Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
87513117
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
87513117
编写于
8月 15, 2021
作者:
H
HydrogenSulfate
提交者:
chajchaj
8月 27, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update loss.py
上级
f3d315ae
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
33 addition
and
33 deletion
+33
-33
python/paddle/nn/functional/loss.py
python/paddle/nn/functional/loss.py
+33
-33
未找到文件。
python/paddle/nn/functional/loss.py
浏览文件 @
87513117
...
...
@@ -1389,18 +1389,18 @@ def cross_entropy(input,
use_softmax
=
True
,
name
=
None
):
r
"""
By default, this operator implements the cross entropy loss function with softmax. This function
combines the calculation of the softmax operation and the cross entropy loss function
to provide a more numerically stable computing.
By default, this operator implements the cross entropy loss function with softmax. This function
combines the calculation of the softmax operation and the cross entropy loss function
to provide a more numerically stable computing.
This operator will calculate the cross entropy loss function without softmax when use_softmax=False.
By default, this operator will calculate the mean of the result, and you can also affect
the default behavior by using the reduction parameter. Please refer to the part of
By default, this operator will calculate the mean of the result, and you can also affect
the default behavior by using the reduction parameter. Please refer to the part of
parameters for details.
This operator can be used to calculate the softmax cross entropy loss with soft and hard labels.
Where, the hard labels mean the actual label value, 0, 1, 2, etc. And the soft labels
Where, the hard labels mean the actual label value, 0, 1, 2, etc. And the soft labels
mean the probability of the actual label, 0.6, 0.8, 0.2, etc.
The calculation of this operator includes the following two steps.
...
...
@@ -1455,7 +1455,7 @@ def cross_entropy(input,
1.1. Hard labels (soft_label = False)
.. math::
\\loss_j=loss_j*weight[label_j]
\\loss_j=loss_j*weight[label_j]
1.2. Soft labels (soft_label = True)
...
...
@@ -1465,21 +1465,21 @@ def cross_entropy(input,
2. reduction
2.1 if the ``reduction`` parameter is ``none``
2.1 if the ``reduction`` parameter is ``none``
Return the previous result directly
2.2 if the ``reduction`` parameter is ``sum``
2.2 if the ``reduction`` parameter is ``sum``
Return the sum of the previous results
.. math::
\\loss=\sum_{j}loss_j
2.3 if the ``reduction`` parameter is ``mean`` , it will be processed according to
the ``weight`` parameter as follows.
2.3 if the ``reduction`` parameter is ``mean`` , it will be processed according to
the ``weight`` parameter as follows.
2.3.1. If the ``weight`` parameter is ``None``
2.3.1. If the ``weight`` parameter is ``None``
Return the average value of the previous results
...
...
@@ -1493,28 +1493,28 @@ def cross_entropy(input,
1. Hard labels (soft_label = False)
.. math::
\\loss=\sum_{j}loss_j/\sum_{j}weight[label_j]
\\loss=\sum_{j}loss_j/\sum_{j}weight[label_j]
2. Soft labels (soft_label = True)
.. math::
\\loss=\sum_{j}loss_j/\sum_{j}\left(\sum_{i}weight[label_i]\right)
Parameters:
- **input** (Tensor)
Input tensor, the data type is float32, float64. Shape is
:math:`[N_1, N_2, ..., N_k, C]`, where C is number of classes , ``k >= 1`` .
:math:`[N_1, N_2, ..., N_k, C]`, where C is number of classes , ``k >= 1`` .
Note:
Note:
1. when use_softmax=True, it expects unscaled logits. This operator should not be used with the
1. when use_softmax=True, it expects unscaled logits. This operator should not be used with the
output of softmax operator, which will produce incorrect results.
2. when use_softmax=False, it expects the output of softmax operator.
- **label** (Tensor)
1. If soft_label=False, the shape is
...
...
@@ -1526,15 +1526,15 @@ def cross_entropy(input,
- **weight** (Tensor, optional)
a manual rescaling weight given to each class.
If given, has to be a Tensor of size C and the data type is float32, float64.
a manual rescaling weight given to each class.
If given, has to be a Tensor of size C and the data type is float32, float64.
Default is ``'None'`` .
- **ignore_index** (int64, optional)
Specifies a target value that is ignored
and does not contribute to the loss. A negative value means that no label
value needs to be ignored. Only valid when soft_label = False.
and does not contribute to the loss. A negative value means that no label
value needs to be ignored. Only valid when soft_label = False.
Default is ``-100`` .
- **reduction** (str, optional)
...
...
@@ -1548,14 +1548,14 @@ def cross_entropy(input,
- **soft_label** (bool, optional)
Indicate whether label is soft.
Indicate whether label is soft.
Default is ``False``.
- **axis** (int, optional)
The index of dimension to perform softmax calculations.
It should be in range :math:`[-1, rank - 1]`, where :math:`rank` is the
number of dimensions of input :attr:`input`.
The index of dimension to perform softmax calculations.
It should be in range :math:`[-1, rank - 1]`, where :math:`rank` is the
number of dimensions of input :attr:`input`.
Default is ``-1`` .
- **use_softmax** (bool, optional)
...
...
@@ -1577,24 +1577,24 @@ def cross_entropy(input,
If :attr:`reduction` is ``'none'``:
1. If soft_label = False, the dimension of return value is the same with ``label`` .
1. If soft_label = False, the dimension of return value is the same with ``label`` .
2. if soft_label = True, the dimension of return value is :math:`[N_1, N_2, ..., N_k, 1]` .
2. if soft_label = True, the dimension of return value is :math:`[N_1, N_2, ..., N_k, 1]` .
Example1(hard labels):
.. code-block:: python
import paddle
paddle.seed(99999)
N=100
C=200
reduction='mean'
input = paddle.rand([N, C], dtype='float64')
input = paddle.rand([N, C], dtype='float64')
label = paddle.randint(0, C, shape=[N], dtype='int64')
weight = paddle.rand([C], dtype='float64')
weight = paddle.rand([C], dtype='float64')
cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
weight=weight, reduction=reduction)
dy_ret = cross_entropy_loss(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录