(
cuda_ctx
,
out_dx
,
static_cast
<
T
>
(
0
));
}
else
if
(
porder
==
INFINITY
||
porder
==
-
INFINITY
)
{
AbsMaxAndMinGradFunctor
<
T
>
functor
;
LaunchReduceGradKernel
<
DeviceContext
,
T
,
AbsMaxAndMinGradFunctor
<
T
>>
(
ctx
,
in_x
,
in_norm
,
in_norm_dy
,
out_dx
,
functor
,
dims
,
reduce_all
);
}
else
{
auto
functor
=
PNormGradFunctor
<
T
>
(
porder
);
LaunchReduceGradKernel
<
DeviceContext
,
T
,
PNormGradFunctor
<
T
>>
(
ctx
,
in_x
,
in_norm
,
in_norm_dy
,
out_dx
,
functor
,
dims
,
reduce_all
);
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
using
CUDA
=
paddle
::
platform
::
CUDADeviceContext
;
REGISTER_OP_CUDA_KERNEL
(
p_norm
,
ops
::
PnormCUDAKernel
<
CUDA
,
paddle
::
platform
::
float16
>
,
ops
::
PnormCUDAKernel
<
CUDA
,
paddle
::
platform
::
bfloat16
>
,
ops
::
PnormCUDAKernel
<
CUDA
,
float
>
,
ops
::
PnormCUDAKernel
<
CUDA
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
p_norm_grad
,
ops
::
PnormGradCUDAKernel
<
CUDA
,
paddle
::
platform
::
float16
>
,
ops
::
PnormGradCUDAKernel
<
CUDA
,
paddle
::
platform
::
bfloat16
>
,
ops
::
PnormGradCUDAKernel
<
CUDA
,
float
>
,
ops
::
PnormGradCUDAKernel
<
CUDA
,
double
>
);
paddle/fluid/operators/p_norm_op.h
已删除
100644 → 0
浏览文件 @
22a5035e
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace
paddle
{
namespace
operators
{
inline
void
GetDims
(
const
framework
::
DDim
&
dim
,
int
axis
,
int
*
pre
,
int
*
n
,
int
*
post
,
bool
asvector
)
{
*
pre
=
1
;
*
post
=
1
;
*
n
=
dim
[
axis
];
if
(
asvector
)
{
*
n
=
product
(
dim
);
}
else
{
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
(
*
pre
)
*=
dim
[
i
];
}
for
(
int
i
=
axis
+
1
;
i
<
dim
.
size
();
++
i
)
{
(
*
post
)
*=
dim
[
i
];
}
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
PnormKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in_x
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
out_norm
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
out_norm
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
xdim
=
in_x
->
dims
();
float
porder
=
ctx
.
Attr
<
float
>
(
"porder"
);
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
bool
asvector
=
ctx
.
Attr
<
bool
>
(
"asvector"
);
if
(
axis
<
0
)
axis
=
xdim
.
size
()
+
axis
;
int
pre
,
n
,
post
;
GetDims
(
xdim
,
axis
,
&
pre
,
&
n
,
&
post
,
asvector
);
auto
*
place
=
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
Eigen
::
DSizes
<
int
,
3
>
shape
(
pre
,
n
,
post
);
Eigen
::
DSizes
<
int
,
2
>
norm_shape
(
pre
,
post
);
auto
x_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
in_x
);
auto
norm_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
out_norm
);
auto
x
=
x_e
.
reshape
(
shape
);
auto
norm
=
norm_e
.
reshape
(
norm_shape
);
// p=0 means number of non-zero elements of (x)
// p=inf means the maximum of |x|
// p=-inf means the minimum of |x|
// otherwise, Lp-norm = pow(sum(pow(|x|, p)), 1/p)
Eigen
::
DSizes
<
int
,
1
>
rdim
(
1
);
if
(
porder
==
0
)
{
norm
.
device
(
*
place
)
=
(
x
!=
x
.
constant
(
0
)).
template
cast
<
T
>().
sum
(
rdim
);
}
else
if
(
porder
==
INFINITY
)
{
norm
.
device
(
*
place
)
=
x
.
abs
().
maximum
(
rdim
);
}
else
if
(
porder
==
-
INFINITY
)
{
norm
.
device
(
*
place
)
=
x
.
abs
().
minimum
(
rdim
);
}
else
{
norm
.
device
(
*
place
)
=
x
.
abs
().
pow
(
porder
).
sum
(
rdim
).
pow
(
1.0
f
/
porder
);
}
}
};
template
<
typename
DeviceContext
,
typename
T
,
typename
AttrType
=
T
>
class
PnormGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in_x
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
in_norm
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Out"
);
auto
*
in_norm_dy
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
out_dx
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
out_dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
eps
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
auto
xdim
=
in_x
->
dims
();
float
porder
=
ctx
.
Attr
<
float
>
(
"porder"
);
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
bool
asvector
=
ctx
.
Attr
<
bool
>
(
"asvector"
);
if
(
axis
<
0
)
axis
=
xdim
.
size
()
+
axis
;
int
pre
,
n
,
post
;
GetDims
(
xdim
,
axis
,
&
pre
,
&
n
,
&
post
,
asvector
);
Eigen
::
DSizes
<
int
,
3
>
shape
(
pre
,
n
,
post
);
Eigen
::
DSizes
<
int
,
3
>
rshape
(
pre
,
1
,
post
);
auto
*
place
=
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
x_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
in_x
);
auto
dx_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
out_dx
);
auto
norm_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
in_norm
);
auto
norm_dy_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
in_norm_dy
);
auto
x
=
x_e
.
reshape
(
shape
);
auto
dx
=
dx_e
.
reshape
(
shape
);
auto
norm
=
norm_e
.
reshape
(
rshape
);
auto
norm_dy
=
norm_dy_e
.
reshape
(
rshape
);
Eigen
::
DSizes
<
int
,
1
>
rdim
(
1
);
Eigen
::
DSizes
<
int
,
3
>
bcast
(
1
,
n
,
1
);
if
(
porder
==
0
)
{
phi
::
funcs
::
SetConstant
<
DeviceContext
,
T
>
set_zero
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
set_zero
(
dev_ctx
,
out_dx
,
static_cast
<
T
>
(
0
));
}
else
if
(
porder
==
INFINITY
||
porder
==
-
INFINITY
)
{
dx
.
device
(
*
place
)
=
(
x
.
abs
()
==
norm
.
broadcast
(
bcast
)).
template
cast
<
T
>()
*
x
.
sign
()
*
norm_dy
.
broadcast
(
bcast
);
}
else
{
dx
.
device
(
*
place
)
=
(
x
.
abs
()).
pow
(
porder
-
1.0
f
)
/
((
norm
.
broadcast
(
bcast
)).
pow
(
porder
-
1.0
f
)
+
x
.
constant
(
eps
));
dx
.
device
(
*
place
)
=
dx
*
norm_dy
.
broadcast
(
bcast
)
*
x
.
sign
();
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/p_norm_op_npu.cc
浏览文件 @
92afe146
...
...
@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/
operators/p_norm_op
.h"
#include "paddle/fluid/
framework/op_registry
.h"
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
namespace
paddle
{
...
...
paddle/phi/infermeta/unary.cc
浏览文件 @
92afe146
...
...
@@ -1012,6 +1012,63 @@ void PixelShuffleInferMeta(const MetaTensor& x,
out
->
set_dims
(
output_dims
);
}
void
PNormInferMeta
(
const
MetaTensor
&
x
,
float
porder
,
int
axis
,
float
epsilon
,
bool
keepdim
,
bool
asvector
,
MetaTensor
*
out
)
{
auto
x_dim
=
x
.
dims
();
auto
x_rank
=
x_dim
.
size
();
PADDLE_ENFORCE_GE
(
axis
,
-
x_rank
,
errors
::
InvalidArgument
(
"Attr(axis) value should be in range [-R, R-1], R is "
"the rank of Input(X). But received axis: %d, R: %d. "
"Current Input(X)'s shape is=[%s]."
,
axis
,
x_rank
,
x_dim
));
PADDLE_ENFORCE_LT
(
axis
,
x_rank
,
errors
::
InvalidArgument
(
"Attr(axis) value should be in range [-R, R-1], R is "
"the rank of Input(X). But received axis: %d, R: %d. "
"Current Input(X)'s shape is=[%s]."
,
axis
,
x_rank
,
x_dim
));
std
::
vector
<
int
>
reduce_dims
;
if
(
asvector
)
{
reduce_dims
.
emplace_back
(
1
);
if
(
keepdim
)
{
for
(
int
i
=
1
;
i
<
x_dim
.
size
();
++
i
)
{
reduce_dims
.
emplace_back
(
1
);
}
x_dim
=
phi
::
make_ddim
(
reduce_dims
);
}
}
else
{
if
(
axis
<
0
)
axis
=
x_dim
.
size
()
+
axis
;
for
(
int
i
=
0
;
i
<
x_dim
.
size
();
++
i
)
{
if
(
i
!=
axis
)
reduce_dims
.
emplace_back
(
x_dim
[
i
]);
}
if
(
reduce_dims
.
size
()
==
0
)
{
reduce_dims
.
emplace_back
(
1
);
}
}
x_dim
[
axis
]
=
1
;
if
(
keepdim
)
{
out
->
set_dims
(
x_dim
);
}
else
{
out
->
set_dims
(
phi
::
make_ddim
(
reduce_dims
));
}
out
->
set_dtype
(
x
.
dtype
());
}
void
PoolInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int
>&
kernel_size
,
const
std
::
vector
<
int
>&
strides
,
...
...
paddle/phi/infermeta/unary.h
浏览文件 @
92afe146
...
...
@@ -166,6 +166,14 @@ void PixelShuffleInferMeta(const MetaTensor& x,
const
std
::
string
&
data_format
,
MetaTensor
*
out
);
void
PNormInferMeta
(
const
MetaTensor
&
x
,
float
porder
,
int
axis
,
float
epsilon
,
bool
keepdim
,
bool
asvector
,
MetaTensor
*
out
);
void
PoolInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int
>&
kernel_size
,
const
std
::
vector
<
int
>&
strides
,
...
...
paddle/phi/kernels/cpu/p_norm_grad_kernel.cc
0 → 100644
浏览文件 @
92afe146
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/p_norm_grad_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace
phi
{
inline
void
GetDims
(
const
phi
::
DDim
&
dim
,
int
axis
,
int
*
pre
,
int
*
n
,
int
*
post
,
bool
asvector
)
{
*
pre
=
1
;
*
post
=
1
;
*
n
=
dim
[
axis
];
if
(
asvector
)
{
*
n
=
product
(
dim
);
}
else
{
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
(
*
pre
)
*=
dim
[
i
];
}
for
(
int
i
=
axis
+
1
;
i
<
dim
.
size
();
++
i
)
{
(
*
post
)
*=
dim
[
i
];
}
}
}
template
<
typename
T
,
typename
Context
>
void
PNormGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
out
,
const
DenseTensor
&
out_grad
,
float
porder
,
int
axis
,
float
epsilon
,
bool
keepdim
,
bool
asvector
,
DenseTensor
*
x_grad
)
{
auto
*
in_x
=
&
x
;
auto
*
in_norm
=
&
out
;
auto
*
in_norm_dy
=
&
out_grad
;
auto
*
out_dx
=
x_grad
;
dev_ctx
.
template
Alloc
<
T
>(
out_dx
);
T
eps
=
static_cast
<
T
>
(
epsilon
);
auto
xdim
=
in_x
->
dims
();
if
(
axis
<
0
)
axis
=
xdim
.
size
()
+
axis
;
int
pre
,
n
,
post
;
GetDims
(
xdim
,
axis
,
&
pre
,
&
n
,
&
post
,
asvector
);
Eigen
::
DSizes
<
int
,
3
>
shape
(
pre
,
n
,
post
);
Eigen
::
DSizes
<
int
,
3
>
rshape
(
pre
,
1
,
post
);
auto
*
place
=
dev_ctx
.
eigen_device
();
auto
x_e
=
phi
::
EigenVector
<
T
>::
Flatten
(
*
in_x
);
auto
dx_e
=
phi
::
EigenVector
<
T
>::
Flatten
(
*
out_dx
);
auto
norm_e
=
phi
::
EigenVector
<
T
>::
Flatten
(
*
in_norm
);
auto
norm_dy_e
=
phi
::
EigenVector
<
T
>::
Flatten
(
*
in_norm_dy
);
auto
xr
=
x_e
.
reshape
(
shape
);
auto
dx
=
dx_e
.
reshape
(
shape
);
auto
norm
=
norm_e
.
reshape
(
rshape
);
auto
norm_dy
=
norm_dy_e
.
reshape
(
rshape
);
Eigen
::
DSizes
<
int
,
1
>
rdim
(
1
);
Eigen
::
DSizes
<
int
,
3
>
bcast
(
1
,
n
,
1
);
if
(
porder
==
0
)
{
phi
::
funcs
::
SetConstant
<
Context
,
T
>
set_zero
;
set_zero
(
dev_ctx
,
out_dx
,
static_cast
<
T
>
(
0
));
}
else
if
(
porder
==
INFINITY
||
porder
==
-
INFINITY
)
{
dx
.
device
(
*
place
)
=
(
xr
.
abs
()
==
norm
.
broadcast
(
bcast
)).
template
cast
<
T
>()
*
xr
.
sign
()
*
norm_dy
.
broadcast
(
bcast
);
}
else
{
dx
.
device
(
*
place
)
=
(
xr
.
abs
()).
pow
(
porder
-
1.0
f
)
/
((
norm
.
broadcast
(
bcast
)).
pow
(
porder
-
1.0
f
)
+
xr
.
constant
(
eps
));
dx
.
device
(
*
place
)
=
dx
*
norm_dy
.
broadcast
(
bcast
)
*
xr
.
sign
();
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
p_norm_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
PNormGradKernel
,
float
,
double
)
{}
paddle/phi/kernels/cpu/p_norm_kernel.cc
0 → 100644
浏览文件 @
92afe146
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/p_norm_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/common_shape.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace
phi
{
inline
void
GetDims
(
const
phi
::
DDim
&
dim
,
int
axis
,
int
*
pre
,
int
*
n
,
int
*
post
,
bool
asvector
)
{
*
pre
=
1
;
*
post
=
1
;
*
n
=
dim
[
axis
];
if
(
asvector
)
{
*
n
=
product
(
dim
);
}
else
{
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
(
*
pre
)
*=
dim
[
i
];
}
for
(
int
i
=
axis
+
1
;
i
<
dim
.
size
();
++
i
)
{
(
*
post
)
*=
dim
[
i
];
}
}
}
template
<
typename
T
,
typename
Context
>
void
PNormKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
float
porder
,
int
axis
,
float
epsilon
,
bool
keepdim
,
bool
asvector
,
DenseTensor
*
out
)
{
auto
*
in_x
=
&
x
;
dev_ctx
.
template
Alloc
<
T
>(
out
);
auto
xdim
=
in_x
->
dims
();
if
(
axis
<
0
)
axis
=
xdim
.
size
()
+
axis
;
int
pre
,
n
,
post
;
GetDims
(
xdim
,
axis
,
&
pre
,
&
n
,
&
post
,
asvector
);
auto
*
place
=
dev_ctx
.
eigen_device
();
Eigen
::
DSizes
<
int
,
3
>
shape
(
pre
,
n
,
post
);
Eigen
::
DSizes
<
int
,
2
>
norm_shape
(
pre
,
post
);
auto
x_e
=
phi
::
EigenVector
<
T
>::
Flatten
(
*
in_x
);
auto
norm_e
=
phi
::
EigenVector
<
T
>::
Flatten
(
*
out
);
auto
xr
=
x_e
.
reshape
(
shape
);
auto
norm
=
norm_e
.
reshape
(
norm_shape
);
// p=0 means number of non-zero elements of (xr)
// p=inf means the maximum of |xr|
// p=-inf means the minimum of |xr|
// otherwise, Lp-norm = pow(sum(pow(|xr|, p)), 1/p)
Eigen
::
DSizes
<
int
,
1
>
rdim
(
1
);
if
(
porder
==
0
)
{
norm
.
device
(
*
place
)
=
(
xr
!=
xr
.
constant
(
0
)).
template
cast
<
T
>().
sum
(
rdim
);
}
else
if
(
porder
==
INFINITY
)
{
norm
.
device
(
*
place
)
=
xr
.
abs
().
maximum
(
rdim
);
}
else
if
(
porder
==
-
INFINITY
)
{
norm
.
device
(
*
place
)
=
xr
.
abs
().
minimum
(
rdim
);
}
else
{
norm
.
device
(
*
place
)
=
xr
.
abs
().
pow
(
porder
).
sum
(
rdim
).
pow
(
1.0
f
/
porder
);
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
p_norm
,
CPU
,
ALL_LAYOUT
,
phi
::
PNormKernel
,
float
,
double
)
{}
paddle/phi/kernels/gpu/p_norm_grad_kernel.cu
0 → 100644
浏览文件 @
92afe146
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/p_norm_grad_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/reduce_grad_functions.h"
namespace
phi
{
template
<
typename
T
>
struct
AbsMaxAndMinGradFunctor
{
template
<
typename
Context
,
typename
X
,
typename
Y
,
typename
DX
,
typename
DY
,
typename
Dim
>
void
operator
()(
const
Context
&
place
,
X
*
x
,
Y
*
y
,
DX
*
dx
,
DY
*
dy
,
const
Dim
&
dim
,
int
size
)
{
dx
->
device
(
place
)
=
dy
->
broadcast
(
dim
)
*
(
*
x
).
sign
()
*
((
*
x
).
abs
()
==
y
->
broadcast
(
dim
)).
template
cast
<
T
>();
}
};
template
<
typename
T
>
struct
PNormGradFunctor
{
HOSTDEVICE
explicit
inline
PNormGradFunctor
(
float
porder
)
{
this
->
porder
=
static_cast
<
T
>
(
porder
-
1.
);
}
template
<
typename
Context
,
typename
X
,
typename
Y
,
typename
DX
,
typename
DY
,
typename
Dim
>
void
operator
()(
const
Context
&
place
,
X
*
x
,
Y
*
y
,
DX
*
dx
,
DY
*
dy
,
const
Dim
&
dim
,
int
size
)
{
dx
->
device
(
place
)
=
(
*
x
).
abs
().
pow
(
this
->
porder
)
*
(
*
x
).
sign
()
*
dy
->
broadcast
(
dim
)
*
(
*
y
).
pow
(
-
this
->
porder
).
broadcast
(
dim
);
}
T
porder
;
};
template
<
typename
T
,
typename
Context
>
void
PNormGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
out
,
const
DenseTensor
&
out_grad
,
float
porder
,
int
axis
,
float
epsilon
,
bool
keepdim
,
bool
asvector
,
DenseTensor
*
x_grad
)
{
auto
*
in_x
=
&
x
;
auto
*
in_norm
=
&
out
;
auto
*
in_norm_dy
=
&
out_grad
;
auto
*
out_dx
=
x_grad
;
dev_ctx
.
template
Alloc
<
T
>(
out_dx
);
auto
xdim
=
in_x
->
dims
();
bool
reduce_all
=
(
in_norm
->
numel
()
==
1
);
if
(
axis
<
0
)
axis
=
xdim
.
size
()
+
axis
;
const
std
::
vector
<
int
>
dims
=
{
axis
};
if
(
porder
==
0
)
{
phi
::
funcs
::
SetConstant
<
Context
,
T
>
set_zero
;
set_zero
(
dev_ctx
,
out_dx
,
static_cast
<
T
>
(
0
));
}
else
if
(
porder
==
INFINITY
||
porder
==
-
INFINITY
)
{
AbsMaxAndMinGradFunctor
<
T
>
functor
;
funcs
::
LaunchReduceGradKernel
<
Context
,
T
,
AbsMaxAndMinGradFunctor
<
T
>>
(
dev_ctx
,
in_x
,
in_norm
,
in_norm_dy
,
out_dx
,
functor
,
dims
,
reduce_all
);
}
else
{
auto
functor
=
PNormGradFunctor
<
T
>
(
porder
);
funcs
::
LaunchReduceGradKernel
<
Context
,
T
,
PNormGradFunctor
<
T
>>
(
dev_ctx
,
in_x
,
in_norm
,
in_norm_dy
,
out_dx
,
functor
,
dims
,
reduce_all
);
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
p_norm_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
PNormGradKernel
,
float
,
double
,
phi
::
dtype
::
float16
,
phi
::
dtype
::
bfloat16
)
{}
paddle/phi/kernels/gpu/p_norm_kernel.cu
0 → 100644
浏览文件 @
92afe146
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/p_norm_kernel.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
#include "paddle/phi/common/amp_type_traits.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/reduce_function.h"
#include "paddle/phi/kernels/gpu/reduce.h"
namespace
phi
{
template
<
typename
T
>
__device__
__forceinline__
int
sgn
(
T
val
)
{
return
(
T
(
0
)
<
val
)
-
(
val
<
T
(
0
));
}
__device__
__forceinline__
dtype
::
float16
inline_abs
(
dtype
::
float16
x
)
{
return
static_cast
<
dtype
::
float16
>
(
abs
(
static_cast
<
float
>
(
x
)));
}
__device__
__forceinline__
dtype
::
bfloat16
inline_abs
(
dtype
::
bfloat16
x
)
{
return
static_cast
<
dtype
::
bfloat16
>
(
abs
(
static_cast
<
float
>
(
x
)));
}
__device__
__forceinline__
float
inline_abs
(
float
x
)
{
return
abs
(
x
);
}
__device__
__forceinline__
double
inline_abs
(
double
x
)
{
return
abs
(
x
);
}
__device__
__forceinline__
int
inline_sign
(
dtype
::
float16
x
)
{
return
sgn
<
dtype
::
float16
>
(
x
);
}
__device__
__forceinline__
int
inline_sign
(
float
x
)
{
return
sgn
<
float
>
(
x
);
}
__device__
__forceinline__
int
inline_sign
(
double
x
)
{
return
sgn
<
double
>
(
x
);
}
__device__
__forceinline__
dtype
::
float16
inline_pow
(
dtype
::
float16
base
,
dtype
::
float16
exponent
)
{
return
static_cast
<
dtype
::
float16
>
(
pow
(
static_cast
<
float
>
(
base
),
static_cast
<
float
>
(
exponent
)));
}
__device__
__forceinline__
dtype
::
bfloat16
inline_pow
(
dtype
::
bfloat16
base
,
dtype
::
bfloat16
exponent
)
{
return
static_cast
<
dtype
::
bfloat16
>
(
pow
(
static_cast
<
float
>
(
base
),
static_cast
<
float
>
(
exponent
)));
}
__device__
__forceinline__
float
inline_pow
(
float
base
,
float
exponent
)
{
return
pow
(
base
,
exponent
);
}
__device__
__forceinline__
double
inline_pow
(
double
base
,
double
exponent
)
{
return
pow
(
base
,
exponent
);
}
template
<
typename
T
>
struct
NonzeroFunctor
{
HOSTDEVICE
explicit
inline
NonzeroFunctor
()
{}
HOSTDEVICE
inline
T
operator
()(
const
T
x
)
const
{
return
static_cast
<
T
>
(
static_cast
<
double
>
(
x
)
!=
0
);
}
};
template
<
typename
T
>
struct
AbsFunctor
{
HOSTDEVICE
explicit
inline
AbsFunctor
()
{}
HOSTDEVICE
inline
T
operator
()(
const
T
x
)
const
{
return
static_cast
<
T
>
(
inline_abs
(
x
));
}
};
template
<
typename
T
>
struct
UnsignedPowFunctor
{
HOSTDEVICE
explicit
inline
UnsignedPowFunctor
(
float
porder
)
{
this
->
porder
=
porder
;
}
HOSTDEVICE
inline
T
operator
()(
const
T
x
)
const
{
return
static_cast
<
T
>
(
inline_pow
(
inline_abs
(
x
),
static_cast
<
T
>
(
porder
)));
}
float
porder
;
};
template
<
typename
T
,
typename
Context
>
void
PNormKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
float
porder
,
int
axis
,
float
epsilon
,
bool
keepdim
,
bool
asvector
,
DenseTensor
*
out
)
{
auto
*
in_x
=
&
x
;
auto
*
out_norm
=
out
;
T
*
norm
=
dev_ctx
.
template
Alloc
<
T
>(
out
);
auto
xdim
=
in_x
->
dims
();
std
::
vector
<
int64_t
>
axis_dims
=
{
static_cast
<
int64_t
>
(
axis
)};
std
::
vector
<
int
>
reduce_axis
=
funcs
::
details
::
GetReduceDim
(
axis_dims
,
xdim
.
size
(),
asvector
);
using
MT
=
typename
dtype
::
MPTypeTrait
<
T
>::
Type
;
if
(
porder
==
0
)
{
phi
::
funcs
::
ReduceKernel
<
T
,
T
,
kps
::
AddFunctor
,
NonzeroFunctor
<
T
>>
(
dev_ctx
,
*
in_x
,
out_norm
,
NonzeroFunctor
<
T
>
(),
reduce_axis
);
}
else
if
(
porder
==
INFINITY
)
{
phi
::
funcs
::
ReduceKernel
<
T
,
T
,
kps
::
MaxFunctor
,
AbsFunctor
<
T
>>
(
dev_ctx
,
*
in_x
,
out_norm
,
AbsFunctor
<
T
>
(),
reduce_axis
);
}
else
if
(
porder
==
-
INFINITY
)
{
phi
::
funcs
::
ReduceKernel
<
T
,
T
,
kps
::
MinFunctor
,
AbsFunctor
<
T
>>
(
dev_ctx
,
*
in_x
,
out_norm
,
AbsFunctor
<
T
>
(),
reduce_axis
);
}
else
{
phi
::
funcs
::
ReduceKernel
<
T
,
T
,
kps
::
AddFunctor
,
UnsignedPowFunctor
<
T
>>
(
dev_ctx
,
*
in_x
,
out_norm
,
UnsignedPowFunctor
<
T
>
(
porder
),
reduce_axis
);
const
DenseTensor
*
tmp_norm
=
out_norm
;
std
::
vector
<
const
DenseTensor
*>
ins
=
{
tmp_norm
};
std
::
vector
<
DenseTensor
*>
outs
=
{
out_norm
};
phi
::
funcs
::
ElementwiseKernel
<
T
>
(
dev_ctx
,
ins
,
&
outs
,
UnsignedPowFunctor
<
T
>
(
1.
/
porder
));
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
p_norm
,
GPU
,
ALL_LAYOUT
,
phi
::
PNormKernel
,
float
,
double
,
phi
::
dtype
::
float16
,
phi
::
dtype
::
bfloat16
)
{}
paddle/phi/kernels/p_norm_grad_kernel.h
0 → 100644
浏览文件 @
92afe146
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
PNormGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
out
,
const
DenseTensor
&
out_grad
,
float
porder
,
int
axis
,
float
epsilon
,
bool
keepdim
,
bool
asvector
,
DenseTensor
*
x_grad
);
}
// namespace phi
paddle/phi/kernels/p_norm_kernel.h
0 → 100644
浏览文件 @
92afe146
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
PNormKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
float
porder
,
int
axis
,
float
epsilon
,
bool
keepdim
,
bool
asvector
,
DenseTensor
*
out
);
}
// namespace phi
paddle/phi/ops/compat/p_norm_sig.cc
0 → 100644
浏览文件 @
92afe146
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace
phi
{
KernelSignature
PNormGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"p_norm_grad"
,
{
"X"
,
"Out"
,
GradVarName
(
"Out"
)},
{
"porder"
,
"axis"
,
"epsilon"
,
"keepdim"
,
"asvector"
},
{
GradVarName
(
"X"
)});
}
}
// namespace phi
PD_REGISTER_ARG_MAPPING_FN
(
p_norm_grad
,
phi
::
PNormGradOpArgumentMapping
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录