未验证 提交 8ebffc78 编写于 作者: J JZ-LIANG 提交者: GitHub

add lars to fleet meta optimizer (#25884)

上级 8d2896f1
......@@ -40,6 +40,17 @@ message GradientMergeConfig {
optional bool avg = 2 [ default = true ];
}
message LarsConfig {
optional float lars_coeff = 1 [ default = 0.001 ];
optional float lars_weight_decay = 2 [ default = 0.0005 ];
}
message LambConfig {
optional float beta1 = 1 [ default = 0.001 ];
optional float beta2 = 2 [ default = 0.999 ];
optional float epsilon = 3 [ default = 0.000001 ];
}
message BuildStrategy {
optional bool enable_sequential_execution = 1 [ default = false ];
optional bool fuse_elewise_add_act_ops = 2 [ default = false ];
......@@ -102,7 +113,8 @@ message DistributedStrategy {
optional GradientMergeConfig gradient_merge_configs = 104;
optional PipelineConfig pipeline_configs = 106;
optional AsyncConfig a_sync_configs = 107;
optional LarsConfig lars_configs = 108;
optional LambConfig lamb_configs = 109;
optional BuildStrategy build_strategy = 201;
optional ExecutionStrategy execution_strategy = 202;
}
......
......@@ -17,6 +17,7 @@ from ..meta_optimizers import GradientMergeOptimizer
from ..meta_optimizers import GraphExecutionOptimizer
from ..meta_optimizers import PipelineOptimizer
from ..meta_optimizers import LocalSGDOptimizer
from ..meta_optimizers import LarsOptimizer
__all__ = ["MetaOptimizerFactory"]
......@@ -26,6 +27,7 @@ meta_optimizer_names = [
"GraphExecutionOptimizer",
"PipelineOptimizer",
"LocalSGDOptimizer",
"LarsOptimizer",
]
......
......@@ -16,10 +16,12 @@ from .gradient_merge_optimizer import GradientMergeOptimizer
from .graph_execution_optimizer import GraphExecutionOptimizer
from .pipeline_optimizer import PipelineOptimizer
from .localsgd_optimizer import LocalSGDOptimizer
from .lars_optimizer import LarsOptimizer
__all__ = [
'RecomputeOptimizer',
'GradientMergeOptimizer',
'PipelineOptimizer',
'LocalSGDOptimizer',
'LarsOptimizer',
]
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from paddle.fluid.optimizer import Momentum, LarsMomentumOptimizer
from .meta_optimizer_base import MetaOptimizerBase
import logging
__all__ = ["LarsOptimizer"]
class LarsOptimizer(MetaOptimizerBase):
def __init__(self, optimizer):
super(LarsOptimizer, self).__init__(optimizer)
self.inner_opt = optimizer
self.lars_opt = None
# we do not allow meta optimizer to be inner optimizer currently
self.meta_optimizers_white_list = []
def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
user_defined_strategy):
super(LarsOptimizer, self)._set_basic_info(
loss, role_maker, user_defined_optimizer, user_defined_strategy)
opt = self.inner_opt
if not isinstance(opt, Momentum):
return
configs = self.user_defined_strategy.lars_configs
self.lars_opt = LarsMomentumOptimizer(
learning_rate=opt._learning_rate,
momentum=opt._momentum,
lars_coeff=configs['lars_coeff'],
lars_weight_decay=configs['lars_weight_decay'],
parameter_list=opt._parameter_list,
regularization=opt.regularization,
grad_clip=opt._grad_clip,
name=opt._name)
def _can_apply(self):
if self.user_defined_strategy.lars:
if not isinstance(self.inner_opt, Momentum):
logging.warn(
"lars need the inner optimizer to be Momentum optimizer.")
return False
return True
return False
def _disable_strategy(self, dist_strategy):
dist_strategy.lars = False
dist_strategy.lars_configs = {
'lars_coeff': 0.001,
'lars_weight_decay': 0.0005,
}
def backward(self,
loss,
startup_program=None,
parameter_list=None,
no_grad_set=None,
callbacks=None):
return self.lars_opt.backward(loss, startup_program, parameter_list,
no_grad_set, callbacks)
def minimize_impl(self,
loss,
startup_program=None,
parameter_list=None,
no_grad_set=None):
optimize_ops, params_grads = \
self.lars_opt.minimize(loss, startup_program,
parameter_list, no_grad_set)
return optimize_ops, params_grads
......@@ -36,6 +36,7 @@ list(APPEND MIXED_DIST_TEST_OPS test_fleet_graph_execution_meta_optimizer)
list(APPEND MIXED_DIST_TEST_OPS test_fleet_pipeline_meta_optimizer)
list(APPEND MIXED_DIST_TEST_OPS test_fleet_gradient_merge_meta_optimizer)
list(APPEND MIXED_DIST_TEST_OPS test_fleet_localsgd_meta_optimizer)
list(APPEND MIXED_DIST_TEST_OPS test_fleet_lars_meta_optimizer)
list(APPEND MIXED_DIST_TEST_OPS test_fleet_private_function)
list(APPEND MIXED_DIST_TEST_OPS test_fleet_graph_executor)
foreach(TEST_OP ${MIXED_DIST_TEST_OPS})
......@@ -375,6 +376,7 @@ if(WITH_DISTRIBUTE)
py_test_modules(test_fleet_private_function MODULES test_fleet_private_function ENVS ${dist_ENVS})
if(NOT WIN32)
py_test_modules(test_fleet_localsgd_meta_optimizer MODULES test_fleet_localsgd_meta_optimizer ENVS ${dist_ENVS})
py_test_modules(test_fleet_lars_meta_optimizer MODULES test_fleet_lars_meta_optimizer ENVS ${dist_ENVS})
endif(NOT WIN32)
endif(NOT APPLE)
if(WITH_DGC)
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle
import os
import paddle.fleet as fleet
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
class TestFleetLarsMetaOptimizer(unittest.TestCase):
def setUp(self):
os.environ["POD_IP"] = "127.0.0.1"
os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
os.environ["PADDLE_TRAINERS_NUM"] = "2"
os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = \
"127.0.0.1:36001,127.0.0.2:36001"
def net(self):
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
input_x = paddle.fluid.layers.data(
name="x", shape=[32], dtype='float32')
input_y = paddle.fluid.layers.data(name="y", shape=[1], dtype='int64')
fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh')
fc_2 = paddle.fluid.layers.fc(input=fc_1, size=256, act='tanh')
prediction = paddle.fluid.layers.fc(input=[fc_2], size=2, act='softmax')
cost = paddle.fluid.layers.cross_entropy(
input=prediction, label=input_y)
avg_cost = paddle.fluid.layers.mean(x=cost)
strategy = paddle.fleet.DistributedStrategy()
strategy.lars = True
strategy.lars_configs = {
"lars_coeff": 0.001,
"lars_weight_decay": 0.0005,
}
return avg_cost, strategy
def test_lars_optimizer(self):
avg_cost, strategy = self.net()
optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(avg_cost)
ops = [op.type for op in avg_cost.block.ops]
self.assertIn('lars_momentum', ops)
def test_lars_not_apply_with_adam(self):
avg_cost, strategy = self.net()
optimizer = paddle.optimizer.Adam(learning_rate=0.01)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(avg_cost)
ops = [op.type for op in avg_cost.block.ops]
self.assertNotIn('lars_momentum', ops)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册