提交 84b423a8 编写于 作者: D dangqingqing

refine data feeder and add unit test

上级 823b6352
......@@ -25,6 +25,7 @@ add_custom_target(paddle_python ALL DEPENDS
add_subdirectory(paddle/trainer_config_helpers/tests)
add_subdirectory(paddle/reader/tests)
add_subdirectory(paddle/v2/tests)
install(DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/dist/
DESTINATION opt/paddle/share/wheels
......
......@@ -12,49 +12,89 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from py_paddle import swig_paddle
from py_paddle import DataProviderConverter
import data_type
__all__ = ['DataFeeder']
"""
DataFeeder converts the data returned by paddle.reader into a data structure
of Arguments which is defined in the API. The paddle.reader usually returns
a list of mini-batch data. Each item in the list is a tuple or list, which is
one sample with multiple features. DataFeeder converts this mini-batch data
into Arguments in order to feed it to C++ interface.
The example usage:
data_types = [paddle.data_type.dense_vector(784),
paddle.data_type.integer_value(10)]
feeder = DataFeeder(input_types=data_types)
class DataFeeder(DataProviderConverter):
"""
DataFeeder converts the data returned by paddle.reader into a data structure
of Arguments which is defined in the API. The paddle.reader usually returns
a list of mini-batch data. Each item in the list is a list or a tuple,
which is one sample with one or multiple features. DataFeeder converts this
mini-batch data into Arguments in order to feed it to C++ interface.
The example usage:
data_types = [('image', paddle.data_type.dense_vector(784)),
('label', paddle.data_type.integer_value(10))]
reader_dict = {'image':0, 'label':1}
feeder = DataFeeder(data_types=data_types, reader_dict=reader_dict)
minibatch_data = [
( [1.0,2.0,3.0,4.0], 5, [6,7,8] ), # first sample
( [1.0,2.0,3.0,4.0], 5, [6,7,8] ) # second sample
]
# or
# minibatch_data = [
# [ [1.0,2.0,3.0,4.0], 5, [6,7,8] ], # first sample
# [ [1.0,2.0,3.0,4.0], 5, [6,7,8] ] # second sample
# ]
arg = feeder(minibatch_data)
"""
def __init__(self, data_types, reader_dict):
"""
:param data_types: A list to specify data name and type. Each item is
a tuple of (data_name, data_type). For example:
[('image', paddle.data_type.dense_vector(784)),
('label', paddle.data_type.integer_value(10))]
:type data_types: A list of tuple
:param reader_dict: A dictionary to specify the position of each data
in the input data.
:type reader_dict: dict()
"""
self.input_names = []
self.input_types = []
self.reader_dict = reader_dict
for each in data_types:
self.input_names.append(each[0])
self.input_types.append(each[1])
assert isinstance(each[1], data_type.InputType)
DataProviderConverter.__init__(self, self.input_types)
Args:
input_types: A list of input data types. It's length is equal to the length
of data returned by paddle.reader. Each item specifies the type
of each feature.
mintbatch_data: A list of mini-batch data. Each item is a list or tuple,
def convert(self, dat, argument=None):
"""
:param dat: A list of mini-batch data. Each item is a list or tuple,
for example:
[
(feature_0, feature_1, feature_2, ...), # first sample
(feature_0, feature_1, feature_2, ...), # second sample
...
]
:type dat: List
:param argument: An Arguments object contains this mini-batch data with
one or multiple features. The Arguments definition is
in the API.
:type argument: swig_paddle.Arguments
"""
if argument is None:
argument = swig_paddle.Arguments.createArguments(0)
assert isinstance(argument, swig_paddle.Arguments)
argument.resize(len(self.input_types))
scanners = [
DataProviderConverter.create_scanner(i, each_type)
for i, each_type in enumerate(self.input_types)
]
for each_sample in dat:
for name, scanner in zip(self.input_names, scanners):
scanner.scan(each_sample[self.reader_dict[name]])
for scanner in scanners:
scanner.finish_scan(argument)
Returns:
An Arguments object contains this mini-batch data with multiple features.
The Arguments definition is in the API.
"""
return argument
DataFeeder = DataProviderConverter
def __call__(self, dat, argument=None):
return self.convert(dat, argument)
add_test(NAME test_v2_api
COMMAND bash ${PROJ_ROOT}/python/paddle/v2/tests/run_tests.sh ${PYTHON_EXECUTABLE})
#!/bin/bash
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
pushd `dirname $0` > /dev/null
SCRIPTPATH=$PWD
popd > /dev/null
cd $SCRIPTPATH
$1 -m pip install ../../../../paddle/dist/*.whl
test_list="test_data_feeder.py"
export PYTHONPATH=$PWD/../../../../python/
for fn in $test_list
do
echo "test $fn"
$1 $fn
if [ $? -ne 0 ]; then
exit 1
fi
done
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import py_paddle.swig_paddle as api
import numpy as np
from paddle.v2 import data_type
from paddle.v2.data_feeder import DataFeeder
class DataFeederTest(unittest.TestCase):
def dense_reader(self, size):
data = np.random.random(size)
return data
def sparse_binary_reader(self, high, size_limit, non_empty=False):
num = np.random.randint(size_limit) # num could be 0
while non_empty and num == 0:
num = np.random.randint(size_limit)
return np.random.randint(high, size=num).tolist()
def test_dense_vector(self):
def compare(input):
feeder = DataFeeder([('image', data_type.dense_vector(784))],
{'image': 0})
arg = feeder([input])
output = arg.getSlotValue(0).copyToNumpyMat()
input = np.array(input, dtype='float32')
self.assertAlmostEqual(input.all(), output.all())
# test numpy array
batch_size = 32
dim = 784
data = []
for i in xrange(batch_size):
data.append(self.dense_reader(784))
compare(data)
# test list
data = []
for i in xrange(batch_size):
data.append(self.dense_reader(784).tolist())
compare(data)
def test_sparse_binary(self):
dim = 10000
batch_size = 32
data = []
for i in xrange(batch_size):
data.append([self.sparse_binary_reader(dim, 50)])
feeder = DataFeeder([('input', data_type.sparse_binary_vector(dim))],
{'input': 0})
arg = feeder(data)
output = arg.getSlotValue(0)
assert isinstance(output, api.Matrix)
for i in xrange(batch_size):
self.assertEqual(output.getSparseRowCols(i), data[i][0])
def test_sparse(self):
dim = 10000
batch_size = 32
v = []
w = []
data = []
for dat in xrange(batch_size):
a = self.sparse_binary_reader(dim, 40, non_empty=True)
b = self.dense_reader(len(a)).tolist()
v.append(a)
w.append(b[0])
data.append([zip(a, b)])
feeder = DataFeeder([('input', data_type.sparse_vector(dim))],
{'input': 0})
arg = feeder(data)
output = arg.getSlotValue(0)
assert isinstance(output, api.Matrix)
for i in xrange(batch_size):
self.assertEqual(output.getSparseRowCols(i), v[i])
def test_integer(self):
dim = 100
batch_size = 32
index = []
for i in xrange(batch_size):
index.append([np.random.randint(dim)])
feeder = DataFeeder([('input', data_type.integer_value(dim))],
{'input': 0})
arg = feeder(index)
output = arg.getSlotIds(0).copyToNumpyArray()
index = np.array(index, dtype='int')
self.assertEqual(output.all(), index.flatten().all())
def test_multiple_slots(self):
batch_size = 2
data = []
for i in xrange(batch_size):
each_sample = []
each_sample.append(np.random.randint(10)) # size of feature 2: 10
each_sample.append(
self.sparse_binary_reader(
20000, 40, non_empty=True)) # size of feature 1: 20000
each_sample.append(self.dense_reader(100)) # size of feature 0: 100
data.append(each_sample)
# test multiple features
data_types = [('fea0', data_type.dense_vector(100)),
('fea1', data_type.sparse_binary_vector(20000)),
('fea2', data_type.integer_value(10))]
feeder = DataFeeder(data_types, {'fea0': 2, 'fea1': 1, 'fea2': 0})
arg = feeder(data)
output_dense = arg.getSlotValue(0).copyToNumpyMat()
output_sparse = arg.getSlotValue(1)
output_index = arg.getSlotIds(2).copyToNumpyArray()
for i in xrange(batch_size):
self.assertEqual(output_dense[i].all(), data[i][2].all())
self.assertEqual(output_sparse.getSparseRowCols(i), data[i][1])
self.assertEqual(output_index[i], data[i][0])
# reader returns 3 featreus, but only use 2 features
data_types = [('fea0', data_type.dense_vector(100)),
('fea2', data_type.integer_value(10))]
feeder = DataFeeder(data_types, {'fea0': 2, 'fea2': 0})
arg = feeder(data)
output_dense = arg.getSlotValue(0).copyToNumpyMat()
output_index = arg.getSlotIds(1).copyToNumpyArray()
for i in xrange(batch_size):
self.assertEqual(output_dense[i].all(), data[i][2].all())
self.assertEqual(output_index[i], data[i][0])
if __name__ == '__main__':
api.initPaddle("--use_gpu=0")
unittest.main()
if __name__ == '__main__':
api.initPaddle("--use_gpu=0")
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册