Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
87648f8e
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
87648f8e
编写于
11月 27, 2018
作者:
J
JiabinYang
浏览文件
操作
浏览文件
下载
差异文件
merge develop, test=develop
上级
c3c3c0b3
db9284ec
变更
25
隐藏空白更改
内联
并排
Showing
25 changed file
with
665 addition
and
173 deletion
+665
-173
cmake/inference_lib.cmake
cmake/inference_lib.cmake
+1
-2
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-1
paddle/fluid/framework/details/CMakeLists.txt
paddle/fluid/framework/details/CMakeLists.txt
+2
-1
paddle/fluid/framework/details/all_reduce_deps_pass.cc
paddle/fluid/framework/details/all_reduce_deps_pass.cc
+125
-0
paddle/fluid/framework/details/all_reduce_deps_pass.h
paddle/fluid/framework/details/all_reduce_deps_pass.h
+33
-0
paddle/fluid/framework/details/build_strategy.cc
paddle/fluid/framework/details/build_strategy.cc
+21
-0
paddle/fluid/framework/details/build_strategy.h
paddle/fluid/framework/details/build_strategy.h
+1
-0
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+5
-5
paddle/fluid/inference/analysis/analyzer_tester.cc
paddle/fluid/inference/analysis/analyzer_tester.cc
+2
-1
paddle/fluid/memory/allocation/best_fit_allocator_test.cc
paddle/fluid/memory/allocation/best_fit_allocator_test.cc
+4
-4
paddle/fluid/memory/allocation/best_fit_allocator_test.cu
paddle/fluid/memory/allocation/best_fit_allocator_test.cu
+4
-4
paddle/fluid/memory/detail/system_allocator.cc
paddle/fluid/memory/detail/system_allocator.cc
+4
-0
paddle/fluid/operators/dropout_op_test.cc
paddle/fluid/operators/dropout_op_test.cc
+2
-0
paddle/fluid/operators/math/sampler.cc
paddle/fluid/operators/math/sampler.cc
+9
-54
paddle/fluid/operators/math/sampler.h
paddle/fluid/operators/math/sampler.h
+9
-4
paddle/fluid/operators/math/sequence_pooling.cu
paddle/fluid/operators/math/sequence_pooling.cu
+1
-2
paddle/fluid/operators/nce_op.cc
paddle/fluid/operators/nce_op.cc
+58
-10
paddle/fluid/operators/nce_op.h
paddle/fluid/operators/nce_op.h
+139
-43
paddle/fluid/platform/gpu_info.cc
paddle/fluid/platform/gpu_info.cc
+2
-2
paddle/fluid/pybind/protobuf.cc
paddle/fluid/pybind/protobuf.cc
+9
-1
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+6
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+112
-25
python/paddle/fluid/parallel_executor.py
python/paddle/fluid/parallel_executor.py
+2
-7
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+1
-1
python/paddle/fluid/tests/unittests/test_nce.py
python/paddle/fluid/tests/unittests/test_nce.py
+112
-6
未找到文件。
cmake/inference_lib.cmake
浏览文件 @
87648f8e
...
...
@@ -186,8 +186,7 @@ set(module "inference")
copy
(
inference_lib DEPS
${
inference_deps
}
SRCS
${
src_dir
}
/
${
module
}
/*.h
${
PADDLE_BINARY_DIR
}
/paddle/fluid/inference/libpaddle_fluid.*
${
src_dir
}
/
${
module
}
/api/paddle_*.h
${
PADDLE_BINARY_DIR
}
/paddle/fluid/inference/api/paddle_inference_pass.h
DSTS
${
dst_dir
}
/
${
module
}
${
dst_dir
}
/
${
module
}
${
dst_dir
}
/
${
module
}
${
dst_dir
}
/
${
module
}
DSTS
${
dst_dir
}
/
${
module
}
${
dst_dir
}
/
${
module
}
${
dst_dir
}
/
${
module
}
)
set
(
module
"platform"
)
...
...
paddle/fluid/API.spec
浏览文件 @
87648f8e
...
...
@@ -97,8 +97,8 @@ paddle.fluid.layers.warpctc ArgSpec(args=['input', 'label', 'blank', 'norm_by_ti
paddle.fluid.layers.sequence_reshape ArgSpec(args=['input', 'new_dim'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.transpose ArgSpec(args=['x', 'perm', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.im2sequence ArgSpec(args=['input', 'filter_size', 'stride', 'padding', 'input_image_size', 'out_stride', 'name'], varargs=None, keywords=None, defaults=(1, 1, 0, None, 1, None))
paddle.fluid.layers.nce ArgSpec(args=['input', 'label', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples', 'name', 'sampler', 'custom_dist', 'seed'], varargs=None, keywords=None, defaults=(None, None, None, None, None, 'uniform', None, 0))
paddle.fluid.layers.hsigmoid ArgSpec(args=['input', 'label', 'num_classes', 'param_attr', 'bias_attr', 'name', 'non_leaf_num', 'ptable', 'pcode', 'is_costum', 'is_sparse'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None, False, False))
paddle.fluid.layers.nce ArgSpec(args=['input', 'label', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples', 'name', 'sampler', 'custom_dist', 'seed', 'is_sparse'], varargs=None, keywords=None, defaults=(None, None, None, None, None, 'uniform', None, 0, False))
paddle.fluid.layers.beam_search ArgSpec(args=['pre_ids', 'pre_scores', 'ids', 'scores', 'beam_size', 'end_id', 'level', 'name'], varargs=None, keywords=None, defaults=(0, None))
paddle.fluid.layers.row_conv ArgSpec(args=['input', 'future_context_size', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.multiplex ArgSpec(args=['inputs', 'index'], varargs=None, keywords=None, defaults=None)
...
...
paddle/fluid/framework/details/CMakeLists.txt
浏览文件 @
87648f8e
...
...
@@ -39,11 +39,12 @@ if (WITH_GPU)
endif
()
cc_library
(
sequential_execution_pass SRCS sequential_execution_pass.cc DEPS graph graph_helper pass
)
cc_library
(
all_reduce_deps_pass SRCS all_reduce_deps_pass.cc DEPS graph graph_helper pass
)
cc_library
(
multi_devices_graph_pass SRCS multi_devices_graph_pass.cc DEPS multi_devices_helper computation_op_handle
scale_loss_grad_op_handle rpc_op_handle all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle fused_broadcast_op_handle
)
set
(
SSA_GRAPH_EXECUTOR_DEPS graph framework_proto sequential_execution_pass modify_op_lock_and_record_event_pass
)
set
(
SSA_GRAPH_EXECUTOR_DEPS graph framework_proto sequential_execution_pass modify_op_lock_and_record_event_pass
all_reduce_deps_pass
)
if
(
WITH_GPU
)
list
(
APPEND SSA_GRAPH_EXECUTOR_DEPS reference_count_pass
)
endif
()
...
...
paddle/fluid/framework/details/all_reduce_deps_pass.cc
0 → 100644
浏览文件 @
87648f8e
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/details/all_reduce_deps_pass.h"
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/details/op_graph_view.h"
#include "paddle/fluid/framework/details/var_handle.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/op_proto_maker.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
static
constexpr
char
kAllOpDescs
[]
=
"all_op_descs"
;
VarHandle
*
GetValidInput
(
const
OpHandleBase
*
a
)
{
for
(
auto
p
:
a
->
Inputs
())
{
VarHandle
*
b
=
dynamic_cast
<
VarHandle
*>
(
p
);
if
(
b
)
{
return
b
;
}
}
return
nullptr
;
}
std
::
unique_ptr
<
ir
::
Graph
>
AllReduceDepsPass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
auto
graph_ops
=
ir
::
FilterByNodeWrapper
<
OpHandleBase
>
(
*
graph
);
// get vars order
int
order
=
0
;
std
::
unordered_map
<
std
::
string
,
int
>
vars
;
// TODO(gongwb): use graph topology sort to find the order of operators.
// Note that must assert topology sort is stable
auto
&
ops
=
Get
<
const
std
::
vector
<
OpDesc
*>>
(
kAllOpDescs
);
for
(
auto
*
op_desc
:
ops
)
{
auto
outputs
=
op_desc
->
Outputs
();
for
(
auto
&
o_it
:
outputs
)
{
for
(
auto
&
v
:
o_it
.
second
)
{
// values
vars
[
v
]
=
order
;
}
}
order
++
;
}
std
::
vector
<
OpHandleBase
*>
dist_ops
;
// get allreduce ops.
for
(
auto
&
op
:
graph_ops
)
{
// FIXME(gongwb):add broad cast.
if
(
op
->
Name
()
==
"all_reduce"
||
op
->
Name
()
==
"reduce"
)
{
dist_ops
.
push_back
(
op
);
}
}
VLOG
(
10
)
<<
"dist_ops size:"
<<
dist_ops
.
size
()
<<
std
::
endl
;
std
::
sort
(
dist_ops
.
begin
(),
dist_ops
.
end
(),
[
&
](
OpHandleBase
*
op1
,
OpHandleBase
*
op2
)
{
VarHandle
*
i0
=
dynamic_cast
<
VarHandle
*>
(
GetValidInput
(
op1
));
VarHandle
*
i1
=
dynamic_cast
<
VarHandle
*>
(
GetValidInput
(
op2
));
PADDLE_ENFORCE
(
i0
!=
nullptr
&&
i1
!=
nullptr
,
"%s convert to %s error"
,
op1
->
DebugString
(),
op2
->
DebugString
());
auto
l_it
=
vars
.
find
(
i0
->
name_
);
auto
r_it
=
vars
.
find
(
i1
->
name_
);
if
(
l_it
->
second
<
r_it
->
second
)
return
true
;
if
(
l_it
->
second
==
r_it
->
second
)
{
return
i0
->
name_
<
i1
->
name_
;
}
return
false
;
});
// add dependency.
auto
&
sorted_ops
=
dist_ops
;
for
(
size_t
i
=
1
;
i
<
sorted_ops
.
size
();
++
i
)
{
auto
*
dep_var
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
auto
*
pre_op
=
sorted_ops
[
i
-
1
];
auto
*
op
=
sorted_ops
[
i
];
pre_op
->
AddOutput
(
dep_var
);
op
->
AddInput
(
dep_var
);
graph
->
Get
<
GraphDepVars
>
(
kGraphDepVars
).
emplace
(
dep_var
);
VLOG
(
10
)
<<
"add all_reduce sequential dependencies between "
<<
pre_op
<<
" and "
<<
op
;
VLOG
(
10
)
<<
"pre_op:"
<<
pre_op
->
DebugString
()
<<
", op:"
<<
op
->
DebugString
();
}
return
graph
;
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
all_reduce_deps_pass
,
paddle
::
framework
::
details
::
AllReduceDepsPass
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kAllOpDescs
);
paddle/fluid/framework/details/all_reduce_deps_pass.h
0 → 100644
浏览文件 @
87648f8e
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
// TODO(gongwb): overlap allreduce with backward computation.
class
AllReduceDepsPass
:
public
ir
::
Pass
{
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
override
;
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/build_strategy.cc
浏览文件 @
87648f8e
...
...
@@ -16,6 +16,7 @@ limitations under the License. */
#include "paddle/fluid/framework/details/multi_devices_graph_check_pass.h"
#include "paddle/fluid/framework/details/multi_devices_graph_print_pass.h"
#include "paddle/fluid/framework/details/reduce_op_handle.h"
#include "paddle/fluid/framework/details/sequential_execution_pass.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
...
...
@@ -24,6 +25,10 @@ namespace paddle {
namespace
framework
{
namespace
details
{
static
inline
bool
SeqOnlyAllReduceOps
(
const
BuildStrategy
&
strategy
)
{
return
(
!
strategy
.
enable_sequential_execution_
&&
strategy
.
num_trainers_
>
1
);
}
class
ParallelExecutorPassBuilder
:
public
ir
::
PassBuilder
{
public:
explicit
ParallelExecutorPassBuilder
(
const
BuildStrategy
&
strategy
)
...
...
@@ -70,6 +75,10 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
// Verify that the graph is correct for multi-device executor.
AppendPass
(
"multi_devices_check_pass"
);
if
(
SeqOnlyAllReduceOps
(
strategy
))
{
AppendPass
(
"all_reduce_deps_pass"
);
}
if
(
strategy_
.
remove_unnecessary_lock_
)
{
AppendPass
(
"modify_op_lock_and_record_event_pass"
);
}
...
...
@@ -124,6 +133,17 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
pass
->
SetNotOwned
<
platform
::
NCCLContextMap
>
(
"nccl_ctxs"
,
nctx
);
#endif
}
else
if
(
pass
->
Type
()
==
"sequential_execution_pass"
)
{
VLOG
(
1
)
<<
"set enable_sequential_execution:"
<<
enable_sequential_execution_
;
pass
->
Erase
(
kAllOpDescs
);
pass
->
Set
<
const
std
::
vector
<
OpDesc
*>>
(
kAllOpDescs
,
new
std
::
vector
<
OpDesc
*>
(
main_program
.
Block
(
0
).
AllOps
()));
}
else
if
(
pass
->
Type
()
==
"all_reduce_deps_pass"
)
{
VLOG
(
1
)
<<
"SeqOnlyAllReduceOps:"
<<
SeqOnlyAllReduceOps
(
*
this
)
<<
", num_trainers:"
<<
num_trainers_
;
pass
->
Erase
(
kAllOpDescs
);
pass
->
Set
<
const
std
::
vector
<
OpDesc
*>>
(
kAllOpDescs
,
...
...
@@ -144,4 +164,5 @@ USE_PASS(multi_devices_pass);
USE_PASS
(
multi_devices_check_pass
);
USE_PASS
(
multi_devices_print_pass
);
USE_PASS
(
sequential_execution_pass
);
USE_PASS
(
all_reduce_deps_pass
);
USE_PASS
(
modify_op_lock_and_record_event_pass
);
paddle/fluid/framework/details/build_strategy.h
浏览文件 @
87648f8e
...
...
@@ -73,6 +73,7 @@ struct BuildStrategy {
bool
fuse_broadcast_op_
{
false
};
int
num_trainers_
{
1
};
bool
remove_unnecessary_lock_
{
false
};
// NOTE:
...
...
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
87648f8e
...
...
@@ -20,7 +20,7 @@ limitations under the License. */
#include "paddle/fluid/framework/ir/graph.h"
#if
def PADDLE_WITH_CUDA
#if
defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
#include "paddle/fluid/platform/nccl_helper.h"
#endif
...
...
@@ -54,7 +54,7 @@ class ParallelExecutorPrivate {
Scope
*
global_scope_
;
// not owned
std
::
unique_ptr
<
details
::
SSAGraphExecutor
>
executor_
;
#if
def PADDLE_WITH_CUDA
#if
defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
std
::
unique_ptr
<
platform
::
NCCLContextMap
>
nccl_ctxs_
;
#endif
bool
own_local_scope_
;
...
...
@@ -104,7 +104,7 @@ ParallelExecutor::ParallelExecutor(
if
(
member_
->
use_cuda_
)
{
// Bcast Parameters to all GPUs
#if
def PADDLE_WITH_CUDA
#if
defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
auto
*
nccl_id_var
=
scope
->
FindVar
(
NCCL_ID_VARNAME
);
ncclUniqueId
*
nccl_id
=
nullptr
;
if
(
nccl_id_var
!=
nullptr
)
{
...
...
@@ -124,7 +124,7 @@ ParallelExecutor::ParallelExecutor(
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
#if
def PADDLE_WITH_CUDA
#if
defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
std
::
unique_ptr
<
ir
::
Graph
>
graph
=
build_strategy
.
Apply
(
main_program
,
member_
->
places_
,
loss_var_name
,
params
,
member_
->
local_scopes_
,
member_
->
use_cuda_
,
member_
->
nccl_ctxs_
.
get
());
...
...
@@ -213,7 +213,7 @@ void ParallelExecutor::BCastParamsToDevices(
}
auto
&
dims
=
main_tensor
.
dims
();
if
(
paddle
::
platform
::
is_gpu_place
(
main_tensor
.
place
()))
{
#if
def PADDLE_WITH_CUDA
#if
defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
std
::
vector
<
void
*>
buffers
;
size_t
numel
=
main_tensor
.
numel
();
ncclDataType_t
data_type
=
platform
::
ToNCCLDataType
(
main_tensor
.
type
());
...
...
paddle/fluid/inference/analysis/analyzer_tester.cc
浏览文件 @
87648f8e
...
...
@@ -76,7 +76,8 @@ void TestWord2vecPrediction(const std::string& model_path) {
0.000932706
};
const
size_t
num_elements
=
outputs
.
front
().
data
.
length
()
/
sizeof
(
float
);
// The outputs' buffers are in CPU memory.
for
(
size_t
i
=
0
;
i
<
std
::
min
((
size_t
)
5UL
,
num_elements
);
i
++
)
{
for
(
size_t
i
=
0
;
i
<
std
::
min
(
static_cast
<
size_t
>
(
5UL
),
num_elements
);
i
++
)
{
LOG
(
INFO
)
<<
"data: "
<<
static_cast
<
float
*>
(
outputs
.
front
().
data
.
data
())[
i
];
PADDLE_ENFORCE
(
static_cast
<
float
*>
(
outputs
.
front
().
data
.
data
())[
i
],
...
...
paddle/fluid/memory/allocation/best_fit_allocator_test.cc
浏览文件 @
87648f8e
...
...
@@ -99,9 +99,8 @@ TEST(BestFitAllocator, test_concurrent_cpu_allocation) {
LockedAllocator
locked_allocator
(
std
::
move
(
best_fit_allocator
));
auto
th_main
=
[
&
]
{
std
::
random_device
dev
;
std
::
default_random_engine
engine
(
dev
());
auto
th_main
=
[
&
](
std
::
random_device
::
result_type
seed
)
{
std
::
default_random_engine
engine
(
seed
);
std
::
uniform_int_distribution
<
size_t
>
dist
(
1U
,
1024U
);
for
(
size_t
i
=
0
;
i
<
128
;
++
i
)
{
...
...
@@ -125,7 +124,8 @@ TEST(BestFitAllocator, test_concurrent_cpu_allocation) {
{
std
::
vector
<
std
::
thread
>
threads
;
for
(
size_t
i
=
0
;
i
<
1024
;
++
i
)
{
threads
.
emplace_back
(
th_main
);
std
::
random_device
dev
;
threads
.
emplace_back
(
th_main
,
dev
());
}
for
(
auto
&
th
:
threads
)
{
th
.
join
();
...
...
paddle/fluid/memory/allocation/best_fit_allocator_test.cu
浏览文件 @
87648f8e
...
...
@@ -41,9 +41,8 @@ TEST(BestFitAllocator, concurrent_cuda) {
LockedAllocator
concurrent_allocator
(
std
::
unique_ptr
<
Allocator
>
(
new
BestFitAllocator
(
cuda_allocation
.
get
())));
auto
th_main
=
[
&
]
{
std
::
random_device
dev
;
std
::
default_random_engine
engine
(
dev
());
auto
th_main
=
[
&
](
std
::
random_device
::
result_type
seed
)
{
std
::
default_random_engine
engine
(
seed
);
std
::
uniform_int_distribution
<
size_t
>
dist
(
1U
,
1024U
);
platform
::
CUDAPlace
gpu
(
0
);
platform
::
CUDADeviceContext
dev_ctx
(
gpu
);
...
...
@@ -75,7 +74,8 @@ TEST(BestFitAllocator, concurrent_cuda) {
{
std
::
vector
<
std
::
thread
>
threads
;
for
(
size_t
i
=
0
;
i
<
1024
;
++
i
)
{
threads
.
emplace_back
(
th_main
);
std
::
random_device
dev
;
threads
.
emplace_back
(
th_main
,
dev
());
}
for
(
auto
&
th
:
threads
)
{
th
.
join
();
...
...
paddle/fluid/memory/detail/system_allocator.cc
浏览文件 @
87648f8e
...
...
@@ -86,7 +86,11 @@ void CPUAllocator::Free(void* p, size_t size, size_t index) {
munlock
(
p
,
size
);
#endif
}
#ifdef _WIN32
_aligned_free
(
p
);
#else
free
(
p
);
#endif
}
bool
CPUAllocator
::
UseGpu
()
const
{
return
false
;
}
...
...
paddle/fluid/operators/dropout_op_test.cc
浏览文件 @
87648f8e
...
...
@@ -12,7 +12,9 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef _WIN32
#include <unistd.h>
#endif
#include <string>
#include <thread> // NOLINT
...
...
paddle/fluid/operators/math/sampler.cc
浏览文件 @
87648f8e
...
...
@@ -60,75 +60,30 @@ float LogUniformSampler::Probability(int64_t value) const {
return
(
log
((
value
+
2.0
)
/
(
value
+
1.0
)))
/
log_range_
;
}
CustomSampler
::
CustomSampler
(
int64_t
range
,
const
float
*
probabilities
,
CustomSampler
::
CustomSampler
(
int64_t
range
,
const
float
*
probabilities
,
const
int
*
alias
,
const
float
*
alias_probabilities
,
unsigned
int
seed
)
:
Sampler
(
range
,
seed
)
{
random_engine_
=
std
::
make_shared
<
std
::
mt19937
_64
>
(
seed_
);
random_engine_
=
std
::
make_shared
<
std
::
mt19937
>
(
seed_
);
real_dist_
=
std
::
make_shared
<
std
::
uniform_real_distribution
<>>
(
0
,
1
);
int_dist_
=
std
::
make_shared
<
std
::
uniform_int_distribution
<>>
(
0
,
range
);
alias_probs_
=
std
::
make_shared
<
std
::
vector
<
float
>>
(
range
+
1
);
alias_
=
std
::
make_shared
<
std
::
vector
<
int64_t
>>
(
range
+
1
);
probs_
=
std
::
make_shared
<
std
::
vector
<
float
>>
(
range
+
1
);
std
::
queue
<
std
::
pair
<
int64_t
,
float
>>
bigs
;
std
::
queue
<
std
::
pair
<
int64_t
,
float
>>
littles
;
for
(
int64_t
i
=
0
;
i
<=
range
;
++
i
)
{
(
*
probs_
)[
i
]
=
probabilities
[
i
];
float
normal_prob
=
probabilities
[
i
]
*
(
range
+
1
);
if
(
normal_prob
-
1.0
>
1e-4
)
{
bigs
.
emplace
(
i
,
normal_prob
);
}
else
if
(
1.0
-
normal_prob
>
1e-4
)
{
littles
.
emplace
(
i
,
normal_prob
);
}
else
{
(
*
alias_probs_
)[
i
]
=
normal_prob
;
(
*
alias_
)[
i
]
=
-
1
;
}
}
while
((
!
littles
.
empty
())
&&
(
!
bigs
.
empty
()))
{
auto
big
=
bigs
.
front
();
auto
little
=
littles
.
front
();
bigs
.
pop
();
littles
.
pop
();
(
*
alias_probs_
)[
little
.
first
]
=
little
.
second
;
(
*
alias_
)[
little
.
first
]
=
big
.
first
;
auto
big_left
=
big
.
second
-
(
1
-
little
.
second
);
if
(
big_left
-
1.0
>
1e-4
)
{
bigs
.
emplace
(
big
.
first
,
big_left
);
}
else
if
(
1.0
-
big_left
>
1e-4
)
{
littles
.
emplace
(
big
.
first
,
big_left
);
}
else
{
(
*
alias_probs_
)[
big
.
first
]
=
big_left
;
(
*
alias_
)[
big
.
first
]
=
-
1
;
}
}
if
(
!
littles
.
empty
())
{
// littles.second is close to 1.0
auto
little
=
littles
.
front
();
(
*
alias_probs_
)[
little
.
first
]
=
1.0
;
(
*
alias_
)[
little
.
first
]
=
-
1
;
}
if
(
!
bigs
.
empty
())
{
// bigs.second is close to 1.0
auto
big
=
bigs
.
front
();
(
*
alias_probs_
)[
big
.
first
]
=
1.0
;
(
*
alias_
)[
big
.
first
]
=
-
1
;
}
alias_probs_
=
alias_probabilities
;
probs_
=
probabilities
;
alias_
=
alias
;
}
int64_t
CustomSampler
::
Sample
()
const
{
auto
index
=
(
*
int_dist_
)(
*
random_engine_
);
auto
p
=
(
*
real_dist_
)(
*
random_engine_
);
if
(
p
>
(
*
alias_probs_
)
[
index
])
{
return
(
*
alias_
)
[
index
];
if
(
p
>
alias_probs_
[
index
])
{
return
alias_
[
index
];
}
else
{
return
index
;
}
}
float
CustomSampler
::
Probability
(
int64_t
value
)
const
{
return
(
*
probs_
)[
value
];
}
float
CustomSampler
::
Probability
(
int64_t
value
)
const
{
return
probs_
[
value
];
}
}
// namespace math
}
// namespace operators
...
...
paddle/fluid/operators/math/sampler.h
浏览文件 @
87648f8e
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <cstdint>
#include <memory>
#include <random>
...
...
@@ -38,9 +39,12 @@ class Sampler {
seed_
=
seed
;
}
}
virtual
~
Sampler
();
// Sample a single value
virtual
int64_t
Sample
()
const
=
0
;
// The probability that a single call to Sample() returns the given value.
virtual
float
Probability
(
int64_t
value
)
const
=
0
;
...
...
@@ -99,6 +103,7 @@ class LogUniformSampler : public Sampler {
class
CustomSampler
:
public
Sampler
{
public:
explicit
CustomSampler
(
int64_t
range
,
const
float
*
probabilities
,
const
int
*
alias
,
const
float
*
alias_probabilities
,
unsigned
int
seed
=
0UL
);
~
CustomSampler
()
override
{}
...
...
@@ -108,10 +113,10 @@ class CustomSampler : public Sampler {
float
Probability
(
int64_t
value
)
const
override
;
private:
std
::
shared_ptr
<
std
::
vector
<
float
>>
alias_probs_
;
std
::
shared_ptr
<
std
::
vector
<
int64_t
>>
alias_
;
std
::
shared_ptr
<
std
::
vector
<
float
>>
probs_
;
std
::
shared_ptr
<
std
::
mt19937
_64
>
random_engine_
;
const
float
*
alias_probs_
;
const
int
*
alias_
;
const
float
*
probs_
;
std
::
shared_ptr
<
std
::
mt19937
>
random_engine_
;
std
::
shared_ptr
<
std
::
uniform_real_distribution
<>>
real_dist_
;
std
::
shared_ptr
<
std
::
uniform_int_distribution
<>>
int_dist_
;
};
...
...
paddle/fluid/operators/math/sequence_pooling.cu
浏览文件 @
87648f8e
...
...
@@ -16,13 +16,12 @@ limitations under the License. */
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence_pooling.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/macros.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{
#define FLT_MAX __FLT_MAX__
template
<
typename
T
>
struct
MaxPoolFunctor
{
HOSTDEVICE
void
operator
()(
const
T
*
input
,
const
size_t
start
,
...
...
paddle/fluid/operators/nce_op.cc
浏览文件 @
87648f8e
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#include "paddle/fluid/operators/nce_op.h"
#include <string>
#include <vector>
namespace
paddle
{
...
...
@@ -25,7 +26,7 @@ class NCEOp : public framework::OperatorWithKernel {
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Input"
));
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
));
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Weight"
));
...
...
@@ -67,7 +68,7 @@ class NCEOp : public framework::OperatorWithKernel {
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"Input"
)
->
type
()),
platform
::
CPUPlace
());
...
...
@@ -101,11 +102,24 @@ class NCEOpMaker : public framework::OpProtoAndCheckerMaker {
.
AsDispensable
();
AddInput
(
"CustomDist
ribution
"
,
"CustomDist
Probs
"
,
"(Tensor) It is used in 'CostumDist' sampler. "
"It is a tensor with shape [num_total_classes]."
"The i-th element is the probsbility of the i-th class being sampled."
)
.
AsDispensable
();
AddInput
(
"CustomDistAlias"
,
"(Tensor) It is used in 'CostumDist' sampler. "
"It is a tensor with shape [num_total_classes]."
"The i-th element is the probsbility of the i-th class being sampled."
)
.
AsDispensable
();
AddInput
(
"CustomDistAliasProbs"
,
"(Tensor) It is used in 'CostumDist' sampler. "
"It is a tensor with shape [num_total_classes]."
"The i-th element is the probsbility of the i-th class being sampled."
)
.
AsDispensable
();
AddOutput
(
"Cost"
,
"(Tensor) A tensor of shape [batch_size, 1]. Cost of samples."
);
AddOutput
(
"SampleLogits"
,
...
...
@@ -124,21 +138,22 @@ class NCEOpMaker : public framework::OpProtoAndCheckerMaker {
"kernel to compute grads."
""
)
.
AsIntermediate
();
AddAttr
<
int
>
(
"num_total_classes"
,
"Total number of classes in all samples."
);
AddAttr
<
int
>
(
"num_neg_samples"
,
"The number of negative classes. The default value is 10."
)
.
SetDefault
(
10
);
AddAttr
<
int
>
(
"sampler"
,
"(int) Which sampler to be used to sample negative class."
"0: Uniform; 1: LogUniform; 2: CostumDist."
)
.
SetDefault
(
0
);
AddAttr
<
int
>
(
"seed"
,
"(int) The seed used in sampler. If it is 0, "
"the sampler will generate a seed randomly."
)
.
SetDefault
(
0
);
AddAttr
<
bool
>
(
"is_sparse"
,
"(boolean, default false) Sparse update."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"custom_neg_classes"
,
"This attribute only be used in unitest. Classes "
...
...
@@ -156,11 +171,19 @@ By default this operator uses a uniform distribution for sampling.
}
};
class
NCEOpGradDescMaker
:
public
framework
::
DefaultGradOpDescMaker
<
true
>
{
using
::
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>::
DefaultGradOpDescMaker
;
protected:
virtual
std
::
string
GradOpType
()
const
{
return
"nce_grad"
;
}
};
class
NCEOpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Input"
));
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Weight"
));
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Cost"
));
...
...
@@ -190,20 +213,45 @@ class NCEOpGrad : public framework::OperatorWithKernel {
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"Input"
)
->
type
()),
platform
::
CPUPlace
());
}
};
class
NCEOpGradVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
weight_grad
=
op_desc
.
Output
(
framework
::
GradVarName
(
"Weight"
)).
front
();
auto
bias_grad
=
op_desc
.
Output
(
framework
::
GradVarName
(
"Bias"
)).
front
();
auto
attr
=
op_desc
.
GetAttr
(
"is_sparse"
);
bool
is_sparse
=
boost
::
get
<
bool
>
(
attr
);
if
(
is_sparse
)
{
VLOG
(
30
)
<<
"nce_op_grad op "
<<
weight_grad
<<
" and "
<<
bias_grad
<<
" is set to SelectedRows"
;
block
->
Var
(
weight_grad
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
block
->
Var
(
bias_grad
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
else
{
VLOG
(
30
)
<<
"nce_op_grad op "
<<
weight_grad
<<
" and "
<<
bias_grad
<<
" is set to LoDTensor"
;
block
->
Var
(
weight_grad
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
block
->
Var
(
bias_grad
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
block
->
Var
(
weight_grad
)
->
SetDataType
(
block
->
Var
(
"Input"
)
->
GetDataType
());
block
->
Var
(
bias_grad
)
->
SetDataType
(
block
->
Var
(
"Input"
)
->
GetDataType
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
nce
,
ops
::
NCEOp
,
ops
::
NCEOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
nce_grad
,
ops
::
NCEOpGrad
);
REGISTER_OPERATOR
(
nce
,
ops
::
NCEOp
,
ops
::
NCEOpGradDescMaker
,
ops
::
NCEOpMaker
);
REGISTER_OPERATOR
(
nce_grad
,
ops
::
NCEOpGrad
,
ops
::
NCEOpGradVarTypeInference
);
REGISTER_OP_CPU_KERNEL
(
nce
,
ops
::
NCEKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
NCEKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
nce_grad
,
...
...
paddle/fluid/operators/nce_op.h
浏览文件 @
87648f8e
...
...
@@ -16,26 +16,32 @@ limitations under the License. */
#include <math.h>
#include <random>
#include <set>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/math/sampler.h"
#include "unsupported/Eigen/CXX11/Tensor"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
SelectedRows
=
framework
::
SelectedRows
;
using
Sampler
=
math
::
Sampler
;
using
DDim
=
framework
::
DDim
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
DeviceContext
,
typename
T
>
void
PrepareSamples
(
const
framework
::
ExecutionContext
&
context
,
Sampler
*
sampler
)
{
void
PrepareSamples
(
const
framework
::
ExecutionContext
&
context
,
Sampler
*
sampler
)
{
auto
label
=
context
.
Input
<
Tensor
>
(
"Label"
);
const
int64_t
*
label_data
=
label
->
data
<
int64_t
>
();
const
int64_t
*
label_data
=
label
->
data
<
int64_t
>
();
auto
label_dims
=
label
->
dims
();
// int num_total_classes = context.Attr<int>("num_total_classes");
// for unitest
...
...
@@ -44,7 +50,7 @@ void PrepareSamples(const framework::ExecutionContext& context,
auto
sample_labels
=
context
.
Output
<
Tensor
>
(
"SampleLabels"
);
auto
sample_labels_dims
=
sample_labels
->
dims
();
int64_t
*
sample_labels_data
=
int64_t
*
sample_labels_data
=
sample_labels
->
mutable_data
<
int64_t
>
(
context
.
GetPlace
());
int
num_label
=
label_dims
.
size
()
==
2
?
label_dims
[
1
]
:
1
;
...
...
@@ -70,13 +76,13 @@ void PrepareSamples(const framework::ExecutionContext& context,
template
<
typename
DeviceContext
,
typename
T
>
class
NCEKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
int
sampler_type
=
context
.
Attr
<
int
>
(
"sampler"
);
int
seed
=
context
.
Attr
<
int
>
(
"seed"
);
int
num_total_classes
=
context
.
Attr
<
int
>
(
"num_total_classes"
);
int
num_neg_samples
=
context
.
Attr
<
int
>
(
"num_neg_samples"
);
Sampler
*
sampler
;
Sampler
*
sampler
;
switch
(
sampler_type
)
{
case
0
:
{
sampler
=
new
math
::
UniformSampler
(
num_total_classes
-
1
,
seed
);
...
...
@@ -87,11 +93,19 @@ class NCEKernel : public framework::OpKernel<T> {
break
;
}
case
2
:
{
auto
custom_dist
=
context
.
Input
<
Tensor
>
(
"CustomDistribution"
);
const
float
*
custom_dist_data
=
custom_dist
->
data
<
float
>
();
PADDLE_ENFORCE_EQ
(
custom_dist
->
numel
(),
num_total_classes
);
sampler
=
new
math
::
CustomSampler
(
num_total_classes
-
1
,
custom_dist_data
,
seed
);
auto
dist_probs
=
context
.
Input
<
Tensor
>
(
"CustomDistProbs"
);
auto
dist_alias
=
context
.
Input
<
Tensor
>
(
"CustomDistAlias"
);
auto
dist_alias_probs
=
context
.
Input
<
Tensor
>
(
"CustomDistAliasProbs"
);
PADDLE_ENFORCE_EQ
(
dist_probs
->
numel
(),
num_total_classes
);
PADDLE_ENFORCE_EQ
(
dist_alias
->
numel
(),
num_total_classes
);
PADDLE_ENFORCE_EQ
(
dist_alias_probs
->
numel
(),
num_total_classes
);
const
float
*
probs_data
=
dist_probs
->
data
<
float
>
();
const
int
*
alias_data
=
dist_alias
->
data
<
int
>
();
const
float
*
alias_probs_data
=
dist_alias_probs
->
data
<
float
>
();
sampler
=
new
math
::
CustomSampler
(
num_total_classes
-
1
,
probs_data
,
alias_data
,
alias_probs_data
,
seed
);
break
;
}
default:
{
PADDLE_THROW
(
"Unsupported SamplerType."
);
}
...
...
@@ -99,17 +113,17 @@ class NCEKernel : public framework::OpKernel<T> {
PrepareSamples
<
DeviceContext
,
T
>
(
context
,
sampler
);
auto
sample_labels
=
context
.
Output
<
Tensor
>
(
"SampleLabels"
);
const
int64_t
*
sample_labels_data
=
sample_labels
->
data
<
int64_t
>
();
const
int64_t
*
sample_labels_data
=
sample_labels
->
data
<
int64_t
>
();
auto
sample_out
=
context
.
Output
<
Tensor
>
(
"SampleLogits"
);
T
*
sample_out_data
=
sample_out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
sample_out_data
=
sample_out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
label
=
context
.
Input
<
Tensor
>
(
"Label"
);
auto
sample_weight
=
context
.
Input
<
Tensor
>
(
"SampleWeight"
);
const
T
*
sample_weight_data
=
nullptr
;
const
T
*
sample_weight_data
=
nullptr
;
if
(
sample_weight
!=
nullptr
)
{
sample_weight_data
=
sample_weight
->
data
<
T
>
();
}
auto
out
=
context
.
Output
<
Tensor
>
(
"Cost"
);
T
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int64_t
num_true_class
=
1
;
if
(
label
!=
nullptr
)
{
num_true_class
=
label
->
dims
()[
1
];
...
...
@@ -119,7 +133,7 @@ class NCEKernel : public framework::OpKernel<T> {
// forward bias
auto
bias
=
context
.
Input
<
Tensor
>
(
"Bias"
);
if
(
bias
!=
nullptr
)
{
const
T
*
bias_data
=
bias
->
data
<
T
>
();
const
T
*
bias_data
=
bias
->
data
<
T
>
();
for
(
int64_t
i
=
0
;
i
<
sample_labels
->
numel
();
++
i
)
{
sample_out_data
[
i
]
=
bias_data
[
sample_labels_data
[
i
]];
}
...
...
@@ -158,16 +172,16 @@ class NCEKernel : public framework::OpKernel<T> {
template
<
typename
DeviceContext
,
typename
T
>
class
NCEGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
d_out
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Cost"
));
const
T
*
d_out_data
=
d_out
->
data
<
T
>
();
const
T
*
d_out_data
=
d_out
->
data
<
T
>
();
auto
label
=
context
.
Input
<
Tensor
>
(
"Label"
);
auto
sample_out
=
context
.
Input
<
Tensor
>
(
"SampleLogits"
);
const
T
*
sample_out_data
=
sample_out
->
data
<
T
>
();
const
T
*
sample_out_data
=
sample_out
->
data
<
T
>
();
auto
sample_labels
=
context
.
Input
<
Tensor
>
(
"SampleLabels"
);
const
int64_t
*
sample_labels_data
=
sample_labels
->
data
<
int64_t
>
();
const
int64_t
*
sample_labels_data
=
sample_labels
->
data
<
int64_t
>
();
auto
sample_weight
=
context
.
Input
<
Tensor
>
(
"SampleWeight"
);
const
T
*
sample_weight_data
=
nullptr
;
const
T
*
sample_weight_data
=
nullptr
;
if
(
sample_weight
!=
nullptr
)
{
sample_weight_data
=
sample_weight
->
data
<
T
>
();
}
...
...
@@ -180,7 +194,7 @@ class NCEGradKernel : public framework::OpKernel<T> {
int
sampler_type
=
context
.
Attr
<
int
>
(
"sampler"
);
int
seed
=
context
.
Attr
<
int
>
(
"seed"
);
Sampler
*
sampler
;
Sampler
*
sampler
;
switch
(
sampler_type
)
{
case
0
:
{
sampler
=
new
math
::
UniformSampler
(
num_total_classes
-
1
,
seed
);
...
...
@@ -191,11 +205,19 @@ class NCEGradKernel : public framework::OpKernel<T> {
break
;
}
case
2
:
{
auto
custom_dist
=
context
.
Input
<
Tensor
>
(
"CustomDistribution"
);
const
float
*
custom_dist_data
=
custom_dist
->
data
<
float
>
();
PADDLE_ENFORCE_EQ
(
custom_dist
->
numel
(),
num_total_classes
);
sampler
=
new
math
::
CustomSampler
(
num_total_classes
-
1
,
custom_dist_data
,
seed
);
auto
dist_probs
=
context
.
Input
<
Tensor
>
(
"CustomDistProbs"
);
auto
dist_alias
=
context
.
Input
<
Tensor
>
(
"CustomDistAlias"
);
auto
dist_alias_probs
=
context
.
Input
<
Tensor
>
(
"CustomDistAliasProbs"
);
PADDLE_ENFORCE_EQ
(
dist_probs
->
numel
(),
num_total_classes
);
PADDLE_ENFORCE_EQ
(
dist_alias
->
numel
(),
num_total_classes
);
PADDLE_ENFORCE_EQ
(
dist_alias_probs
->
numel
(),
num_total_classes
);
const
float
*
probs_data
=
dist_probs
->
data
<
float
>
();
const
int
*
alias_data
=
dist_alias
->
data
<
int
>
();
const
float
*
alias_probs_data
=
dist_alias_probs
->
data
<
float
>
();
sampler
=
new
math
::
CustomSampler
(
num_total_classes
-
1
,
probs_data
,
alias_data
,
alias_probs_data
,
seed
);
break
;
}
default:
{
PADDLE_THROW
(
"Unsupported SamplerType."
);
}
...
...
@@ -203,7 +225,7 @@ class NCEGradKernel : public framework::OpKernel<T> {
// T b = 1. / num_total_classes * num_neg_samples;
Tensor
sample_grad
;
// tmp tensor
T
*
sample_grad_data
=
T
*
sample_grad_data
=
sample_grad
.
mutable_data
<
T
>
(
sample_labels
->
dims
(),
context
.
GetPlace
());
// backward cost
for
(
int64_t
i
=
0
;
i
<
sample_labels
->
numel
();
++
i
)
{
...
...
@@ -217,32 +239,105 @@ class NCEGradKernel : public framework::OpKernel<T> {
:
w
*
(
o
*
(
1
-
o
)
/
(
o
+
b
));
sample_grad_data
[
i
]
*=
d_out_data
[
sample_idx
];
}
// get d_bias
auto
d_bias
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
if
(
d_bias
!=
nullptr
)
{
T
*
d_bias_data
=
d_bias
->
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
fill
(
d_bias_data
,
d_bias_data
+
d_bias
->
numel
(),
0.0
);
bool
is_sparse
=
context
.
Attr
<
bool
>
(
"is_sparse"
);
if
(
!
is_sparse
)
{
// get d_bias
auto
d_bias
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
if
(
d_bias
!=
nullptr
)
{
T
*
d_bias_data
=
d_bias
->
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
fill
(
d_bias_data
,
d_bias_data
+
d_bias
->
numel
(),
0.0
);
for
(
int64_t
i
=
0
;
i
<
sample_labels
->
numel
();
++
i
)
{
d_bias_data
[
sample_labels_data
[
i
]]
+=
sample_grad_data
[
i
];
}
}
// get d_w
auto
d_w
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Weight"
));
if
(
d_w
!=
nullptr
)
{
auto
d_w_data
=
d_w
->
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
fill
(
d_w_data
,
d_w_data
+
d_w
->
numel
(),
0.0
);
auto
d_w_matrix
=
EigenMatrix
<
T
>::
From
(
*
d_w
);
auto
x_matrix
=
EigenMatrix
<
T
>::
From
(
*
(
context
.
Input
<
Tensor
>
(
"Input"
)));
for
(
int64_t
i
=
0
;
i
<
sample_labels
->
numel
();
++
i
)
{
d_w_matrix
.
chip
(
sample_labels_data
[
i
],
0
)
+=
x_matrix
.
chip
(
static_cast
<
int
>
(
i
/
sample_labels
->
dims
()[
1
]),
0
)
*
sample_grad_data
[
i
];
}
}
}
else
{
std
::
vector
<
int64_t
>
labels
;
for
(
int64_t
i
=
0
;
i
<
sample_labels
->
numel
();
++
i
)
{
d_bias_data
[
sample_labels_data
[
i
]]
+=
sample_grad_data
[
i
]
;
labels
.
push_back
(
sample_labels_data
[
i
])
;
}
}
// get d_w
auto
d_w
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Weight"
));
if
(
d_w
!=
nullptr
)
{
auto
d_w_data
=
d_w
->
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
fill
(
d_w_data
,
d_w_data
+
d_w
->
numel
(),
0.0
);
auto
d_w_matrix
=
EigenMatrix
<
T
>::
From
(
*
d_w
);
std
::
set
<
T
>
st
(
labels
.
begin
(),
labels
.
end
());
labels
.
assign
(
st
.
begin
(),
st
.
end
());
auto
*
bias_var
=
context
.
InputVar
(
"Bias"
);
DDim
bias_dim
;
if
(
bias_var
->
IsType
<
LoDTensor
>
())
{
bias_dim
=
context
.
Input
<
LoDTensor
>
(
"Bias"
)
->
dims
();
}
else
if
(
bias_var
->
IsType
<
SelectedRows
>
())
{
auto
*
table_t
=
context
.
Input
<
SelectedRows
>
(
"Bias"
);
bias_dim
=
table_t
->
value
().
dims
();
}
else
{
PADDLE_THROW
(
"The parameter Bias of a NCE_OP "
"must be either LoDTensor or SelectedRows"
);
}
auto
d_bias
=
context
.
Output
<
SelectedRows
>
(
framework
::
GradVarName
(
"Bias"
));
d_bias
->
set_rows
(
labels
);
d_bias
->
set_height
(
bias_dim
[
0
]);
d_bias
->
mutable_value
()
->
Resize
(
{
static_cast
<
int64_t
>
(
labels
.
size
()),
bias_dim
[
1
]});
T
*
d_bias_data
=
d_bias
->
mutable_value
()
->
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
fill
(
d_bias_data
,
d_bias_data
+
labels
.
size
(),
0.0
);
for
(
int64_t
i
=
0
;
i
<
sample_labels
->
numel
();
++
i
)
{
d_bias_data
[
d_bias
->
Index
(
sample_labels_data
[
i
])]
+=
sample_grad_data
[
i
];
}
auto
*
table_var
=
context
.
InputVar
(
"Weight"
);
DDim
table_dim
;
if
(
table_var
->
IsType
<
LoDTensor
>
())
{
table_dim
=
context
.
Input
<
LoDTensor
>
(
"Weight"
)
->
dims
();
}
else
if
(
table_var
->
IsType
<
SelectedRows
>
())
{
auto
*
table_t
=
context
.
Input
<
SelectedRows
>
(
"Weight"
);
table_dim
=
table_t
->
value
().
dims
();
}
else
{
PADDLE_THROW
(
"The parameter Weight of a NCE_OP "
"must be either LoDTensor or SelectedRows"
);
}
auto
d_w
=
context
.
Output
<
SelectedRows
>
(
framework
::
GradVarName
(
"Weight"
));
d_w
->
set_rows
(
labels
);
d_w
->
set_height
(
table_dim
[
0
]);
auto
*
d_table_value
=
d_w
->
mutable_value
();
d_table_value
->
Resize
(
{
static_cast
<
int64_t
>
(
labels
.
size
()),
table_dim
[
1
]});
auto
d_w_data
=
d_table_value
->
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
fill
(
d_w_data
,
d_w_data
+
d_table_value
->
numel
(),
0.0
);
auto
d_w_matrix
=
EigenMatrix
<
T
>::
From
(
*
d_table_value
);
auto
x_matrix
=
EigenMatrix
<
T
>::
From
(
*
(
context
.
Input
<
Tensor
>
(
"Input"
)));
for
(
int64_t
i
=
0
;
i
<
sample_labels
->
numel
();
++
i
)
{
d_w_matrix
.
chip
(
sample_labels_data
[
i
]
,
0
)
+=
d_w_matrix
.
chip
(
d_w
->
Index
(
sample_labels_data
[
i
])
,
0
)
+=
x_matrix
.
chip
(
static_cast
<
int
>
(
i
/
sample_labels
->
dims
()[
1
]),
0
)
*
sample_grad_data
[
i
];
}
}
// get d_x
auto
d_x
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
if
(
d_x
!=
nullptr
)
{
auto
*
d_x_data
=
d_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
*
d_x_data
=
d_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
fill
(
d_x_data
,
d_x_data
+
d_x
->
numel
(),
0.0
);
auto
d_x_matrix
=
EigenMatrix
<
T
>::
From
(
*
d_x
);
auto
w_matrix
=
EigenMatrix
<
T
>::
From
(
*
(
context
.
Input
<
Tensor
>
(
"Weight"
)));
...
...
@@ -251,6 +346,7 @@ class NCEGradKernel : public framework::OpKernel<T> {
w_matrix
.
chip
(
sample_labels_data
[
i
],
0
)
*
sample_grad_data
[
i
];
}
}
delete
sampler
;
}
};
...
...
paddle/fluid/platform/gpu_info.cc
浏览文件 @
87648f8e
...
...
@@ -20,12 +20,12 @@ limitations under the License. */
#include "paddle/fluid/platform/enforce.h"
#ifndef _WIN32
const
float
fraction_of_gpu_memory_to_use
=
0.92
f
;
const
expr
static
float
fraction_of_gpu_memory_to_use
=
0.92
f
;
#else
// fraction_of_gpu_memory_to_use cannot be too high on windows,
// since the win32 graphic sub-system can occupy some GPU memory
// which may lead to insufficient memory left for paddle
const
float
fraction_of_gpu_memory_to_use
=
0.5
f
;
const
expr
static
float
fraction_of_gpu_memory_to_use
=
0.5
f
;
#endif
DEFINE_double
(
fraction_of_gpu_memory_to_use
,
fraction_of_gpu_memory_to_use
,
...
...
paddle/fluid/pybind/protobuf.cc
浏览文件 @
87648f8e
...
...
@@ -29,8 +29,16 @@ limitations under the License. */
namespace
pybind11
{
namespace
detail
{
#if !defined(PYBIND11_HIDDEN)
#ifdef _WIN32
#define PYBIND11_HIDDEN __declspec(dllexport)
#else
#define PYBIND11_HIDDEN __attribute__((visibility("hidden")))
#endif
#endif
// Can be replaced by a generic lambda in C++14
struct
__attribute__
((
visibility
(
"hidden"
)))
paddle_variant_caster_visitor
struct
PYBIND11_HIDDEN
paddle_variant_caster_visitor
:
public
boost
::
static_visitor
<
handle
>
{
return_value_policy
policy
;
handle
parent
;
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
87648f8e
...
...
@@ -860,6 +860,12 @@ All parameter, weight, gradient are variables in Paddle.
self
.
remove_unnecessary_lock_
=
b
;
},
R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC"
)
.
def_property
(
"num_trainers"
,
[](
const
BuildStrategy
&
self
)
{
return
self
.
num_trainers_
;
},
[](
BuildStrategy
&
self
,
int
num_trainers
)
{
self
.
num_trainers_
=
num_trainers
;
})
.
def_property
(
"fuse_elewise_add_act_ops"
,
[](
const
BuildStrategy
&
self
)
{
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
87648f8e
...
...
@@ -4394,7 +4394,8 @@ def nce(input,
name
=
None
,
sampler
=
"uniform"
,
custom_dist
=
None
,
seed
=
0
):
seed
=
0
,
is_sparse
=
False
):
"""
${comment}
...
...
@@ -4420,11 +4421,12 @@ def nce(input,
sampler (str): The sampler used to sample class from negtive classes.
It can be 'uniform', 'log_uniform' or 'custom_dist'.
default: 'uniform'.
custom_dist (
Variable): A tensor with shape [num_total_classes]
.
custom_dist (
float[]): A float[] with size=num_total_classes
.
It is used when sampler is set to 'custom_dist'.
custom_dist[i] is the probsbility of i-th class to be sampled.
default: None.
seed (int): The seed used in sampler. default: 0.
is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
Returns:
Variable: The output nce loss.
...
...
@@ -4476,12 +4478,7 @@ def nce(input,
shape
=
[
num_total_classes
,
dim
],
is_bias
=
False
,
dtype
=
input
.
dtype
)
inputs
=
{
'Input'
:
input
,
'Label'
:
label
,
'Weight'
:
w
,
'SampleWeight'
:
sample_weight
if
sample_weight
is
not
None
else
[]
}
inputs
=
{}
if
helper
.
bias_attr
:
b
=
helper
.
create_parameter
(
attr
=
helper
.
bias_attr
,
...
...
@@ -4493,18 +4490,10 @@ def nce(input,
sample_logits
=
helper
.
create_variable_for_type_inference
(
dtype
=
input
.
dtype
)
sample_labels
=
helper
.
create_variable_for_type_inference
(
dtype
=
label
.
dtype
)
if
num_neg_samples
is
None
:
num_neg_samples
=
10
else
:
num_neg_samples
=
int
(
num_neg_samples
)
inputs
=
{
'Input'
:
input
,
'Label'
:
label
,
'Weight'
:
w
,
'Bias'
:
b
,
'SampleWeight'
:
sample_weight
if
sample_weight
is
not
None
else
[]
}
inputs
[
'Input'
]
=
input
inputs
[
'Label'
]
=
label
inputs
[
'Weight'
]
=
w
inputs
[
'SampleWeight'
]
=
sample_weight
if
sample_weight
is
not
None
else
[]
if
sampler
==
"uniform"
:
sampler
=
0
...
...
@@ -4512,17 +4501,73 @@ def nce(input,
sampler
=
1
elif
sampler
==
"custom_dist"
:
assert
custom_dist
is
not
None
assert
isinstance
(
custom_dist
,
Variable
)
inputs
[
'CustomDistribution'
]
=
custom_dist
# assert isinstance(custom_dist, Variable)
custom_dist_len
=
len
(
custom_dist
)
alias_probs_
=
[
0
]
*
custom_dist_len
alias_
=
[
0
]
*
custom_dist_len
bigs
=
[]
littles
=
[]
for
i
in
range
(
custom_dist_len
):
normal_prob
=
custom_dist
[
i
]
*
custom_dist_len
if
normal_prob
-
1.0
>
1e-4
:
bigs
.
append
((
i
,
normal_prob
))
elif
1.0
-
normal_prob
>
1e-4
:
littles
.
append
((
i
,
normal_prob
))
else
:
alias_probs_
[
i
]
=
normal_prob
alias_
[
i
]
=
-
1
while
len
(
bigs
)
and
len
(
littles
):
big
=
bigs
.
pop
(
0
)
little
=
littles
.
pop
(
0
)
big_idx
=
big
[
0
]
big_prob
=
big
[
1
]
alias_probs_
[
little
[
0
]]
=
little
[
1
]
alias_
[
little
[
0
]]
=
big_idx
big_left
=
big
[
1
]
+
little
[
1
]
-
1
if
big_left
-
1.0
>
1e-4
:
bigs
.
append
((
big_idx
,
big_left
))
elif
1.0
-
big_left
>
1e-4
:
littles
.
append
((
big_idx
,
big_left
))
else
:
alias_probs_
[
big_idx
]
=
big_left
alias_
[
big_idx
]
=
-
1
if
len
(
bigs
):
big
=
bigs
.
pop
(
0
)
alias_probs_
[
big
[
0
]]
=
1.0
alias_
[
big
[
0
]]
=
-
1
if
len
(
littles
):
little
=
littles
.
pop
(
0
)
alias_probs_
[
little
[
0
]]
=
1.0
alias_
[
little
[
0
]]
=
-
1
probs
=
assign
(
input
=
np
.
array
(
custom_dist
).
astype
(
'float32'
))
custom_alias
=
assign
(
input
=
np
.
array
(
alias_
).
astype
(
'int32'
))
custom_alias_probs
=
assign
(
input
=
np
.
array
(
alias_probs_
).
astype
(
'float32'
))
inputs
[
'CustomDistProbs'
]
=
probs
inputs
[
'CustomDistAlias'
]
=
custom_alias
inputs
[
'CustomDistAliasProbs'
]
=
custom_alias_probs
sampler
=
2
else
:
raise
Exception
(
"Unsupported sampler type."
)
if
num_neg_samples
is
None
:
num_neg_samples
=
10
else
:
num_neg_samples
=
int
(
num_neg_samples
)
attrs
=
{
'num_total_classes'
:
int
(
num_total_classes
),
'num_neg_samples'
:
num_neg_samples
,
'seed'
:
seed
,
'sampler'
:
sampler
'sampler'
:
sampler
,
'is_sparse'
:
is_sparse
}
helper
.
append_op
(
...
...
@@ -6525,7 +6570,7 @@ def crop(x, shape=None, offsets=None, name=None):
helper
=
LayerHelper
(
'crop'
,
**
locals
())
if
not
(
isinstance
(
shape
,
list
)
or
isinstance
(
shape
,
tuple
)
or
\
isinstance
(
shape
,
Variable
)):
isinstance
(
shape
,
Variable
)):
raise
ValueError
(
"The shape should be a list, tuple or Variable."
)
if
offsets
is
None
:
...
...
@@ -6647,7 +6692,7 @@ def affine_grid(theta, out_shape, name=None):
helper
=
LayerHelper
(
'affine_grid'
)
if
not
(
isinstance
(
out_shape
,
list
)
or
isinstance
(
out_shape
,
tuple
)
or
\
isinstance
(
out_shape
,
Variable
)):
isinstance
(
out_shape
,
Variable
)):
raise
ValueError
(
"The out_shape should be a list, tuple or Variable."
)
if
not
isinstance
(
theta
,
Variable
):
...
...
@@ -6888,6 +6933,13 @@ def elu(x, alpha=1.0, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.elu(x, alpha=0.2)
"""
helper
=
LayerHelper
(
'elu'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
...
...
@@ -6911,6 +6963,13 @@ def relu6(x, threshold=6.0, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.relu6(x, threshold=6.0)
"""
helper
=
LayerHelper
(
'relu6'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
...
...
@@ -6934,6 +6993,13 @@ def pow(x, factor=1.0, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.pow(x, factor=2.0)
"""
helper
=
LayerHelper
(
'pow'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
...
...
@@ -6958,6 +7024,13 @@ def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
"""
helper
=
LayerHelper
(
'stanh'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
...
...
@@ -6983,6 +7056,13 @@ def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
"""
helper
=
LayerHelper
(
'hard_sigmoid'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
...
...
@@ -7007,6 +7087,13 @@ def swish(x, beta=1.0, name=None):
Returns:
output(${out_type}): ${out_comment}
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
y = fluid.layers.swish(x, beta=2.0)
"""
helper
=
LayerHelper
(
'swish'
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
...
...
python/paddle/fluid/parallel_executor.py
浏览文件 @
87648f8e
...
...
@@ -124,16 +124,11 @@ class ParallelExecutor(object):
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
exec_strategy
.
num_threads
=
cpu_num
*
2
# Set 1 thread num under nccl2 distribute
# env to make sure all gpus run ops in same order.
if
num_trainers
>
1
:
assert
(
use_cuda
)
# FIXME(gongwb): avoid this set.
exec_strategy
.
num_threads
=
1
if
build_strategy
is
None
:
build_strategy
=
BuildStrategy
()
build_strategy
.
num_trainers
=
num_trainers
main
=
main_program
main
=
main
if
main
else
framework
.
default_main_program
()
if
scope
==
None
:
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
87648f8e
...
...
@@ -63,7 +63,7 @@ function(py_test_modules TARGET_NAME)
set
(
multiValueArgs MODULES DEPS ENVS
)
cmake_parse_arguments
(
py_test_modules
"
${
options
}
"
"
${
oneValueArgs
}
"
"
${
multiValueArgs
}
"
${
ARGN
}
)
add_test
(
NAME
${
TARGET_NAME
}
COMMAND env PYTHONPATH=
${
PADDLE_BINARY_DIR
}
/python
${
py_test_modules_ENVS
}
COMMAND
${
CMAKE_COMMAND
}
-E
env PYTHONPATH=
${
PADDLE_BINARY_DIR
}
/python
${
py_test_modules_ENVS
}
${
PYTHON_EXECUTABLE
}
${
PADDLE_SOURCE_DIR
}
/tools/test_runner.py
${
py_test_modules_MODULES
}
WORKING_DIRECTORY
${
CMAKE_CURRENT_BINARY_DIR
}
)
if
(
py_test_modules_SERIAL
)
...
...
python/paddle/fluid/tests/unittests/test_nce.py
浏览文件 @
87648f8e
...
...
@@ -14,8 +14,12 @@
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
unittest
import
paddle.fluid
as
fluid
import
paddle.fluid.initializer
as
initializer
from
op_test
import
OpTest
...
...
@@ -59,7 +63,7 @@ def nce(input, weight, bias, sample_weight, labels, num_classes,
class
TestNCE
(
OpTest
):
def
generate_data
(
self
,
dim
,
batch_size
,
num_classes
,
num_true_class
,
num_neg_samples
):
num_neg_samples
,
is_sparse
):
input
=
np
.
random
.
randn
(
batch_size
,
dim
).
astype
(
np
.
float32
)
weight
=
np
.
random
.
randn
(
num_classes
,
dim
).
astype
(
np
.
float32
)
bias
=
np
.
random
.
randn
(
num_classes
).
astype
(
np
.
float32
)
...
...
@@ -70,7 +74,8 @@ class TestNCE(OpTest):
'num_neg_samples'
:
num_neg_samples
,
'custom_neg_classes'
:
list
(
range
(
num_neg_samples
)),
'seed'
:
0
,
'sampler'
:
0
'sampler'
:
0
,
'is_sparse'
:
is_sparse
}
self
.
inputs
=
{
'Input'
:
input
,
...
...
@@ -81,7 +86,7 @@ class TestNCE(OpTest):
}
def
set_data
(
self
):
self
.
generate_data
(
5
,
5
,
4
,
1
,
2
)
self
.
generate_data
(
5
,
5
,
4
,
1
,
2
,
False
)
def
compute
(
self
):
out
=
nce
(
self
.
inputs
[
'Input'
],
self
.
inputs
[
'Weight'
],
...
...
@@ -107,9 +112,110 @@ class TestNCE(OpTest):
[
"Input"
,
"Weight"
,
"Bias"
],
"Cost"
,
max_relative_error
=
0.02
)
class
TestNCECase1
(
TestNCE
):
class
TestNCECase1
Tensor
(
TestNCE
):
def
set_data
(
self
):
self
.
generate_data
(
10
,
20
,
10
,
2
,
5
)
self
.
generate_data
(
10
,
20
,
10
,
2
,
5
,
False
)
class
TestNCECase1SelectedRows
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
base_lr
=
0.0001
self
.
batch_size
=
8
@
staticmethod
def
get_place
():
place
=
fluid
.
core
.
CPUPlace
()
return
place
@
staticmethod
def
get_train_data
(
batch_size
):
batchs
=
[]
for
i
in
range
(
batch_size
):
input
=
np
.
random
.
randn
(
batch_size
,
10
).
astype
(
np
.
float32
)
labels
=
np
.
random
.
randint
(
0
,
20
,
(
batch_size
,
1
))
batchs
.
append
([
input
,
labels
])
return
batchs
def
get_optimizer
(
self
):
# SGD optimizer
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
self
.
base_lr
)
return
optimizer
def
train_network
(
self
,
num_total_classes
,
num_neg_samples
,
sampler
,
custom_dist
,
is_sparse
):
input
=
fluid
.
layers
.
data
(
name
=
"input"
,
shape
=
[
10
],
dtype
=
"float32"
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
w_param
=
fluid
.
default_main_program
().
global_block
().
create_parameter
(
shape
=
[
num_total_classes
,
10
],
dtype
=
'float32'
,
name
=
'nce_w'
,
initializer
=
initializer
.
ConstantInitializer
())
b_param
=
fluid
.
default_main_program
().
global_block
().
create_parameter
(
shape
=
[
num_total_classes
,
1
],
dtype
=
'float32'
,
name
=
'nce_b'
,
initializer
=
initializer
.
ConstantInitializer
())
cost
=
fluid
.
layers
.
nce
(
input
=
input
,
label
=
label
,
num_total_classes
=
num_total_classes
,
sampler
=
sampler
,
custom_dist
=
custom_dist
,
sample_weight
=
None
,
param_attr
=
'nce_w'
,
bias_attr
=
'nce_b'
,
seed
=
1
,
num_neg_samples
=
num_neg_samples
,
is_sparse
=
is_sparse
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
# optimizer
optimizer
=
self
.
get_optimizer
()
optimizer
.
minimize
(
avg_cost
)
return
[
avg_cost
,
[
input
,
label
]]
def
test_input_is_selected_rows
(
self
):
place
=
self
.
get_place
()
exe
=
fluid
.
Executor
(
place
)
data
=
self
.
get_train_data
(
self
.
batch_size
)
nid_freq_arr
=
np
.
random
.
dirichlet
(
np
.
ones
(
20
)
*
1000
).
astype
(
'float32'
)
rets
=
[]
# for dense
dense_scope
=
fluid
.
core
.
Scope
()
dense_startup_program
=
fluid
.
framework
.
Program
()
dense_train_program
=
fluid
.
framework
.
Program
()
with
fluid
.
scope_guard
(
dense_scope
):
with
fluid
.
program_guard
(
dense_train_program
,
dense_startup_program
):
cost
,
feeds
=
self
.
train_network
(
20
,
5
,
"custom_dist"
,
nid_freq_arr
.
tolist
(),
False
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
feeds
,
place
=
place
)
exe
.
run
(
dense_startup_program
)
loss_val
=
exe
.
run
(
dense_train_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
cost
.
name
])
rets
.
append
(
np
.
mean
(
loss_val
))
# for sparse
sparse_scope
=
fluid
.
core
.
Scope
()
sparse_startup_program
=
fluid
.
framework
.
Program
()
sparse_train_program
=
fluid
.
framework
.
Program
()
with
fluid
.
scope_guard
(
sparse_scope
):
with
fluid
.
program_guard
(
sparse_train_program
,
sparse_startup_program
):
cost
,
feeds
=
self
.
train_network
(
20
,
5
,
"custom_dist"
,
nid_freq_arr
.
tolist
(),
True
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
feeds
,
place
=
place
)
exe
.
run
(
sparse_startup_program
)
loss_val
=
exe
.
run
(
sparse_train_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
cost
.
name
])
rets
.
append
(
np
.
mean
(
loss_val
))
self
.
assertEqual
(
rets
[
0
],
rets
[
1
])
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录