Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
91215bce
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
91215bce
编写于
9月 02, 2017
作者:
X
Xinghai Sun
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix a bug causing wrong gradient results in cos_sim op.
上级
ed72af48
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
71 addition
and
44 deletion
+71
-44
paddle/operators/cos_sim_op.cc
paddle/operators/cos_sim_op.cc
+24
-8
paddle/operators/cos_sim_op.h
paddle/operators/cos_sim_op.h
+21
-13
python/paddle/v2/framework/tests/gradient_checker.py
python/paddle/v2/framework/tests/gradient_checker.py
+0
-7
python/paddle/v2/framework/tests/test_cos_sim_op.py
python/paddle/v2/framework/tests/test_cos_sim_op.py
+26
-16
未找到文件。
paddle/operators/cos_sim_op.cc
浏览文件 @
91215bce
...
@@ -25,14 +25,16 @@ class CosSimOp : public framework::OperatorWithKernel {
...
@@ -25,14 +25,16 @@ class CosSimOp : public framework::OperatorWithKernel {
protected:
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X)
should
not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X)
must
not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Y"
),
"Input(Y)
should
not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Y"
),
"Input(Y)
must
not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
(),
PADDLE_ENFORCE_EQ
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
(),
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
(),
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
(),
"Dimensions of Input(X) and Input(Y) must be the same."
);
"Dimensions of Input(X) and Input(Y) must be the same."
);
auto
dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
({
dims
[
0
],
1
});
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
({
dims
[
0
],
1
});
ctx
.
Output
<
Tensor
>
(
"XNorm"
)
->
Resize
({
dims
[
0
],
1
});
ctx
.
Output
<
Tensor
>
(
"YNorm"
)
->
Resize
({
dims
[
0
],
1
});
}
}
};
};
...
@@ -43,6 +45,9 @@ class CosSimOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -43,6 +45,9 @@ class CosSimOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"The first input of cos_sim op."
);
AddInput
(
"X"
,
"The first input of cos_sim op."
);
AddInput
(
"Y"
,
"The second input of cos_sim op."
);
AddInput
(
"Y"
,
"The second input of cos_sim op."
);
AddOutput
(
"Out"
,
"The output of cos_sim op."
);
AddOutput
(
"Out"
,
"The output of cos_sim op."
);
AddOutput
(
"XNorm"
,
"Row norm of the first input."
).
AsIntermediate
();
AddOutput
(
"YNorm"
,
"Row norm of the second input."
).
AsIntermediate
();
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Cosine Similarity Operator.
Cosine Similarity Operator.
...
@@ -57,20 +62,31 @@ class CosSimOpGrad : public framework::OperatorWithKernel {
...
@@ -57,20 +62,31 @@ class CosSimOpGrad : public framework::OperatorWithKernel {
protected:
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X) should not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X) must not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Y"
),
"Input(Y) should not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Y"
),
"Input(Y) must not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"XNorm"
),
"Input(XNorm) must not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"YNorm"
),
"Input(YNorm) must not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Out"
)),
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD)
should
not be null."
);
"Input(Out@GRAD)
must
not be null."
);
auto
x_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
x_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
y_dims
=
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
();
auto
y_dims
=
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
();
auto
xnorm_dims
=
ctx
.
Input
<
Tensor
>
(
"XNorm"
)
->
dims
();
auto
ynorm_dims
=
ctx
.
Input
<
Tensor
>
(
"YNorm"
)
->
dims
();
auto
out_dims
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
dims
();
auto
out_dims
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
dims
();
PADDLE_ENFORCE_EQ
(
x_dims
,
y_dims
,
PADDLE_ENFORCE_EQ
(
x_dims
,
y_dims
,
"Dimensions of Input(X) and Input(Y) must be the same."
);
"Dimensions of Input(X) and Input(Y) must be the same."
);
PADDLE_ENFORCE_EQ
(
xnorm_dims
[
0
],
x_dims
[
0
],
"1st dimension of XNorm must equal that of Input(X)."
);
PADDLE_ENFORCE_EQ
(
xnorm_dims
[
1
],
1
,
"2st dimension of XNorm must be one."
);
PADDLE_ENFORCE_EQ
(
ynorm_dims
[
0
],
y_dims
[
0
],
"1st dimension of YNorm must equal that of Input(Y)."
);
PADDLE_ENFORCE_EQ
(
ynorm_dims
[
1
],
1
,
"2st dimension of YNorm must be one."
);
PADDLE_ENFORCE_EQ
(
out_dims
[
0
],
x_dims
[
0
],
PADDLE_ENFORCE_EQ
(
out_dims
[
0
],
x_dims
[
0
],
"1st dimension of Out@GRAD must equal to Input(X)"
);
"1st dimension of Out@GRAD must equal that of Input(X)"
);
PADDLE_ENFORCE_EQ
(
out_dims
[
1
],
1
,
PADDLE_ENFORCE_EQ
(
out_dims
[
1
],
1
,
"1st dimension of Out@GRAD must be one."
);
"1st dimension of Out@GRAD must equal to Input(X)"
);
auto
*
x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
y_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
y_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
...
...
paddle/operators/cos_sim_op.h
浏览文件 @
91215bce
...
@@ -31,21 +31,27 @@ class CosSimKernel : public framework::OpKernel {
...
@@ -31,21 +31,27 @@ class CosSimKernel : public framework::OpKernel {
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
*
y
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
*
z
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
*
z
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
*
x_norm
=
context
.
Output
<
Tensor
>
(
"XNorm"
);
auto
*
y_norm
=
context
.
Output
<
Tensor
>
(
"YNorm"
);
z
->
mutable_data
<
T
>
(
context
.
GetPlace
());
z
->
mutable_data
<
T
>
(
context
.
GetPlace
());
x_norm
->
mutable_data
<
T
>
(
context
.
GetPlace
());
y_norm
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dims
=
x
->
dims
();
auto
dims
=
x
->
dims
();
int
size
=
static_cast
<
int
>
(
framework
::
product
(
dims
));
int
size
=
static_cast
<
int
>
(
framework
::
product
(
dims
));
auto
new_dims
=
framework
::
make_ddim
({
dims
[
0
],
size
/
dims
[
0
]});
auto
new_dims
=
framework
::
make_ddim
({
dims
[
0
],
size
/
dims
[
0
]});
auto
X
=
EigenMatrix
<
T
>::
From
(
*
x
,
new_dims
);
auto
X
=
EigenMatrix
<
T
>::
From
(
*
x
,
new_dims
);
auto
Y
=
EigenMatrix
<
T
>::
From
(
*
y
,
new_dims
);
auto
Y
=
EigenMatrix
<
T
>::
From
(
*
y
,
new_dims
);
auto
Z
=
EigenMatrix
<
T
>::
From
(
*
z
,
new_dims
);
auto
Z
=
EigenMatrix
<
T
>::
From
(
*
z
);
auto
XNorm
=
EigenMatrix
<
T
>::
From
(
*
x_norm
);
auto
YNorm
=
EigenMatrix
<
T
>::
From
(
*
y_norm
);
auto
XY
=
(
X
*
Y
).
sum
(
Eigen
::
array
<
int
,
1
>
({
1
}));
auto
XX
=
(
X
*
X
).
sum
(
Eigen
::
array
<
int
,
1
>
({
1
}));
auto
YY
=
(
Y
*
Y
).
sum
(
Eigen
::
array
<
int
,
1
>
({
1
}));
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
Z
.
device
(
place
)
=
XY
/
XX
.
sqrt
()
/
YY
.
sqrt
();
auto
XY
=
(
X
*
Y
).
sum
(
Eigen
::
array
<
int
,
1
>
({
1
}));
XNorm
.
device
(
place
)
=
(
X
*
X
).
sum
(
Eigen
::
array
<
int
,
1
>
({
1
})).
sqrt
();
YNorm
.
device
(
place
)
=
(
Y
*
Y
).
sum
(
Eigen
::
array
<
int
,
1
>
({
1
})).
sqrt
();
Z
.
device
(
place
)
=
XY
/
XNorm
/
YNorm
;
}
}
};
};
...
@@ -56,6 +62,8 @@ class CosSimGradKernel : public framework::OpKernel {
...
@@ -56,6 +62,8 @@ class CosSimGradKernel : public framework::OpKernel {
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
*
y
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
*
z
=
context
.
Input
<
Tensor
>
(
"Out"
);
auto
*
z
=
context
.
Input
<
Tensor
>
(
"Out"
);
auto
*
x_norm
=
context
.
Input
<
Tensor
>
(
"XNorm"
);
auto
*
y_norm
=
context
.
Input
<
Tensor
>
(
"YNorm"
);
auto
*
grad_x
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
grad_x
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
grad_y
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
grad_y
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
grad_z
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
grad_z
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
...
@@ -69,23 +77,23 @@ class CosSimGradKernel : public framework::OpKernel {
...
@@ -69,23 +77,23 @@ class CosSimGradKernel : public framework::OpKernel {
auto
X
=
EigenMatrix
<
T
>::
From
(
*
x
,
new_dims
);
auto
X
=
EigenMatrix
<
T
>::
From
(
*
x
,
new_dims
);
auto
Y
=
EigenMatrix
<
T
>::
From
(
*
y
,
new_dims
);
auto
Y
=
EigenMatrix
<
T
>::
From
(
*
y
,
new_dims
);
auto
Z
=
EigenMatrix
<
T
>::
From
(
*
z
);
auto
Z
=
EigenMatrix
<
T
>::
From
(
*
z
);
auto
X_norm
=
EigenMatrix
<
T
>::
From
(
*
x_norm
);
auto
Y_norm
=
EigenMatrix
<
T
>::
From
(
*
y_norm
);
auto
dX
=
EigenMatrix
<
T
>::
From
(
*
grad_x
,
new_dims
);
auto
dX
=
EigenMatrix
<
T
>::
From
(
*
grad_x
,
new_dims
);
auto
dY
=
EigenMatrix
<
T
>::
From
(
*
grad_y
,
new_dims
);
auto
dY
=
EigenMatrix
<
T
>::
From
(
*
grad_y
,
new_dims
);
auto
dZ
=
EigenMatrix
<
T
>::
From
(
*
grad_z
);
auto
dZ
=
EigenMatrix
<
T
>::
From
(
*
grad_z
);
auto
XX
=
(
X
*
X
).
sum
(
Eigen
::
array
<
int
,
1
>
({
1
}));
Eigen
::
DSizes
<
int
,
2
>
bcast
(
1
,
new_dims
[
1
]);
auto
YY
=
(
Y
*
Y
).
sum
(
Eigen
::
array
<
int
,
1
>
({
1
}));
Eigen
::
DSizes
<
int
,
2
>
bcast
(
1
,
dims
[
1
]);
auto
denominator_bcast
=
(
XX
.
sqrt
()
*
YY
.
sqrt
()).
broadcast
(
bcast
);
auto
Z_bcast
=
Z
.
broadcast
(
bcast
);
auto
Z_bcast
=
Z
.
broadcast
(
bcast
);
auto
dZ_bcast
=
dZ
.
broadcast
(
bcast
);
auto
dZ_bcast
=
dZ
.
broadcast
(
bcast
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
auto
X_snorm_bcast
=
X_norm
.
square
().
eval
().
broadcast
(
bcast
);
auto
Y_snorm_bcast
=
Y_norm
.
square
().
eval
().
broadcast
(
bcast
);
auto
norm_prod_bcast
=
(
X_norm
*
Y_norm
).
eval
().
broadcast
(
bcast
);
dX
.
device
(
place
)
=
dX
.
device
(
place
)
=
dZ_bcast
*
(
Y
/
denominator_bcast
-
Z_bcast
*
X
/
XX
.
broadcast
(
bcast
)
);
dZ_bcast
*
(
Y
/
norm_prod_bcast
-
Z_bcast
*
X
/
X_snorm_bcast
);
dY
.
device
(
place
)
=
dY
.
device
(
place
)
=
dZ_bcast
*
(
X
/
denominator_bcast
-
Z_bcast
*
Y
/
YY
.
broadcast
(
bcast
));
dZ_bcast
*
(
X
/
norm_prod_bcast
-
Z_bcast
*
Y
/
Y_snorm_bcast
);
// dX.device(place) = X;
// Y.device(place) = Y;
}
}
};
};
...
...
python/paddle/v2/framework/tests/gradient_checker.py
浏览文件 @
91215bce
...
@@ -304,13 +304,6 @@ class GradientChecker(unittest.TestCase):
...
@@ -304,13 +304,6 @@ class GradientChecker(unittest.TestCase):
# get analytical gradients according to different device
# get analytical gradients according to different device
analytic_grads
=
self
.
__get_gradient
(
forward_op
,
backward_op
,
analytic_grads
=
self
.
__get_gradient
(
forward_op
,
backward_op
,
input_vars
,
check_names
,
place
)
input_vars
,
check_names
,
place
)
#print(numeric_grads[0], numeric_grads[0].shape)
print
(
"dim0: "
,
numeric_grads
[
0
],
numeric_grads
[
0
].
shape
)
print
(
"dim0: "
,
analytic_grads
[
0
],
analytic_grads
[
0
].
shape
)
print
(
"---------------------"
)
print
(
"dim1: "
,
numeric_grads
[
1
],
numeric_grads
[
1
].
shape
)
print
(
"dim1: "
,
analytic_grads
[
1
],
analytic_grads
[
1
].
shape
)
assert
False
self
.
__assert_is_close
(
numeric_grads
,
analytic_grads
,
check_names
,
self
.
__assert_is_close
(
numeric_grads
,
analytic_grads
,
check_names
,
max_relative_error
,
max_relative_error
,
"Gradient Check On %s"
%
str
(
place
))
"Gradient Check On %s"
%
str
(
place
))
python/paddle/v2/framework/tests/test_cos_sim_op.py
浏览文件 @
91215bce
...
@@ -10,30 +10,40 @@ class TestCosSimOp(unittest.TestCase):
...
@@ -10,30 +10,40 @@ class TestCosSimOp(unittest.TestCase):
def
setUp
(
self
):
def
setUp
(
self
):
self
.
type
=
"cos_sim"
self
.
type
=
"cos_sim"
self
.
inputs
=
{
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
84
)).
astype
(
"float32"
),
'X'
:
np
.
random
.
random
((
32
,
64
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
32
,
84
)).
astype
(
"float32"
)
'Y'
:
np
.
random
.
random
((
32
,
64
)).
astype
(
"float32"
)
}
expect_x_norm
=
np
.
linalg
.
norm
(
self
.
inputs
[
'X'
],
axis
=
1
)
expect_y_norm
=
np
.
linalg
.
norm
(
self
.
inputs
[
'Y'
],
axis
=
1
)
expect_out
=
(
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
]).
sum
(
axis
=
1
)
/
\
expect_x_norm
/
expect_y_norm
self
.
outputs
=
{
'XNorm'
:
np
.
expand_dims
(
expect_x_norm
,
1
),
'YNorm'
:
np
.
expand_dims
(
expect_y_norm
,
1
),
'Out'
:
np
.
expand_dims
(
expect_out
,
1
)
}
}
expect
=
(
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
]).
sum
(
axis
=
1
)
/
\
np
.
linalg
.
norm
(
self
.
inputs
[
'X'
],
axis
=
1
)
/
\
np
.
linalg
.
norm
(
self
.
inputs
[
'Y'
],
axis
=
1
)
expect
=
np
.
expand_dims
(
expect
,
1
)
self
.
outputs
=
{
'Out'
:
expect
}
class
CosSimGradOpTest
(
GradientChecker
):
class
CosSimGradOpTest
(
GradientChecker
):
def
test_cos_sim
(
self
):
def
test_cos_sim_2d
(
self
):
op
=
create_op
(
"cos_sim"
)
inputs
=
{
'X'
:
np
.
random
.
random
((
10
,
5
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
10
,
5
)).
astype
(
"float32"
)
}
self
.
compare_grad
(
op
,
inputs
)
self
.
check_grad
(
op
,
inputs
,
set
([
"X"
,
"Y"
]),
"Out"
,
max_relative_error
=
0.05
)
def
test_cos_sim_3d
(
self
):
op
=
create_op
(
"cos_sim"
)
op
=
create_op
(
"cos_sim"
)
#inputs = {
#'X': np.random.random((2, 2)).astype("float32"),
#'Y': np.random.random((2, 2)).astype("float32")
#}
inputs
=
{
inputs
=
{
'X'
:
np
.
array
([[
0.9
,
0.6
],
[
1.9
,
1.6
]]
).
astype
(
"float32"
),
'X'
:
np
.
random
.
random
((
10
,
5
,
2
)
).
astype
(
"float32"
),
'Y'
:
np
.
array
([[
0.7
,
0.8
],
[
1.7
,
1.8
]]
).
astype
(
"float32"
)
'Y'
:
np
.
random
.
random
((
10
,
5
,
2
)
).
astype
(
"float32"
)
}
}
print
(
inputs
)
self
.
compare_grad
(
op
,
inputs
)
self
.
check_grad
(
self
.
check_grad
(
op
,
inputs
,
set
([
"X"
,
"Y"
]),
"Out"
,
max_relative_error
=
0.5
)
op
,
inputs
,
set
([
"X"
,
"Y"
]),
"Out"
,
max_relative_error
=
0.
0
5
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录