提交 8b9e678d 编写于 作者: C caoying03

fix dropout and clipping setttings in layer helpers.

上级 eff17a68
...@@ -272,7 +272,7 @@ class ExtraLayerAttribute(object): ...@@ -272,7 +272,7 @@ class ExtraLayerAttribute(object):
for key in self.attr: for key in self.attr:
if not hasattr(self, 'can_%s' % key) or \ if not hasattr(self, 'can_%s' % key) or \
not getattr(self, 'can_%s' % key): not getattr(self, 'can_%s' % key):
raise NotImplementedError("Layer %s cannot support %s" % raise NotImplementedError("Layer %s does not support %s" %
(layer_name, key)) (layer_name, key))
@staticmethod @staticmethod
......
...@@ -865,7 +865,7 @@ def data_layer(name, size, height=None, width=None, layer_attr=None): ...@@ -865,7 +865,7 @@ def data_layer(name, size, height=None, width=None, layer_attr=None):
@wrap_name_default("embedding") @wrap_name_default("embedding")
@wrap_param_attr_default() @wrap_param_attr_default()
@layer_support(ERROR_CLIPPING) @layer_support(ERROR_CLIPPING, DROPOUT)
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None): def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
""" """
Define a embedding Layer. Define a embedding Layer.
...@@ -1320,7 +1320,7 @@ def pooling_layer(input, ...@@ -1320,7 +1320,7 @@ def pooling_layer(input,
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation()) @wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation()) @wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory") @wrap_name_default("lstmemory")
@layer_support(DROPOUT) @layer_support()
def lstmemory(input, def lstmemory(input,
name=None, name=None,
size=None, size=None,
...@@ -1429,7 +1429,7 @@ def lstmemory(input, ...@@ -1429,7 +1429,7 @@ def lstmemory(input,
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation()) @wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=["act"], act=TanhActivation()) @wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru") @wrap_name_default("gru")
@layer_support(DROPOUT) @layer_support()
def grumemory(input, def grumemory(input,
size=None, size=None,
name=None, name=None,
...@@ -1793,7 +1793,7 @@ def repeat_layer(input, ...@@ -1793,7 +1793,7 @@ def repeat_layer(input,
@wrap_name_default("seqreshape") @wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation()) @wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False) @wrap_bias_attr_default(has_bias=False)
@layer_support() @layer_support(ERROR_CLIPPING, DROPOUT)
def seq_reshape_layer(input, def seq_reshape_layer(input,
reshape_size, reshape_size,
act=None, act=None,
...@@ -2703,7 +2703,7 @@ def img_cmrnorm_layer(input, ...@@ -2703,7 +2703,7 @@ def img_cmrnorm_layer(input,
default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.)) default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
@wrap_act_default(act=ReluActivation()) @wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm") @wrap_name_default("batch_norm")
@layer_support(DROPOUT) @layer_support(DROPOUT, ERROR_CLIPPING)
def batch_norm_layer(input, def batch_norm_layer(input,
act=None, act=None,
name=None, name=None,
...@@ -2783,15 +2783,6 @@ def batch_norm_layer(input, ...@@ -2783,15 +2783,6 @@ def batch_norm_layer(input,
:return: LayerOutput object. :return: LayerOutput object.
:rtype: LayerOutput :rtype: LayerOutput
""" """
if not isinstance(act, ReluActivation):
logger.log(logging.WARN,
"%s is not recommend for batch normalization's activation, "
"maybe the relu is better" % act.name)
if not isinstance(input.activation, LinearActivation):
logger.log(logging.WARN,
"The activation should be inside batch normalization, the "
"previous layer's activation may be Linear")
if num_channels is None: if num_channels is None:
if input.num_filters is not None: if input.num_filters is not None:
...@@ -2861,7 +2852,7 @@ def sum_to_one_norm_layer(input, name=None, layer_attr=None): ...@@ -2861,7 +2852,7 @@ def sum_to_one_norm_layer(input, name=None, layer_attr=None):
@wrap_name_default("addto") @wrap_name_default("addto")
@wrap_act_default(act=LinearActivation()) @wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False) @wrap_bias_attr_default(has_bias=False)
@layer_support(DROPOUT) @layer_support(DROPOUT, ERROR_CLIPPING)
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None): def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
""" """
AddtoLayer. AddtoLayer.
...@@ -2940,7 +2931,7 @@ def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None): ...@@ -2940,7 +2931,7 @@ def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
@wrap_act_default(act=IdentityActivation()) @wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat") @wrap_name_default("concat")
@layer_support() @layer_support(DROPOUT, ERROR_CLIPPING)
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None): def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
""" """
Concat all input vector into one huge vector. Concat all input vector into one huge vector.
...@@ -3024,7 +3015,7 @@ def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None): ...@@ -3024,7 +3015,7 @@ def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
@wrap_name_default("seqconcat") @wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation()) @wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False) @wrap_bias_attr_default(has_bias=False)
@layer_support() @layer_support(DROPOUT, ERROR_CLIPPING)
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None, def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
bias_attr=None): bias_attr=None):
""" """
...@@ -3177,7 +3168,7 @@ def memory(name, ...@@ -3177,7 +3168,7 @@ def memory(name,
@wrap_act_default(param_names=['state_act'], act=TanhActivation()) @wrap_act_default(param_names=['state_act'], act=TanhActivation())
@wrap_act_default(act=TanhActivation()) @wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step') @wrap_name_default('lstm_step')
@layer_support(ERROR_CLIPPING, DROPOUT) @layer_support()
def lstm_step_layer(input, def lstm_step_layer(input,
state, state,
size=None, size=None,
...@@ -4480,7 +4471,7 @@ def tensor_layer(a, ...@@ -4480,7 +4471,7 @@ def tensor_layer(a,
@wrap_param_attr_default() @wrap_param_attr_default()
@wrap_bias_attr_default() @wrap_bias_attr_default()
@wrap_act_default() @wrap_act_default()
@layer_support() @layer_support(DROPOUT, ERROR_CLIPPING)
def selective_fc_layer(input, def selective_fc_layer(input,
size, size,
select=None, select=None,
...@@ -5974,7 +5965,7 @@ def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None): ...@@ -5974,7 +5965,7 @@ def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
""" """
The crop layer crops images by offset and shape. User can set crop shape by The crop layer crops images by offset and shape. User can set crop shape by
args 'shape' explicitly or by reference input layer. args 'shape' explicitly or by reference input layer.
The example usage is: The example usage is:
.. code-block:: python .. code-block:: python
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册