Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
8b170ffa
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8b170ffa
编写于
3月 03, 2021
作者:
S
sandyhouse
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update
上级
af17a6ee
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
118 addition
and
158 deletion
+118
-158
paddle/fluid/framework/device_worker.h
paddle/fluid/framework/device_worker.h
+12
-0
paddle/fluid/framework/distributed_strategy.proto
paddle/fluid/framework/distributed_strategy.proto
+1
-0
paddle/fluid/framework/pipeline_trainer.cc
paddle/fluid/framework/pipeline_trainer.cc
+2
-0
paddle/fluid/framework/section_worker.cc
paddle/fluid/framework/section_worker.cc
+103
-158
未找到文件。
paddle/fluid/framework/device_worker.h
浏览文件 @
8b170ffa
...
...
@@ -28,6 +28,7 @@ limitations under the License. */
#include <vector>
#include "paddle/fluid/framework/data_feed.h"
#include "paddle/fluid/framework/executor_gc_helper.h"
#include "paddle/fluid/framework/heter_service.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
...
...
@@ -656,6 +657,7 @@ class SectionWorker : public DeviceWorker {
void
SetMicrobatchNum
(
int
num
)
{
num_microbatches_
=
num
;
}
void
SetPipelineStageNum
(
int
num
)
{
num_pipeline_stages_
=
num
;
}
void
SetPipelineStage
(
int
stage
)
{
pipeline_stage_
=
stage
;
}
void
SetScheduleMode
(
int
mode
)
{
schedule_mode_
=
mode
;
}
void
SetMicrobatchScopes
(
const
std
::
vector
<
Scope
*>&
scope
)
{
microbatch_scopes_
=
scope
;
}
...
...
@@ -663,6 +665,15 @@ class SectionWorker : public DeviceWorker {
void
SetSkipVars
(
const
std
::
vector
<
std
::
string
>&
skip_vars
)
{
skip_vars_
=
skip_vars
;
}
void
RunBackward
(
int
micro_id
,
std
::
unique_ptr
<
GarbageCollector
>&
,
std
::
unordered_map
<
const
OperatorBase
*
,
std
::
vector
<
std
::
string
>>&
);
void
RunForward
(
int
micro_id
,
std
::
unique_ptr
<
GarbageCollector
>&
,
std
::
unordered_map
<
const
OperatorBase
*
,
std
::
vector
<
std
::
string
>>&
);
void
RunUpdate
(
std
::
unique_ptr
<
GarbageCollector
>&
,
std
::
unordered_map
<
const
OperatorBase
*
,
std
::
vector
<
std
::
string
>>&
);
protected:
int
section_id_
;
...
...
@@ -670,6 +681,7 @@ class SectionWorker : public DeviceWorker {
int
num_microbatches_
;
int
num_pipeline_stages_
;
int
pipeline_stage_
;
int
schedule_mode_
;
// 0 for GPipe and 1 for deepspeed
std
::
vector
<
Scope
*>
microbatch_scopes_
;
std
::
vector
<
std
::
string
>
skip_vars_
;
const
Scope
*
minibatch_scope_
;
...
...
paddle/fluid/framework/distributed_strategy.proto
浏览文件 @
8b170ffa
...
...
@@ -36,6 +36,7 @@ message ShardingConfig {
optional
int32
parallelism
=
5
[
default
=
1
];
optional
bool
use_pipeline
=
6
[
default
=
false
];
optional
int32
acc_steps
=
7
[
default
=
1
];
optional
int32
schedule_mode
=
8
[
default
=
0
];
}
message
AMPConfig
{
...
...
paddle/fluid/framework/pipeline_trainer.cc
浏览文件 @
8b170ffa
...
...
@@ -27,6 +27,7 @@ void PipelineTrainer::Initialize(const TrainerDesc& trainer_desc,
const
auto
&
section_params
=
trainer_desc
.
section_param
();
const
auto
num_pipeline_stages_
=
section_params
.
num_pipeline_stages
();
const
auto
pipeline_stage_
=
section_params
.
pipeline_stage
();
const
auto
schedule_mode_
=
section_params
.
schedule_mode
();
num_microbatches_
=
section_params
.
num_microbatches
();
VLOG
(
3
)
<<
"Number of microbatches per minibatch: "
<<
num_microbatches_
;
trainer_desc_
=
trainer_desc
;
...
...
@@ -44,6 +45,7 @@ void PipelineTrainer::Initialize(const TrainerDesc& trainer_desc,
this_worker
->
SetMicrobatchNum
(
num_microbatches_
);
this_worker
->
SetPipelineStageNum
(
num_pipeline_stages_
);
this_worker
->
SetPipelineStage
(
pipeline_stage_
);
this_worker
->
SetScheduleMode
(
schedule_mode_
);
}
void
PipelineTrainer
::
InitOtherEnv
(
const
ProgramDesc
&
main_program
)
{
...
...
paddle/fluid/framework/section_worker.cc
浏览文件 @
8b170ffa
...
...
@@ -22,15 +22,79 @@ class TrainerDesc;
uint64_t
SectionWorker
::
batch_id_
(
0
);
void
SectionWorker
::
Initialize
(
const
TrainerDesc
&
desc
)
{
void
SectionWorker
::
Initialize
(
const
TrainerDesc
&
desc
)
{
dev_ctx_
=
platform
::
DeviceContextPool
::
Instance
().
Get
(
place_
);
program_
.
reset
(
new
ProgramDesc
(
desc
.
section_param
().
section_config
().
program_desc
()));
for
(
auto
&
op_desc
:
program_
->
Block
(
0
).
AllOps
())
{
for
(
auto
&
op_desc
:
program_
->
Block
(
0
).
AllOps
())
{
ops_
.
push_back
(
OpRegistry
::
CreateOp
(
*
op_desc
));
}
}
void
SectionWorker
::
RunForward
(
int
micro_id
,
std
::
unique_ptr
<
GarbageCollector
>
&
gc
,
std
::
unordered_map
<
const
OperatorBase
*
,
std
::
vector
<
std
::
string
>>
&
unused_vars_
)
{
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
// We run op with op_role = kLRSched only for the first microbatch
// to avoid increasing the @LR_DECAY_STEP@ multiple times.
bool
run_first_mbatch
=
op_role
==
static_cast
<
int
>
(
OpRole
::
kForward
)
||
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kForward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
))
||
op_role
==
static_cast
<
int
>
(
OpRole
::
kLRSched
);
bool
run_others
=
op_role
==
static_cast
<
int
>
(
OpRole
::
kForward
)
||
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kForward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
));
if
((
micro_id
==
0
&&
run_first_mbatch
)
||
(
micro_id
!=
0
&&
run_others
))
{
VLOG
(
3
)
<<
"Forward: running op "
<<
op
->
Type
()
<<
" for micro-batch "
<<
micro_id
;
op
->
Run
(
*
microbatch_scopes_
[
micro_id
],
place_
);
if
(
gc
)
{
DeleteUnusedTensors
(
*
microbatch_scopes_
[
micro_id
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
}
}
}
void
SectionWorker
::
RunBackward
(
int
micro_id
,
std
::
unique_ptr
<
GarbageCollector
>
&
gc
,
std
::
unordered_map
<
const
OperatorBase
*
,
std
::
vector
<
std
::
string
>>
&
unused_vars_
)
{
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
if
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kBackward
)
||
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kBackward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
)))
{
VLOG
(
3
)
<<
"Backward: running op "
<<
op
->
Type
()
<<
" for micro-batch "
<<
micro_id
;
op
->
Run
(
*
microbatch_scopes_
[
micro_id
],
place_
);
if
(
gc
)
{
DeleteUnusedTensors
(
*
microbatch_scopes_
[
micro_id
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
}
}
}
void
SectionWorker
::
RunUpdate
(
std
::
unique_ptr
<
GarbageCollector
>
&
gc
,
std
::
unordered_map
<
const
OperatorBase
*
,
std
::
vector
<
std
::
string
>>
&
unused_vars_
)
{
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
if
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kOptimize
))
{
VLOG
(
3
)
<<
"Update: running op "
<<
op
->
Type
();
op
->
Run
(
*
microbatch_scopes_
[
num_microbatches_
-
1
],
place_
);
if
(
gc
)
{
DeleteUnusedTensors
(
*
microbatch_scopes_
[
num_microbatches_
-
1
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
}
}
}
void
SectionWorker
::
TrainFiles
()
{
VLOG
(
5
)
<<
"begin section_worker TrainFiles"
;
...
...
@@ -48,168 +112,49 @@ void SectionWorker::TrainFiles() {
#endif
}
auto
startup_steps
=
num_pipeline_stages_
-
pipeline_stage_
-
1
;
VLOG
(
3
)
<<
"startup_steps:"
<<
startup_steps
<<
", num_stages: "
<<
num_pipeline_stages_
<<
", stage:"
<<
pipeline_stage_
;
if
(
startup_steps
>
num_microbatches_
)
{
startup_steps
=
num_microbatches_
;
}
int
fw_step
=
0
;
int
bw_step
=
0
;
// startup phase
while
(
fw_step
<
startup_steps
)
{
VLOG
(
3
)
<<
"to run forward batch:"
<<
fw_step
;
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
// We run op with op_role = kLRSched only for the first microbatch
// to avoid increasing the @LR_DECAY_STEP@ multiple times.
bool
run_first_mbatch
=
op_role
==
static_cast
<
int
>
(
OpRole
::
kForward
)
||
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kForward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
))
||
op_role
==
static_cast
<
int
>
(
OpRole
::
kLRSched
);
bool
run_others
=
op_role
==
static_cast
<
int
>
(
OpRole
::
kForward
)
||
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kForward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
));
if
((
fw_step
==
0
&&
run_first_mbatch
)
||
(
fw_step
!=
0
&&
run_others
))
{
VLOG
(
3
)
<<
"Forward: running op "
<<
op
->
Type
()
<<
" for micro-batch "
<<
fw_step
;
op
->
Run
(
*
microbatch_scopes_
[
fw_step
],
place_
);
if
(
gc
)
{
DeleteUnusedTensors
(
*
microbatch_scopes_
[
fw_step
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
}
if
(
schedule_mode_
==
0
)
{
// Gpipe scheduler which runs all forwards first, then backwards, then
// update
// step1: run forward
for
(
int
i
=
0
;
i
<
num_microbatches_
;
++
i
)
{
RunForward
(
i
,
gc
,
unused_vars_
);
}
fw_step
+=
1
;
}
// 1f1b phase
while
(
fw_step
<
num_microbatches_
)
{
VLOG
(
3
)
<<
"to run forward batch:"
<<
fw_step
;
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
// We run op with op_role = kLRSched only for the first microbatch
// to avoid increasing the @LR_DECAY_STEP@ multiple times.
bool
run_first_mbatch
=
op_role
==
static_cast
<
int
>
(
OpRole
::
kForward
)
||
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kForward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
))
||
op_role
==
static_cast
<
int
>
(
OpRole
::
kLRSched
);
bool
run_others
=
op_role
==
static_cast
<
int
>
(
OpRole
::
kForward
)
||
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kForward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
));
if
((
fw_step
==
0
&&
run_first_mbatch
)
||
(
fw_step
!=
0
&&
run_others
))
{
VLOG
(
3
)
<<
"Forward: running op "
<<
op
->
Type
()
<<
" for micro-batch "
<<
fw_step
;
op
->
Run
(
*
microbatch_scopes_
[
fw_step
],
place_
);
if
(
gc
)
{
DeleteUnusedTensors
(
*
microbatch_scopes_
[
fw_step
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
}
// step2: run backward
for
(
int
i
=
0
;
i
<
num_microbatches_
;
++
i
)
{
RunBackward
(
i
,
gc
,
unused_vars_
);
}
fw_step
+=
1
;
VLOG
(
3
)
<<
"to run backward batch:"
<<
bw_step
;
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
if
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kBackward
)
||
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kBackward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
)))
{
VLOG
(
3
)
<<
"Backward: running op "
<<
op
->
Type
()
<<
" for micro-batch "
<<
bw_step
;
op
->
Run
(
*
microbatch_scopes_
[
bw_step
],
place_
);
if
(
gc
)
{
DeleteUnusedTensors
(
*
microbatch_scopes_
[
bw_step
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
}
// step2: run update
RunUpdate
(
gc
,
unused_vars_
);
}
else
{
// 1F1B scheduler
auto
startup_steps
=
num_pipeline_stages_
-
pipeline_stage_
-
1
;
VLOG
(
3
)
<<
"startup_steps:"
<<
startup_steps
<<
", num_stages: "
<<
num_pipeline_stages_
<<
", stage:"
<<
pipeline_stage_
;
if
(
startup_steps
>
num_microbatches_
)
{
startup_steps
=
num_microbatches_
;
}
bw_step
+=
1
;
}
// backward phase
while
(
bw_step
<
num_microbatches_
)
{
VLOG
(
3
)
<<
"to run backward batch:"
<<
bw_step
;
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
if
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kBackward
)
||
op_role
==
(
static_cast
<
int
>
(
OpRole
::
kBackward
)
|
static_cast
<
int
>
(
OpRole
::
kLoss
)))
{
VLOG
(
3
)
<<
"Backward: running op "
<<
op
->
Type
()
<<
" for micro-batch "
<<
bw_step
;
op
->
Run
(
*
microbatch_scopes_
[
bw_step
],
place_
);
if
(
gc
)
{
DeleteUnusedTensors
(
*
microbatch_scopes_
[
bw_step
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
}
int
fw_step
=
0
;
int
bw_step
=
0
;
// startup phase
while
(
fw_step
<
startup_steps
)
{
RunForward
(
fw_step
,
gc
,
unused_vars_
);
fw_step
+=
1
;
}
bw_step
+=
1
;
}
// for (int i = 0; i < num_microbatches_; ++i) {
// for (auto& op : ops_) {
// int op_role = op->Attr<int>(std::string("op_role"));
// // We run op with op_role = kLRSched only for the first microbatch
// // to avoid increasing the @LR_DECAY_STEP@ multiple times.
// bool run_first_mbatch = op_role == static_cast<int>(OpRole::kForward)
// ||
// op_role == (static_cast<int>(OpRole::kForward)
// |
// static_cast<int>(OpRole::kLoss)) ||
// op_role == static_cast<int>(OpRole::kLRSched);
// bool run_others = op_role == static_cast<int>(OpRole::kForward) ||
// op_role == (static_cast<int>(OpRole::kForward) |
// static_cast<int>(OpRole::kLoss));
// if ((i == 0 && run_first_mbatch) || (i != 0 && run_others)) {
// VLOG(3) << "Forward: running op " << op->Type() << " for micro-batch
// "
// << i;
// op->Run(*microbatch_scopes_[i], place_);
// if (gc) {
// DeleteUnusedTensors(*microbatch_scopes_[i], op.get(), unused_vars_,
// gc.get());
// }
// }
// }
// cudaDeviceSynchronize();
// }
// // backward pass
// for (int i = 0; i < num_microbatches_; ++i) {
// for (auto& op : ops_) {
// int op_role = op->Attr<int>(std::string("op_role"));
// if (op_role == static_cast<int>(OpRole::kBackward) ||
// op_role == (static_cast<int>(OpRole::kBackward) |
// static_cast<int>(OpRole::kLoss))) {
// VLOG(3) << "Backward: running op " << op->Type() << " for micro-batch
// "
// << i;
// op->Run(*microbatch_scopes_[i], place_);
// if (gc) {
// DeleteUnusedTensors(*microbatch_scopes_[i], op.get(), unused_vars_,
// gc.get());
// }
// }
// }
// cudaDeviceSynchronize();
// }
// update pass
for
(
auto
&
op
:
ops_
)
{
int
op_role
=
op
->
Attr
<
int
>
(
std
::
string
(
"op_role"
));
if
(
op_role
==
static_cast
<
int
>
(
OpRole
::
kOptimize
))
{
VLOG
(
3
)
<<
"Update: running op "
<<
op
->
Type
();
op
->
Run
(
*
microbatch_scopes_
[
num_microbatches_
-
1
],
place_
);
if
(
gc
)
{
// for (int i = 0; i < num_microbatches_; ++i) {
// DeleteUnusedTensors(*microbatch_scopes_[i],
// op.get(), unused_vars_, gc.get());
//}
DeleteUnusedTensors
(
*
microbatch_scopes_
[
num_microbatches_
-
1
],
op
.
get
(),
unused_vars_
,
gc
.
get
());
}
// 1f1b phase
while
(
fw_step
<
num_microbatches_
)
{
RunForward
(
fw_step
,
gc
,
unused_vars_
);
fw_step
+=
1
;
RunBackward
(
bw_step
,
gc
,
unused_vars_
);
bw_step
+=
1
;
}
// backward phase
while
(
bw_step
<
num_microbatches_
)
{
RunBackward
(
bw_step
,
gc
,
unused_vars_
);
bw_step
+=
1
;
}
RunUpdate
(
gc
,
unused_vars_
);
}
dev_ctx_
->
Wait
();
++
batch_id_
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录