Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
823b6352
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
823b6352
编写于
2月 23, 2017
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into convert
上级
6dfdafdd
3020d027
变更
22
隐藏空白更改
内联
并排
Showing
22 changed file
with
475 addition
and
146 deletion
+475
-146
paddle/api/test/testMatrix.py
paddle/api/test/testMatrix.py
+1
-1
paddle/api/test/testVector.py
paddle/api/test/testVector.py
+2
-2
paddle/cuda/include/hl_matrix.h
paddle/cuda/include/hl_matrix.h
+0
-13
paddle/cuda/include/hl_top_k.h
paddle/cuda/include/hl_top_k.h
+27
-1
paddle/cuda/include/stub/hl_matrix_stub.h
paddle/cuda/include/stub/hl_matrix_stub.h
+10
-2
paddle/cuda/src/hl_cuda_matrix.cu
paddle/cuda/src/hl_cuda_matrix.cu
+0
-53
paddle/cuda/src/hl_top_k.cu
paddle/cuda/src/hl_top_k.cu
+78
-0
paddle/gserver/evaluators/Evaluator.cpp
paddle/gserver/evaluators/Evaluator.cpp
+21
-1
paddle/gserver/layers/Layer.h
paddle/gserver/layers/Layer.h
+1
-0
paddle/gserver/tests/test_Evaluator.cpp
paddle/gserver/tests/test_Evaluator.cpp
+1
-0
paddle/math/Matrix.cpp
paddle/math/Matrix.cpp
+53
-31
paddle/math/Matrix.h
paddle/math/Matrix.h
+6
-3
paddle/math/tests/test_matrixCompare.cpp
paddle/math/tests/test_matrixCompare.cpp
+12
-7
paddle/parameter/Parameter.cpp
paddle/parameter/Parameter.cpp
+0
-4
paddle/setup.py.in
paddle/setup.py.in
+3
-0
proto/ModelConfig.proto
proto/ModelConfig.proto
+4
-0
python/paddle/reader/decorator.py
python/paddle/reader/decorator.py
+123
-6
python/paddle/reader/tests/decorator_test.py
python/paddle/reader/tests/decorator_test.py
+65
-7
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+3
-0
python/paddle/trainer_config_helpers/evaluators.py
python/paddle/trainer_config_helpers/evaluators.py
+10
-0
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+10
-7
python/paddle/v2/layer.py
python/paddle/v2/layer.py
+45
-8
未找到文件。
paddle/api/test/testMatrix.py
浏览文件 @
823b6352
...
...
@@ -68,7 +68,7 @@ class TestMatrix(unittest.TestCase):
def
test_numpyCpu
(
self
):
numpy_mat
=
np
.
matrix
([[
1
,
2
],
[
3
,
4
],
[
5
,
6
]],
dtype
=
"float32"
)
m
=
swig_paddle
.
Matrix
.
createCpuDenseFromNumpy
(
numpy_mat
,
copy
=
False
)
m
=
swig_paddle
.
Matrix
.
createCpuDenseFromNumpy
(
numpy_mat
,
False
)
self
.
assertEqual
((
int
(
m
.
getHeight
()),
int
(
m
.
getWidth
())),
numpy_mat
.
shape
)
...
...
paddle/api/test/testVector.py
浏览文件 @
823b6352
...
...
@@ -43,7 +43,7 @@ class TestIVector(unittest.TestCase):
def
test_cpu_numpy
(
self
):
vec
=
np
.
array
([
1
,
3
,
4
,
65
,
78
,
1
,
4
],
dtype
=
"int32"
)
iv
=
swig_paddle
.
IVector
.
createCpuVectorFromNumpy
(
vec
,
copy
=
False
)
iv
=
swig_paddle
.
IVector
.
createCpuVectorFromNumpy
(
vec
,
False
)
self
.
assertEqual
(
vec
.
shape
[
0
],
int
(
iv
.
__len__
()))
vec
[
4
]
=
832
for
i
in
xrange
(
len
(
iv
)):
...
...
@@ -106,7 +106,7 @@ class TestVector(unittest.TestCase):
def
testCpuNumpy
(
self
):
numpy_arr
=
np
.
array
([
1.2
,
2.3
,
3.4
,
4.5
],
dtype
=
"float32"
)
vec
=
swig_paddle
.
Vector
.
createCpuVectorFromNumpy
(
numpy_arr
,
copy
=
False
)
vec
=
swig_paddle
.
Vector
.
createCpuVectorFromNumpy
(
numpy_arr
,
False
)
assert
isinstance
(
vec
,
swig_paddle
.
Vector
)
numpy_arr
[
0
]
=
0.1
for
n
,
v
in
zip
(
numpy_arr
,
vec
):
...
...
paddle/cuda/include/hl_matrix.h
浏览文件 @
823b6352
...
...
@@ -69,19 +69,6 @@ extern void hl_sequence_softmax_forward(real* A_d,
const
int
*
index
,
int
numSequence
);
/**
* @brief Matrix classification error.
*
* @param[in] A_d input matrix (M x N).
* @param[in] B_d input vector (M x 1).
* @param[out] C_d output vector (M x 1).
* @param[in] dimM matrix height.
* @param[in] dimN matrix width.
*
*/
extern
void
hl_matrix_classification_error
(
real
*
A_d
,
int
*
B_d
,
real
*
C_d
,
int
dimM
,
int
dimN
);
/**
* @brief Matrix cross entropy.
*
...
...
paddle/cuda/include/hl_top_k.h
浏览文件 @
823b6352
...
...
@@ -58,4 +58,30 @@ extern void hl_sparse_matrix_top_k(real* topVal,
int
beamSize
,
int
numSamples
);
#endif
/* HL_TOP_K_H_ */
/**
* @brief Matrix classification error.
*
* @param[out] topVal top k element.
* @param[in] ldv leading dimension of topVal.
* @param[out] topIds top k index.
* @param[in] src input value.
* @param[in] lds leading dimension of src.
* @param[in] dim width of input value.
* @param[in] topkSize size of top k element.
* @param[in] numSamples height of input value.
* @param[in] label ground truth label.
* @param[out] recResult top-k classification error.
*
*/
extern
void
hl_matrix_classification_error
(
real
*
topVal
,
int
ldv
,
int
*
topIds
,
real
*
src
,
int
lds
,
int
dim
,
int
topkSize
,
int
numSamples
,
int
*
label
,
real
*
recResult
);
#endif // HL_TOP_K_H_
paddle/cuda/include/stub/hl_matrix_stub.h
浏览文件 @
823b6352
...
...
@@ -35,8 +35,16 @@ inline void hl_sequence_softmax_forward(real* A_d,
inline
void
hl_matrix_softmax_derivative
(
real
*
grad_d
,
real
*
output_d
,
real
*
sftmaxSum_d
,
int
dimM
,
int
dimN
)
{}
inline
void
hl_matrix_classification_error
(
real
*
A_d
,
int
*
B_d
,
real
*
C_d
,
int
dimM
,
int
dimN
)
{}
inline
void
hl_matrix_classification_error
(
real
*
topVal
,
int
ldv
,
int
*
topIds
,
real
*
src
,
int
lds
,
int
dim
,
int
topkSize
,
int
numSamples
,
int
*
label
,
real
*
recResult
)
{}
inline
void
hl_matrix_cross_entropy
(
real
*
A_d
,
real
*
C_d
,
int
*
label_d
,
int
dimM
,
int
dimN
)
{}
...
...
paddle/cuda/src/hl_cuda_matrix.cu
浏览文件 @
823b6352
...
...
@@ -265,59 +265,6 @@ void hl_matrix_softmax_derivative(real *grad_d,
CHECK_SYNC
(
"hl_matrix_softmax_derivative failed"
);
}
template
<
int
blockSize
>
__global__
void
KeMatrixClassificationError
(
real
*
in_A
,
int
*
in_B
,
real
*
out_C
,
int
dimN
)
{
__shared__
real
max_s
[
blockSize
];
__shared__
int
max_l
[
blockSize
];
const
int
tid
=
threadIdx
.
x
;
const
int
rowId
=
blockIdx
.
x
;
max_s
[
tid
]
=
-
1e30
f
;
in_A
+=
rowId
*
dimN
;
real
tmp
;
for
(
int
colId
=
tid
;
colId
<
dimN
;
colId
+=
blockSize
)
{
tmp
=
in_A
[
colId
];
if
(
max_s
[
tid
]
<
tmp
)
{
max_s
[
tid
]
=
tmp
;
max_l
[
tid
]
=
colId
;
}
}
__syncthreads
();
for
(
int
stride
=
blockSize
/
2
;
stride
>
0
;
stride
=
stride
/
2
)
{
if
(
tid
<
stride
)
{
if
(
max_s
[
tid
]
<
max_s
[
tid
+
stride
])
{
max_s
[
tid
]
=
max_s
[
tid
+
stride
];
max_l
[
tid
]
=
max_l
[
tid
+
stride
];
}
}
__syncthreads
();
}
__syncthreads
();
if
(
tid
==
0
)
{
out_C
[
rowId
]
=
(
max_l
[
0
]
==
in_B
[
rowId
]
?
0
:
1.0
f
);
}
}
void
hl_matrix_classification_error
(
real
*
A_d
,
int
*
B_d
,
real
*
C_d
,
int
dimM
,
int
dimN
)
{
CHECK_NOTNULL
(
A_d
);
CHECK_NOTNULL
(
B_d
);
CHECK_NOTNULL
(
C_d
);
// each sample is calculated by one block
KeMatrixClassificationError
<
1024
><<<
dimM
,
1024
,
0
,
STREAM_DEFAULT
>>>
(
A_d
,
B_d
,
C_d
,
dimN
);
CHECK_SYNC
(
"hl_matrix_classification_error"
);
}
__global__
void
KeMatrixMultiBinaryCrossEntropy
(
real
*
output
,
real
*
entropy
,
int
*
row
,
...
...
paddle/cuda/src/hl_top_k.cu
浏览文件 @
823b6352
...
...
@@ -384,3 +384,81 @@ void hl_sparse_matrix_top_k(real* topVal, int ldv,
CHECK_SYNC
(
"hl_sparse_matrix_top_k failed"
);
}
/**
* Each block compute one sample.
* In a block:
* 1. every thread get top maxLength value;
* 2. merge to shTopK, block reduce and get max value;
* 3. go to the second setp, until one thread's topK value is null;
* 4. go to the first setp, until get the topK value.
*/
template
<
int
maxLength
,
int
blockSize
>
__global__
void
KeMatrixTopKClassificationError
(
real
*
topVal
,
int
ldv
,
int
*
topIds
,
real
*
src
,
int
lds
,
int
dim
,
int
beamSize
,
int
*
label
,
real
*
recResult
)
{
__shared__
Pair
shTopK
[
blockSize
];
__shared__
int
maxId
[
blockSize
/
2
];
const
int
tid
=
threadIdx
.
x
;
const
int
warp
=
threadIdx
.
x
/
32
;
src
+=
blockIdx
.
x
*
lds
;
topVal
+=
blockIdx
.
x
*
ldv
;
topIds
+=
blockIdx
.
x
*
beamSize
;
Pair
topK
[
maxLength
];
// NOLINT
int
beam
=
maxLength
;
Pair
max
;
bool
isEmpty
=
false
;
bool
firstStep
=
true
;
int
topkSize
=
beamSize
;
for
(
int
k
=
0
;
k
<
maxLength
;
k
++
)
{
topK
[
k
].
set
(
-
HL_FLOAT_MAX
,
-
1
);
}
while
(
beamSize
)
{
threadGetTopK
<
maxLength
,
blockSize
>
(
topK
,
beam
,
beamSize
,
src
,
firstStep
,
isEmpty
,
max
,
dim
,
tid
);
shTopK
[
tid
]
=
topK
[
0
];
blockReduce
<
maxLength
,
blockSize
>
(
shTopK
,
maxId
,
topK
,
&
topVal
,
&
topIds
,
beam
,
beamSize
,
tid
,
warp
);
}
__syncthreads
();
if
(
tid
==
0
)
{
for
(
int
i
=
0
;
i
<
topkSize
;
i
++
)
{
if
(
*--
topIds
==
label
[
blockIdx
.
x
])
{
recResult
[
blockIdx
.
x
]
=
0
;
break
;
}
recResult
[
blockIdx
.
x
]
=
1.0
f
;
}
}
}
void
hl_matrix_classification_error
(
real
*
topVal
,
int
ldv
,
int
*
topIds
,
real
*
src
,
int
lds
,
int
dim
,
int
topkSize
,
int
numSamples
,
int
*
label
,
real
*
recResult
)
{
CHECK_NOTNULL
(
topVal
);
CHECK_NOTNULL
(
topIds
);
CHECK_NOTNULL
(
src
);
if
(
topkSize
>
dim
)
topkSize
=
dim
;
dim3
threads
(
256
,
1
);
dim3
grid
(
numSamples
,
1
);
KeMatrixTopKClassificationError
<
5
,
256
>
<<<
grid
,
threads
,
0
,
STREAM_DEFAULT
>>>
(
topVal
,
ldv
,
topIds
,
src
,
lds
,
dim
,
topkSize
,
label
,
recResult
);
CHECK_SYNC
(
"hl_matrix_top_k classification error failed"
);
}
paddle/gserver/evaluators/Evaluator.cpp
浏览文件 @
823b6352
...
...
@@ -39,6 +39,14 @@ void Evaluator::eval(const NeuralNetwork& nn) {
*/
class
ClassificationErrorEvaluator
:
public
Evaluator
{
public:
/*
ClassificationErrorEvaluator() : totalScore2_(0) {}
virtual void start() {
Evaluator::start();
totalScore2_ = 0;
} */
virtual
void
updateSamplesNum
(
const
std
::
vector
<
Argument
>&
arguments
)
{
if
(
3
==
arguments
.
size
())
{
numSamples_
+=
arguments
[
2
].
value
->
getSum
();
...
...
@@ -76,9 +84,11 @@ public:
1
,
/* trans= */
false
,
useGpu
(
arguments
[
0
].
deviceId
));
errorMat
->
zeroMem
();
if
(
label
!=
nullptr
)
{
errorMat
->
classificationError
(
*
output
,
*
label
);
errorMat
->
classificationError
(
*
output
,
*
label
,
config_
.
top_k
()
);
}
else
if
(
dynamic_cast
<
CpuSparseMatrix
*>
(
multiBinaryLabel
.
get
())
||
dynamic_cast
<
GpuSparseMatrix
*>
(
multiBinaryLabel
.
get
()))
{
errorMat
->
classificationErrorMulti
(
...
...
@@ -94,6 +104,16 @@ public:
return
errorMat
;
}
void
printStats
(
std
::
ostream
&
os
)
const
{
if
(
config_
.
top_k
()
==
1
)
{
os
<<
config_
.
name
()
<<
"="
<<
(
numSamples_
?
totalScore_
/
numSamples_
:
0
);
}
else
{
os
<<
" top_"
<<
config_
.
top_k
()
<<
"_error="
<<
(
numSamples_
?
totalScore_
/
numSamples_
:
0
);
}
}
virtual
real
evalImp
(
std
::
vector
<
Argument
>&
arguments
)
{
MatrixPtr
errorMat
=
calcError
(
arguments
);
return
errorMat
->
getSum
();
...
...
paddle/gserver/layers/Layer.h
浏览文件 @
823b6352
...
...
@@ -311,6 +311,7 @@ public:
return
*
output
->
second
;
}
else
{
LOG
(
FATAL
)
<<
"No specific output "
<<
str
;
return
*
((
Argument
*
)
nullptr
);
}
}
}
...
...
paddle/gserver/tests/test_Evaluator.cpp
浏览文件 @
823b6352
...
...
@@ -129,6 +129,7 @@ void testEvaluatorAll(TestConfig testConf,
TEST
(
Evaluator
,
classification_error
)
{
TestConfig
config
;
config
.
evaluatorConfig
.
set_type
(
"classification_error"
);
config
.
evaluatorConfig
.
set_top_k
(
5
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"output"
,
50
});
config
.
inputDefs
.
push_back
({
INPUT_LABEL
,
"label"
,
50
});
...
...
paddle/math/Matrix.cpp
浏览文件 @
823b6352
...
...
@@ -732,6 +732,7 @@ void GpuMatrix::rowMax(IVector& maxIds, Matrix& maxVal) {
size_t
beam
=
maxVal
.
getWidth
();
CHECK_EQ
(
maxIds
.
getSize
(),
numSamples
*
beam
);
CHECK_EQ
(
maxVal
.
getHeight
(),
numSamples
);
CHECK_EQ
(
maxVal
.
getWidth
(),
beam
);
hl_matrix_top_k
(
maxVal
.
getData
(),
maxVal
.
getStride
(),
...
...
@@ -792,19 +793,32 @@ void GpuMatrix::maxoutBackward(Matrix& a,
}
/*calulate the error of classification */
void
GpuMatrix
::
classificationError
(
Matrix
&
output
,
IVector
&
label
)
{
auto
output_ptr
=
dynamic_cast
<
const
GpuMatrix
*>
(
&
output
);
auto
label_ptr
=
dynamic_cast
<
const
GpuIVector
*>
(
&
label
);
CHECK
(
output_ptr
&&
label_ptr
)
<<
"Invalid argument pointer"
;
CHECK
(
height_
==
output_ptr
->
height_
&&
width_
==
1
)
void
GpuMatrix
::
classificationError
(
Matrix
&
output
,
IVector
&
label
,
size_t
topkSize
)
{
auto
gpuOutput
=
dynamic_cast
<
GpuMatrix
*>
(
&
output
);
auto
gpuLabel
=
dynamic_cast
<
GpuIVector
*>
(
&
label
);
size_t
numSamples
=
this
->
getHeight
();
GpuMatrixPtr
gpuTopVal
=
std
::
make_shared
<
GpuMatrix
>
(
numSamples
,
topkSize
);
GpuIVectorPtr
gpuTopIds
=
std
::
make_shared
<
GpuIVector
>
(
numSamples
*
topkSize
);
CHECK
(
gpuOutput
&&
gpuLabel
)
<<
"Invalid argument pointer"
;
CHECK
(
gpuTopVal
&&
gpuTopIds
)
<<
"Allocate GPU memory failed"
;
CHECK
(
gpuLabel
->
getSize
()
==
numSamples
)
<<
"Vector size is not equal"
;
CHECK
(
numSamples
==
gpuOutput
->
getHeight
()
&&
this
->
getWidth
()
==
1
)
<<
"Matrix dimensions are not equal"
;
hl_matrix_classification_error
((
real
*
)
output_ptr
->
data_
,
(
int
*
)
label_ptr
->
getData
(),
data_
,
height_
,
output_ptr
->
width_
);
size_t
dim
=
gpuOutput
->
getWidth
();
hl_matrix_classification_error
(
gpuTopVal
->
getData
(),
gpuTopVal
->
getStride
(),
gpuTopIds
->
getData
(),
gpuOutput
->
getData
(),
gpuOutput
->
getStride
(),
dim
,
topkSize
,
numSamples
,
gpuLabel
->
getData
(),
this
->
getData
());
}
/* copy -log(output[i * width + label]) to this->data[i] */
...
...
@@ -3039,7 +3053,7 @@ void CpuMatrix::rowMax(Matrix& max) {
max
.
maxRows
(
*
this
);
}
/*
get beam size of max ids and values
*/
/*
Get the top k elements of each row of this matrix
*/
void
CpuMatrix
::
rowMax
(
IVector
&
maxIds
,
Matrix
&
maxVal
)
{
CHECK
(
isContiguous
());
CHECK
(
!
maxIds
.
useGpu
()
&&
!
maxVal
.
useGpu
())
<<
"Matrix type are not equal"
;
...
...
@@ -3047,6 +3061,7 @@ void CpuMatrix::rowMax(IVector& maxIds, Matrix& maxVal) {
size_t
beam
=
maxVal
.
getWidth
();
CHECK_EQ
(
maxIds
.
getSize
(),
numSamples
*
beam
);
CHECK_EQ
(
maxVal
.
getHeight
(),
numSamples
);
CHECK_EQ
(
maxVal
.
getWidth
(),
beam
);
real
*
a
=
getData
();
int
*
s
=
maxIds
.
getData
();
...
...
@@ -3198,32 +3213,39 @@ void CpuMatrix::rowNormalizeL1(Matrix& out) {
}
/* calulate classification error */
void
CpuMatrix
::
classificationError
(
Matrix
&
output
,
IVector
&
label
)
{
CHECK
(
dynamic_cast
<
const
CpuMatrix
*>
(
&
output
));
CHECK
(
dynamic_cast
<
const
CpuIVector
*>
(
&
label
));
void
CpuMatrix
::
classificationError
(
Matrix
&
output
,
IVector
&
label
,
size_t
topkSize
)
{
size_t
numSamples
=
this
->
getHeight
();
auto
cpuOutput
=
dynamic_cast
<
CpuMatrix
*>
(
&
output
);
auto
cpuLabel
=
dynamic_cast
<
CpuIVector
*>
(
&
label
);
IVectorPtr
cpuTopIds
=
std
::
make_shared
<
CpuIVector
>
(
numSamples
*
topkSize
);
MatrixPtr
cpuTopVal
=
std
::
make_shared
<
CpuMatrix
>
(
numSamples
,
topkSize
);
CHECK
(
cpuOutput
&&
cpuLabel
)
<<
"Invalid argument pointer"
;
CHECK
(
cpuTopIds
&&
cpuTopVal
)
<<
"Allocate cpu memory failed"
;
CHECK
(
cpuLabel
->
getSize
()
==
numSamples
)
<<
"Vector size is not equal"
;
CHECK
(
cpuOutput
->
getHeight
()
==
numSamples
&&
this
->
getWidth
()
==
1
)
<<
"Matrix dimensions are not equal"
;
CHECK_EQ
(
getWidth
(),
(
size_t
)
1
);
size_t
numSamples
=
getHeight
();
CHECK_EQ
(
label
.
getSize
(),
numSamples
);
CHECK_EQ
(
output
.
getHeight
(),
numSamples
);
// top k matrix classification
cpuOutput
->
rowMax
(
*
cpuTopIds
,
*
cpuTopVal
);
size_t
dim
=
output
.
getWidth
();
real
*
out
=
output
.
getData
();
int
*
lbl
=
label
.
getData
();
real
maxData
=
0.0
;
int
maxIndex
=
-
1
;
size_t
dim
=
cpuOutput
->
getWidth
();
real
*
result
=
this
->
getData
();
int
*
ids
=
cpuTopIds
->
getData
();
int
*
lbl
=
cpuLabel
->
getData
();
for
(
size_t
i
=
0
;
i
<
numSamples
;
++
i
)
{
CHECK_GE
(
lbl
[
i
],
0
);
CHECK_LT
((
size_t
)
lbl
[
i
],
dim
);
maxData
=
out
[
i
*
dim
];
maxIndex
=
0
;
for
(
size_t
j
=
0
;
j
<
dim
;
++
j
)
{
if
(
maxData
<
out
[
i
*
dim
+
j
])
{
maxIndex
=
j
;
maxData
=
out
[
i
*
dim
+
j
];
for
(
size_t
j
=
0
;
j
<
topkSize
;
++
j
)
{
if
(
ids
[
j
+
i
*
topkSize
]
==
lbl
[
i
])
{
result
[
i
]
=
0
;
break
;
}
result
[
i
]
=
1.0
f
;
}
getData
()[
i
]
=
(
maxIndex
!=
lbl
[
i
]);
}
}
...
...
paddle/math/Matrix.h
浏览文件 @
823b6352
...
...
@@ -836,8 +836,11 @@ public:
* output[i] = 1 if row i is an error.
*
* output[i] = 0 if row i is correct.
*
*/
virtual
void
classificationError
(
Matrix
&
output
,
IVector
&
label
)
{
virtual
void
classificationError
(
Matrix
&
output
,
IVector
&
label
,
size_t
topkSize
=
1
)
{
LOG
(
FATAL
)
<<
"Not implemented"
;
}
...
...
@@ -1314,7 +1317,7 @@ public:
void
check
(
std
::
ostream
&
os
,
Matrix
&
refMat
,
bool
printDiff
=
true
);
void
randomizeUniform
();
void
classificationError
(
Matrix
&
output
,
IVector
&
label
);
void
classificationError
(
Matrix
&
output
,
IVector
&
label
,
size_t
topkSize
=
1
);
void
convExpand
(
Matrix
&
feature
,
int
feaImgHeight
,
...
...
@@ -1739,7 +1742,7 @@ public:
void
randomizeUniform
();
void
classificationError
(
Matrix
&
output
,
IVector
&
label
);
void
classificationError
(
Matrix
&
output
,
IVector
&
label
,
size_t
topkSize
=
1
);
void
addByBitCode
(
size_t
numClasses
,
const
IVector
&
codes
,
const
Matrix
&
vec
);
...
...
paddle/math/tests/test_matrixCompare.cpp
浏览文件 @
823b6352
...
...
@@ -764,7 +764,7 @@ TEST(Matrix, paramReluBackwardDiff) {
}
}
void
testClassificationError
(
int
numSamples
,
int
dim
)
{
void
testClassificationError
(
int
numSamples
,
int
dim
,
int
topkSize
)
{
MatrixPtr
cpuError
=
std
::
make_shared
<
CpuMatrix
>
(
numSamples
,
1
);
MatrixPtr
gpuError
=
std
::
make_shared
<
GpuMatrix
>
(
numSamples
,
1
);
MatrixPtr
cpuOutput
=
std
::
make_shared
<
CpuMatrix
>
(
numSamples
,
dim
);
...
...
@@ -777,17 +777,22 @@ void testClassificationError(int numSamples, int dim) {
gpuOutput
->
copyFrom
(
*
cpuOutput
);
gpuLabel
->
copyFrom
(
*
cpuLabel
);
cpuError
->
classificationError
(
*
cpuOutput
,
*
cpuLabel
);
gpuError
->
classificationError
(
*
gpuOutput
,
*
gpuLabel
);
cpuError
->
classificationError
(
*
cpuOutput
,
*
cpuLabel
,
topkSize
);
gpuError
->
classificationError
(
*
gpuOutput
,
*
gpuLabel
,
topkSize
);
TensorCheckEqual
(
*
cpuError
,
*
gpuError
);
}
TEST
(
Matrix
,
classificationError
)
{
for
(
auto
numSamples
:
{
1
,
10
,
100
,
1000
,
70000
})
{
for
(
auto
dim
:
{
1
,
10
,
100
,
1000
})
{
VLOG
(
3
)
<<
" numSamples="
<<
numSamples
<<
" dim="
<<
dim
;
testClassificationError
(
numSamples
,
dim
);
for
(
auto
numSamples
:
{
1
,
5
,
31
,
90
,
150
,
300
})
{
for
(
auto
dim
:
{
1
,
5
,
8
,
10
,
15
,
64
,
80
,
120
,
256
,
300
,
1280
,
5120
,
50000
})
{
for
(
auto
topkSize
:
{
1
,
5
,
10
,
20
,
40
,
(
int
)
rand
()
%
dim
+
1
})
{
if
(
topkSize
>
dim
)
continue
;
VLOG
(
3
)
<<
" sample= "
<<
numSamples
<<
" topkSize= "
<<
topkSize
<<
" dim= "
<<
dim
;
testClassificationError
(
numSamples
,
dim
,
topkSize
);
}
}
}
}
...
...
paddle/parameter/Parameter.cpp
浏览文件 @
823b6352
...
...
@@ -375,10 +375,6 @@ bool Parameter::load(const std::string& filename) {
std
::
ifstream
fs
(
filename
,
std
::
ios_base
::
binary
);
if
(
!
fs
)
{
LOG
(
INFO
)
<<
"missing parameters ["
<<
filename
<<
"] while loading model."
;
if
(
isStatic
())
{
LOG
(
FATAL
)
<<
getName
()
<<
" is static but missing, not allowed."
;
return
false
;
}
if
(
kMissParameterFail
==
FLAGS_load_missing_parameter_strategy
)
{
LOG
(
FATAL
)
<<
getName
()
<<
" missing, not allowed."
;
return
false
;
...
...
paddle/setup.py.in
浏览文件 @
823b6352
...
...
@@ -55,6 +55,9 @@ elif is_osx == True:
include_dirs = [np.get_include(), "../"] # include numpy and paddle.
os.environ["CC"] = "@CMAKE_C_COMPILER@"
os.environ["CXX"] = "@CMAKE_CXX_COMPILER@"
setup(name="py_paddle",
version="@PADDLE_VERSION@",
ext_modules=[
...
...
proto/ModelConfig.proto
浏览文件 @
823b6352
...
...
@@ -475,6 +475,10 @@ message EvaluatorConfig {
// Used by ChunkEvaluator
// chunk of these types are not counted
repeated
int32
excluded_chunk_types
=
12
;
// Used by ClassificationErrorEvaluator
// top # classification error
optional
int32
top_k
=
13
[
default
=
1
];
}
message
LinkConfig
{
...
...
python/paddle/reader/decorator.py
浏览文件 @
823b6352
...
...
@@ -12,18 +12,135 @@
# See the License for the specific language governing permissions and
# limitations under the License.
__all__
=
[
'buffered'
]
__all__
=
[
'buffered'
,
'compose'
,
'chain'
,
'shuffle'
,
'ComposeNotAligned'
]
from
Queue
import
Queue
from
threading
import
Thread
import
itertools
import
random
def
shuffle
(
reader
,
buf_size
):
"""Creates a data reader whose data output is suffled.
Output from the iterator that created by original reader will be
buffered into shuffle buffer, and then shuffled. The size of shuffle buffer
is determined by argument buf_size.
Args:
reader: the original reader whose output will be
shuffled.
buf_size: shuffle buffer size.
Returns:
the new reader whose output is shuffled.
"""
def
data_reader
():
buf
=
[]
for
e
in
reader
():
buf
.
append
(
e
)
if
len
(
buf
)
>=
buf_size
:
random
.
shuffle
(
buf
)
for
b
in
buf
:
yield
b
buf
=
[]
if
len
(
buf
)
>
0
:
random
.
shuffle
(
buf
)
for
b
in
buf
:
yield
b
return
data_reader
def
chain
(
*
readers
):
"""Creates a data reader whose output is the outputs of input data
readers chained together.
If input readers output following data entries:
[0, 0, 0]
[1, 1, 1]
[2, 2, 2]
The chained reader will output:
[0, 0, 0, 1, 1, 1, 2, 2, 2]
Args:
readers: input readers.
Returns:
the new data reader.
"""
def
reader
():
rs
=
[]
for
r
in
readers
:
rs
.
append
(
r
())
for
e
in
itertools
.
chain
(
*
rs
):
yield
e
return
reader
class
ComposeNotAligned
(
ValueError
):
pass
def
compose
(
*
readers
,
**
kwargs
):
"""Creates a data reader whose output is the combination of input readers.
If input readers output following data entries:
(1, 2) 3 (4, 5)
The composed reader will output:
(1, 2, 3, 4, 5)
Args:
*readers: readers that will be composed together.
check_alignment: If True, will check if input readers are aligned
correctly. If False, will not check alignment and trailing outputs
will be discarded. Defaults to True.
Returns:
the new data reader.
Raises:
ComposeNotAligned: outputs of readers are not aligned.
Will not raise when check_alignment is set to False.
"""
check_alignment
=
kwargs
.
pop
(
'check_alignment'
,
True
)
def
make_tuple
(
x
):
if
isinstance
(
x
,
tuple
):
return
x
else
:
return
(
x
,
)
def
reader
():
rs
=
[]
for
r
in
readers
:
rs
.
append
(
r
())
if
not
check_alignment
:
for
outputs
in
itertools
.
izip
(
*
rs
):
yield
sum
(
map
(
make_tuple
,
outputs
),
())
else
:
for
outputs
in
itertools
.
izip_longest
(
*
rs
):
for
o
in
outputs
:
if
o
is
None
:
# None will be not be present if compose is aligned
raise
ComposeNotAligned
(
"outputs of readers are not aligned."
)
yield
sum
(
map
(
make_tuple
,
outputs
),
())
return
reader
def
buffered
(
reader
,
size
):
"""Creates a buffered data reader.
The buffered data reader will read and save data entries into a
buffer.
Reading from the buffered data reader will proceed as long as the buffer
is not empty.
The buffered data reader will read and save data entries into a
buffer. Reading from the buffered data reader will proceed as long
as the buffer
is not empty.
Args:
reader: the data reader to read from.
...
...
@@ -43,7 +160,7 @@ def buffered(reader, size):
q
.
put
(
d
)
q
.
put
(
end
)
def
create
_reader
():
def
data
_reader
():
r
=
reader
()
q
=
Queue
(
maxsize
=
size
)
t
=
Thread
(
...
...
@@ -57,4 +174,4 @@ def buffered(reader, size):
yield
e
e
=
q
.
get
()
return
create
_reader
return
data
_reader
python/paddle/reader/tests/decorator_test.py
浏览文件 @
823b6352
...
...
@@ -16,16 +16,20 @@ import paddle.reader
import
time
def
reader_10
(
dur
):
for
i
in
range
(
10
):
time
.
sleep
(
dur
)
yield
i
def
reader_creator_10
(
dur
):
def
reader
():
for
i
in
range
(
10
):
# this invocation helps testing paddle.reader.buffer
time
.
sleep
(
dur
)
yield
i
return
reader
class
TestBuffered
(
unittest
.
TestCase
):
def
test_read
(
self
):
for
size
in
range
(
20
):
b
=
paddle
.
reader
.
buffered
(
lambda
:
reade
r_10
(
0
),
size
)
b
=
paddle
.
reader
.
buffered
(
reader_creato
r_10
(
0
),
size
)
c
=
0
for
i
in
b
():
self
.
assertEqual
(
i
,
c
)
...
...
@@ -34,7 +38,7 @@ class TestBuffered(unittest.TestCase):
def
test_buffering
(
self
):
# read have 30ms delay.
b
=
paddle
.
reader
.
buffered
(
lambda
:
reade
r_10
(
0.03
),
10
)
b
=
paddle
.
reader
.
buffered
(
reader_creato
r_10
(
0.03
),
10
)
last_time
=
time
.
time
()
for
idx
,
i
in
enumerate
(
b
()):
elapsed_time
=
time
.
time
()
-
last_time
...
...
@@ -42,9 +46,63 @@ class TestBuffered(unittest.TestCase):
time
.
sleep
(
0.3
)
else
:
# read time should be short, meaning already buffered.
self
.
assertLess
(
elapsed_time
,
0.0
1
)
self
.
assertLess
(
elapsed_time
,
0.0
5
)
last_time
=
time
.
time
()
class
TestCompose
(
unittest
.
TestCase
):
def
test_compse
(
self
):
reader
=
paddle
.
reader
.
compose
(
reader_creator_10
(
0
),
reader_creator_10
(
0
))
for
idx
,
e
in
enumerate
(
reader
()):
self
.
assertEqual
(
e
,
(
idx
,
idx
))
def
test_compose_not_aligned
(
self
):
total
=
0
reader
=
paddle
.
reader
.
compose
(
paddle
.
reader
.
chain
(
reader_creator_10
(
0
),
reader_creator_10
(
0
)),
reader_creator_10
(
0
))
with
self
.
assertRaises
(
paddle
.
reader
.
ComposeNotAligned
):
for
e
in
reader
():
total
+=
1
# expecting 10, not 20
self
.
assertEqual
(
total
,
10
)
def
test_compose_not_aligned_no_check
(
self
):
total
=
0
reader
=
paddle
.
reader
.
compose
(
paddle
.
reader
.
chain
(
reader_creator_10
(
0
),
reader_creator_10
(
0
)),
reader_creator_10
(
0
),
check_alignment
=
False
)
for
e
in
reader
():
total
+=
1
# expecting 10, not 20
self
.
assertEqual
(
total
,
10
)
class
TestChain
(
unittest
.
TestCase
):
def
test_chain
(
self
):
c
=
paddle
.
reader
.
chain
(
reader_creator_10
(
0
),
reader_creator_10
(
0
))
idx
=
0
for
e
in
c
():
self
.
assertEqual
(
e
,
idx
%
10
)
idx
+=
1
self
.
assertEqual
(
idx
,
20
)
class
TestShuffle
(
unittest
.
TestCase
):
def
test_shuffle
(
self
):
case
=
[(
0
,
True
),
(
1
,
True
),
(
10
,
False
),
(
100
,
False
)]
a
=
reader_creator_10
(
0
)
for
size
,
checkEq
in
case
:
s
=
paddle
.
reader
.
shuffle
(
a
,
size
)
total
=
0
for
idx
,
e
in
enumerate
(
s
()):
if
checkEq
:
self
.
assertEqual
(
idx
,
e
)
total
+=
1
self
.
assertEqual
(
total
,
10
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/trainer/config_parser.py
浏览文件 @
823b6352
...
...
@@ -1253,6 +1253,7 @@ def Evaluator(
dict_file
=
None
,
result_file
=
None
,
num_results
=
None
,
top_k
=
None
,
delimited
=
None
,
excluded_chunk_types
=
None
,
):
evaluator
=
g_config
.
model_config
.
evaluators
.
add
()
...
...
@@ -1280,6 +1281,8 @@ def Evaluator(
evaluator
.
result_file
=
result_file
if
num_results
is
not
None
:
evaluator
.
num_results
=
num_results
if
top_k
is
not
None
:
evaluator
.
top_k
=
top_k
if
delimited
is
not
None
:
evaluator
.
delimited
=
delimited
...
...
python/paddle/trainer_config_helpers/evaluators.py
浏览文件 @
823b6352
...
...
@@ -71,6 +71,7 @@ def evaluator_base(
result_file
=
None
,
num_results
=
None
,
delimited
=
None
,
top_k
=
None
,
excluded_chunk_types
=
None
,
):
"""
Evaluator will evaluate the network status while training/testing.
...
...
@@ -104,12 +105,15 @@ def evaluator_base(
:param weight: An input layer which is a weight for each sample.
Each evaluator may calculate differently to use this weight.
:type weight: LayerOutput.
:param top_k: number k in top-k error rate
:type top_k: int
"""
# inputs type assertions.
assert
classification_threshold
is
None
or
isinstance
(
classification_threshold
,
float
)
assert
positive_label
is
None
or
isinstance
(
positive_label
,
int
)
assert
num_results
is
None
or
isinstance
(
num_results
,
int
)
assert
top_k
is
None
or
isinstance
(
top_k
,
int
)
if
not
isinstance
(
input
,
list
):
input
=
[
input
]
...
...
@@ -130,6 +134,8 @@ def evaluator_base(
dict_file
=
dict_file
,
result_file
=
result_file
,
delimited
=
delimited
,
num_results
=
num_results
,
top_k
=
top_k
,
excluded_chunk_types
=
excluded_chunk_types
,
)
...
...
@@ -139,6 +145,7 @@ def classification_error_evaluator(input,
label
,
name
=
None
,
weight
=
None
,
top_k
=
None
,
threshold
=
None
):
"""
Classification Error Evaluator. It will print error rate for classification.
...
...
@@ -167,6 +174,8 @@ def classification_error_evaluator(input,
then means not set weight. The larger weight it is, the more
important this sample is.
:type weight: LayerOutput
:param top_k: number k in top-k error rate
:type top_k: int
:param threshold: The classification threshold.
:type threshold: float
:return: None.
...
...
@@ -178,6 +187,7 @@ def classification_error_evaluator(input,
input
=
input
,
label
=
label
,
weight
=
weight
,
top_k
=
top_k
,
classification_threshold
=
threshold
,
)
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
823b6352
...
...
@@ -2870,8 +2870,8 @@ def gru_step_layer(input,
:param name:
:param gate_act:
:param bias_attr:
:param param_attr: the parameter_attribute for transforming the output_mem
from previous step.
:param param_attr: the parameter_attribute for transforming the output_mem
from previous step.
:param layer_attr:
:return: LayerOutput object.
:rtype: LayerOutput
...
...
@@ -2882,10 +2882,10 @@ def gru_step_layer(input,
Layer
(
name
=
name
,
type
=
LayerType
.
GRU_STEP_LAYER
,
# The parameter here is for transforming the output_mem. The input has
# already been transformed outside this module so it does not need
# parameter associated with it.
# The parameter here is instead grouped with input is due to
# The parameter here is for transforming the output_mem. The input has
# already been transformed outside this module so it does not need
# parameter associated with it.
# The parameter here is instead grouped with input is due to
# backward model compatibility.
inputs
=
[
Input
(
input
.
name
,
**
param_attr
.
attr
),
output_mem
.
name
],
bias
=
ParamAttr
.
to_bias
(
bias_attr
),
...
...
@@ -3536,6 +3536,7 @@ def classification_cost(input,
label
,
weight
=
None
,
name
=
None
,
top_k
=
None
,
evaluator
=
classification_error_evaluator
,
layer_attr
=
None
):
"""
...
...
@@ -3550,6 +3551,8 @@ def classification_cost(input,
:param weight: The weight affects the cost, namely the scale of cost.
It is an optional argument.
:type weight: LayerOutput
:param top_k: number k in top-k error rate
:type top_k: int
:param evaluator: Evaluator method.
:param layer_attr: layer's extra attribute.
:type layer_attr: ExtraLayerAttribute
...
...
@@ -3577,7 +3580,7 @@ def classification_cost(input,
assert
isinstance
(
e
.
for_classification
,
bool
)
assert
e
.
for_classification
e
(
name
=
e
.
__name__
,
input
=
input
,
label
=
label
,
weight
=
weight
)
e
(
name
=
e
.
__name__
,
input
=
input
,
label
=
label
,
weight
=
weight
,
top_k
=
top_k
)
if
not
isinstance
(
evaluator
,
collections
.
Sequence
):
evaluator
=
[
evaluator
]
...
...
python/paddle/v2/layer.py
浏览文件 @
823b6352
...
...
@@ -77,7 +77,9 @@ import data_type
__all__
=
[
'parse_network'
,
'data'
,
'fc'
,
'max_id'
,
'classification_cost'
,
'cross_entropy_cost'
'cross_entropy_cost'
,
'cross_entropy_with_selfnorm_cost'
,
'regression_cost'
,
'multi_binary_label_cross_entropy_cost'
,
'rank_cost'
,
'lambda_cost'
,
'sum_cost'
,
'huber_cost'
]
...
...
@@ -137,7 +139,8 @@ def __convert_to_v2__(method_name, name_prefix, parent_names):
parent_layers
=
dict
()
other_kwargs
=
dict
()
for
pname
in
parent_names
:
parent_layers
[
pname
]
=
kwargs
[
pname
]
if
kwargs
.
has_key
(
pname
):
parent_layers
[
pname
]
=
kwargs
[
pname
]
for
key
in
kwargs
.
keys
():
if
key
not
in
parent_names
:
...
...
@@ -189,27 +192,61 @@ class DataLayerV2(Layer):
data
=
DataLayerV2
fc
=
__convert_to_v2__
(
'fc_layer'
,
name_prefix
=
'fc'
,
parent_names
=
[
'input'
])
max_id
=
__convert_to_v2__
(
'maxid_layer'
,
name_prefix
=
'maxid
_layer
'
,
parent_names
=
[
'input'
])
'maxid_layer'
,
name_prefix
=
'maxid'
,
parent_names
=
[
'input'
])
classification_cost
=
__convert_to_v2__
(
'classification_cost'
,
name_prefix
=
'classification_cost'
,
parent_names
=
[
'input'
,
'label'
])
parent_names
=
[
'input'
,
'label'
,
'weight'
])
regression_cost
=
__convert_to_v2__
(
'regression_cost'
,
name_prefix
=
'regression_cost'
,
parent_names
=
[
'input'
,
'label'
,
'weight'
])
cross_entropy_cost
=
__convert_to_v2__
(
'cross_entropy'
,
name_prefix
=
'cross_entropy'
,
parent_names
=
[
'input'
,
'label'
])
cross_entropy_with_selfnorm_cost
=
__convert_to_v2__
(
'cross_entropy_with_selfnorm'
,
name_prefix
=
'cross_entropy_with_selfnorm'
,
parent_names
=
[
'input'
,
'label'
])
multi_binary_label_cross_entropy_cost
=
__convert_to_v2__
(
'multi_binary_label_cross_entropy'
,
name_prefix
=
'multi_binary_label_cross_entropy'
,
parent_names
=
[
'input'
,
'label'
])
rank_cost
=
__convert_to_v2__
(
'rank_cost'
,
name_prefix
=
'rank_cost'
,
parent_names
=
[
'left'
,
'right'
,
'label'
,
'weight'
])
lambda_cost
=
__convert_to_v2__
(
'lambda_cost'
,
name_prefix
=
'lambda_cost'
,
parent_names
=
[
'input'
,
'score'
])
sum_cost
=
__convert_to_v2__
(
'sum_cost'
,
name_prefix
=
'sum_cost'
,
parent_names
=
[
'input'
])
huber_cost
=
__convert_to_v2__
(
'huber_cost'
,
name_prefix
=
'huber_cost'
,
parent_names
=
[
'input'
,
'label'
])
if
__name__
==
'__main__'
:
pixel
=
data
(
name
=
'pixel'
,
type
=
data_type
.
dense_vector
(
784
))
label
=
data
(
name
=
'label'
,
type
=
data_type
.
integer_value
(
10
))
weight
=
data
(
name
=
'weight'
,
type
=
data_type
.
dense_vector
(
10
))
score
=
data
(
name
=
'score'
,
type
=
data_type
.
dense_vector
(
1
))
hidden
=
fc
(
input
=
pixel
,
size
=
100
,
act
=
conf_helps
.
SigmoidActivation
())
inference
=
fc
(
input
=
hidden
,
size
=
10
,
act
=
conf_helps
.
SoftmaxActivation
())
maxid
=
max_id
(
input
=
inference
)
cost1
=
classification_cost
(
input
=
inference
,
label
=
label
)
cost2
=
cross_entropy_cost
(
input
=
inference
,
label
=
label
)
cost2
=
classification_cost
(
input
=
inference
,
label
=
label
,
weight
=
weight
)
cost3
=
cross_entropy_cost
(
input
=
inference
,
label
=
label
)
cost4
=
cross_entropy_with_selfnorm_cost
(
input
=
inference
,
label
=
label
)
cost5
=
regression_cost
(
input
=
inference
,
label
=
label
)
cost6
=
regression_cost
(
input
=
inference
,
label
=
label
,
weight
=
weight
)
cost7
=
multi_binary_label_cross_entropy_cost
(
input
=
inference
,
label
=
label
)
cost8
=
rank_cost
(
left
=
score
,
right
=
score
,
label
=
score
)
cost9
=
lambda_cost
(
input
=
inference
,
score
=
score
)
cost10
=
sum_cost
(
input
=
inference
)
cost11
=
huber_cost
(
input
=
score
,
label
=
label
)
print
parse_network
(
cost1
)
print
parse_network
(
cost2
)
print
parse_network
(
cost1
,
cost2
)
print
parse_network
(
cost2
)
print
parse_network
(
cost3
,
cost4
)
print
parse_network
(
cost5
,
cost6
)
print
parse_network
(
cost7
,
cost8
,
cost9
,
cost10
,
cost11
)
print
parse_network
(
inference
,
maxid
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录