Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
84a0574a
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
84a0574a
编写于
12月 05, 2016
作者:
H
hedaoyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add a PerfUtils.h
上级
8d736813
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
194 addition
and
93 deletion
+194
-93
paddle/math/tests/PerfUtils.h
paddle/math/tests/PerfUtils.h
+45
-0
paddle/math/tests/test_TrainingAlgorithm.cpp
paddle/math/tests/test_TrainingAlgorithm.cpp
+148
-93
paddle/math/tests/test_lazyAssign.cu
paddle/math/tests/test_lazyAssign.cu
+1
-0
未找到文件。
paddle/math/tests/PerfUtils.h
0 → 100644
浏览文件 @
84a0574a
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
// Performance Check
#ifdef PADDLE_DISABLE_TIMER
#define EXPRESSION_PERFORMANCE(expression) expression;
#else
#include "paddle/utils/Stat.h"
#define EXPRESSION_PERFORMANCE(expression) \
do { \
char expr[30]; \
strncpy(expr, #expression, 30); \
if (expr[29] != '\0') { \
expr[27] = '.'; \
expr[28] = '.'; \
expr[29] = '\0'; \
} \
expression; \
for (int i = 0; i < 20; i++) { \
REGISTER_TIMER(expr); \
expression; \
} \
LOG(INFO) << std::setiosflags(std::ios::left) << std::setfill(' ') \
<< *globalStat.getStat(expr); \
globalStat.reset(); \
} while (0)
#endif
paddle/math/tests/test_TrainingAlgorithm.cpp
浏览文件 @
84a0574a
...
...
@@ -17,6 +17,7 @@ limitations under the License. */
#include "paddle/math/TrainingAlgorithmOp.h"
#include "OriginalOptimizerApi.h"
#include "TensorCheck.h"
#include "PerfUtils.h"
using
namespace
paddle
;
// NOLINT
...
...
@@ -32,21 +33,20 @@ public:
max_diff_
=
FLAGS_max_diff
;
FLAGS_max_diff
=
max_diff
;
}
~
SetMaxDiff
()
{
FLAGS_max_diff
=
max_diff_
;
}
~
SetMaxDiff
()
{
FLAGS_max_diff
=
max_diff_
;
}
private:
double
max_diff_
;
};
#define COPY_VECTOR_TO_CPU(cpuVec, vector) \
do {\
if (vector->useGpu()) {\
cpuVec = Vector::create(vector->getSize(), false);\
cpuVec->copyFrom(*vector);\
} else {\
cpuVec = vector;\
}\
#define COPY_VECTOR_TO_CPU(cpuVec, vector)
\
do {
\
if (vector->useGpu()) {
\
cpuVec = Vector::create(vector->getSize(), false);
\
cpuVec->copyFrom(*vector);
\
} else {
\
cpuVec = vector;
\
}
\
} while (0)
int
VectorCheckErr
(
const
Vector
&
vector1
,
const
Vector
&
vector2
)
{
...
...
@@ -79,8 +79,8 @@ int VectorCheckErr(const VectorPtr& vector1, const VectorPtr& vector2) {
#ifdef PADDLE_DISABLE_TIMER
#define CHECK_VECTORPTR(vector1, vector2)
\
EXPECT_EQ(VectorCheckErr(vector1, vector2), 0)
#define CHECK_VECTORPTR(vector1, vector2) \
EXPECT_EQ(VectorCheckErr(vector1, vector2), 0)
#else
...
...
@@ -96,8 +96,20 @@ void testCase(testMatrixFunc matrixFunc) {
#else
for
(
auto
useGpu
:
{
false
})
{
#endif
for
(
auto
size
:
{
1
,
32
,
64
,
128
,
512
,
1024
,
4096
,
32768
,
65536
,
131072
,
262144
,
524288
,
1048576
,
2097152
})
{
for
(
auto
size
:
{
1
,
32
,
64
,
128
,
512
,
1024
,
4096
,
32768
,
65536
,
131072
,
262144
,
524288
,
1048576
,
2097152
})
{
LOG
(
INFO
)
<<
" size="
<<
size
<<
" useGpu="
<<
useGpu
;
matrixFunc
(
size
,
useGpu
);
}
...
...
@@ -105,10 +117,10 @@ void testCase(testMatrixFunc matrixFunc) {
}
#define INIT_VECTOR(vec1, vec2, type, size, useGpu) \
vec1[type] = Vector::create(size, useGpu);
\
vec2[type] = Vector::create(size, useGpu);
\
vec1[type]->rand();
\
vec2[type]->copyFrom(*vec1[type]);
vec1[type] = Vector::create(size, useGpu);
\
vec2[type] = Vector::create(size, useGpu);
\
vec1[type]->rand();
\
vec2[type]->copyFrom(*vec1[type]);
void
testAdagrad
(
size_t
size
,
bool
useGpu
)
{
VectorPtr
bufs1
[
NUM_PARAMETER_TYPES
];
...
...
@@ -120,13 +132,13 @@ void testAdagrad(size_t size, bool useGpu) {
INIT_VECTOR
(
bufs1
,
bufs2
,
PARAMETER_GRADIENT_SQURESUM1
,
size
,
useGpu
);
INIT_VECTOR
(
bufs1
,
bufs2
,
PARAMETER_LEARNING_RATE
,
size
,
useGpu
);
real
epsilon
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
epsilon
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
learningRate
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
momentum
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
decayRate
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
momentum
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
decayRate
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
EXPRESSION_PERFORMANCE
(
AdagradParameterOptimizer
(
bufs1
,
epsilon
,
learningRate
,
momentum
,
decayRate
));
EXPRESSION_PERFORMANCE
(
AdagradParameterOptimizer
(
bufs1
,
epsilon
,
learningRate
,
momentum
,
decayRate
));
BaseMatrix
&
value
=
*
bufs2
[
PARAMETER_VALUE
];
BaseMatrix
&
grad
=
*
bufs2
[
PARAMETER_GRADIENT
];
...
...
@@ -135,8 +147,16 @@ void testAdagrad(size_t size, bool useGpu) {
BaseMatrix
&
accum
=
*
bufs2
[
PARAMETER_GRADIENT_SQURESUM1
];
BaseMatrix
&
lr
=
*
bufs2
[
PARAMETER_LEARNING_RATE
];
EXPRESSION_PERFORMANCE
(
adagradApply
(
value
,
grad
,
mom
,
accum_buffer
,
accum
,
lr
,
epsilon
,
learningRate
,
momentum
,
decayRate
));
EXPRESSION_PERFORMANCE
(
adagradApply
(
value
,
grad
,
mom
,
accum_buffer
,
accum
,
lr
,
epsilon
,
learningRate
,
momentum
,
decayRate
));
CHECK_VECTORPTR
(
bufs1
[
PARAMETER_VALUE
],
bufs2
[
PARAMETER_VALUE
]);
CHECK_VECTORPTR
(
bufs1
[
PARAMETER_MOMENTUM
],
bufs2
[
PARAMETER_MOMENTUM
]);
...
...
@@ -146,9 +166,7 @@ void testAdagrad(size_t size, bool useGpu) {
bufs2
[
PARAMETER_LEARNING_RATE
]);
}
TEST
(
Training
,
Adagrad
)
{
testCase
(
testAdagrad
);
}
TEST
(
Training
,
Adagrad
)
{
testCase
(
testAdagrad
);
}
void
testAdaDelta
(
size_t
size
,
bool
useGpu
)
{
VectorPtr
bufs1
[
NUM_PARAMETER_TYPES
];
...
...
@@ -160,14 +178,14 @@ void testAdaDelta(size_t size, bool useGpu) {
INIT_VECTOR
(
bufs1
,
bufs2
,
PARAMETER_GRADIENT_SQURESUM1
,
size
,
useGpu
);
INIT_VECTOR
(
bufs1
,
bufs2
,
PARAMETER_LEARNING_RATE
,
size
,
useGpu
);
real
rou
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
epsilon
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
rou
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
epsilon
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
learningRate
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
momentum
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
decayRate
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
momentum
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
decayRate
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
EXPRESSION_PERFORMANCE
(
AdaDeltaParameterOptimizer
(
bufs1
,
rou
,
epsilon
,
learningRate
,
momentum
,
decayRate
));
EXPRESSION_PERFORMANCE
(
AdaDeltaParameterOptimizer
(
bufs1
,
rou
,
epsilon
,
learningRate
,
momentum
,
decayRate
));
BaseMatrix
&
value
=
*
bufs2
[
PARAMETER_VALUE
];
BaseMatrix
&
grad
=
*
bufs2
[
PARAMETER_GRADIENT
];
...
...
@@ -176,8 +194,17 @@ void testAdaDelta(size_t size, bool useGpu) {
BaseMatrix
&
accum_update
=
*
bufs2
[
PARAMETER_GRADIENT_SQURESUM1
];
BaseMatrix
&
lr
=
*
bufs2
[
PARAMETER_LEARNING_RATE
];
EXPRESSION_PERFORMANCE
(
adadeltaApply
(
value
,
grad
,
mom
,
accum
,
accum_update
,
lr
,
rou
,
epsilon
,
learningRate
,
momentum
,
decayRate
));
EXPRESSION_PERFORMANCE
(
adadeltaApply
(
value
,
grad
,
mom
,
accum
,
accum_update
,
lr
,
rou
,
epsilon
,
learningRate
,
momentum
,
decayRate
));
CHECK_VECTORPTR
(
bufs1
[
PARAMETER_VALUE
],
bufs2
[
PARAMETER_VALUE
]);
CHECK_VECTORPTR
(
bufs1
[
PARAMETER_MOMENTUM
],
bufs2
[
PARAMETER_MOMENTUM
]);
...
...
@@ -189,11 +216,9 @@ void testAdaDelta(size_t size, bool useGpu) {
bufs2
[
PARAMETER_LEARNING_RATE
]);
}
TEST
(
Training
,
AdaDelta
)
{
testCase
(
testAdaDelta
);
}
TEST
(
Training
,
AdaDelta
)
{
testCase
(
testAdaDelta
);
}
template
<
bool
isFirstTime
>
template
<
bool
isFirstTime
>
void
testRMSProp
(
size_t
size
,
bool
useGpu
)
{
VectorPtr
bufs1
[
NUM_PARAMETER_TYPES
];
VectorPtr
bufs2
[
NUM_PARAMETER_TYPES
];
...
...
@@ -207,18 +232,23 @@ void testRMSProp(size_t size, bool useGpu) {
/* make sure 'g - f.square()' greater than 0 */
bufs1
[
PARAMETER_GRADIENT_SQURESUM
]
->
add
(
1.0
);
bufs2
[
PARAMETER_GRADIENT_SQURESUM
]
->
copyFrom
(
*
bufs1
[
PARAMETER_GRADIENT_SQURESUM
]);
*
bufs1
[
PARAMETER_GRADIENT_SQURESUM
]);
real
rou
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
epsilon
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
rou
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
epsilon
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
learningRate
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
momentum
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
decayRate
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
momentum
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
decayRate
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
accumulatedRou
=
rou
;
EXPRESSION_PERFORMANCE
(
RMSPropParameterOptimizer
(
bufs1
,
accumulatedRou
,
rou
,
epsilon
,
learningRate
,
momentum
,
decayRate
,
isFirstTime
));
accumulatedRou
,
rou
,
epsilon
,
learningRate
,
momentum
,
decayRate
,
isFirstTime
));
BaseMatrix
&
value
=
*
bufs2
[
PARAMETER_VALUE
];
BaseMatrix
&
grad
=
*
bufs2
[
PARAMETER_GRADIENT
];
...
...
@@ -227,9 +257,19 @@ void testRMSProp(size_t size, bool useGpu) {
BaseMatrix
&
sum1
=
*
bufs2
[
PARAMETER_GRADIENT_SQURESUM1
];
BaseMatrix
&
lr
=
*
bufs2
[
PARAMETER_LEARNING_RATE
];
EXPRESSION_PERFORMANCE
(
rmspropApply
(
value
,
grad
,
mom
,
sum
,
sum1
,
lr
,
accumulatedRou
,
rou
,
epsilon
,
learningRate
,
momentum
,
decayRate
,
isFirstTime
));
EXPRESSION_PERFORMANCE
(
rmspropApply
(
value
,
grad
,
mom
,
sum
,
sum1
,
lr
,
accumulatedRou
,
rou
,
epsilon
,
learningRate
,
momentum
,
decayRate
,
isFirstTime
));
CHECK_VECTORPTR
(
bufs1
[
PARAMETER_VALUE
],
bufs2
[
PARAMETER_VALUE
]);
CHECK_VECTORPTR
(
bufs1
[
PARAMETER_MOMENTUM
],
bufs2
[
PARAMETER_MOMENTUM
]);
...
...
@@ -246,7 +286,7 @@ TEST(Training, RMSProp) {
testCase
(
testRMSProp
<
false
>
);
}
template
<
bool
isFirstTime
>
template
<
bool
isFirstTime
>
void
testDecayedAdagrad
(
size_t
size
,
bool
useGpu
)
{
VectorPtr
bufs1
[
NUM_PARAMETER_TYPES
];
VectorPtr
bufs2
[
NUM_PARAMETER_TYPES
];
...
...
@@ -256,11 +296,11 @@ void testDecayedAdagrad(size_t size, bool useGpu) {
INIT_VECTOR
(
bufs1
,
bufs2
,
PARAMETER_GRADIENT_SQURESUM
,
size
,
useGpu
);
INIT_VECTOR
(
bufs1
,
bufs2
,
PARAMETER_LEARNING_RATE
,
size
,
useGpu
);
real
rou
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
epsilon
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
rou
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
epsilon
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
learningRate
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
momentum
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
decayRate
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
momentum
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
decayRate
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
accumulatedRou
=
rou
;
if
(
isFirstTime
)
{
...
...
@@ -269,8 +309,13 @@ void testDecayedAdagrad(size_t size, bool useGpu) {
}
EXPRESSION_PERFORMANCE
(
DecayedAdagradParameterOptimizer
(
bufs1
,
accumulatedRou
,
rou
,
epsilon
,
learningRate
,
momentum
,
decayRate
,
isFirstTime
));
accumulatedRou
,
rou
,
epsilon
,
learningRate
,
momentum
,
decayRate
,
isFirstTime
));
BaseMatrix
&
value
=
*
bufs2
[
PARAMETER_VALUE
];
BaseMatrix
&
grad
=
*
bufs2
[
PARAMETER_GRADIENT
];
...
...
@@ -278,9 +323,18 @@ void testDecayedAdagrad(size_t size, bool useGpu) {
BaseMatrix
&
sum
=
*
bufs2
[
PARAMETER_GRADIENT_SQURESUM
];
BaseMatrix
&
lr
=
*
bufs2
[
PARAMETER_LEARNING_RATE
];
EXPRESSION_PERFORMANCE
(
decayedAdagradApply
(
value
,
grad
,
mom
,
sum
,
lr
,
accumulatedRou
,
rou
,
epsilon
,
learningRate
,
momentum
,
decayRate
,
isFirstTime
));
EXPRESSION_PERFORMANCE
(
decayedAdagradApply
(
value
,
grad
,
mom
,
sum
,
lr
,
accumulatedRou
,
rou
,
epsilon
,
learningRate
,
momentum
,
decayRate
,
isFirstTime
));
CHECK_VECTORPTR
(
bufs1
[
PARAMETER_VALUE
],
bufs2
[
PARAMETER_VALUE
]);
CHECK_VECTORPTR
(
bufs1
[
PARAMETER_MOMENTUM
],
bufs2
[
PARAMETER_MOMENTUM
]);
...
...
@@ -303,23 +357,31 @@ void testAdam(size_t size, bool useGpu) {
INIT_VECTOR
(
bufs1
,
bufs2
,
PARAMETER_MOMENTUM
,
size
,
useGpu
);
INIT_VECTOR
(
bufs1
,
bufs2
,
PARAMETER_SECOND_MOMENTUM
,
size
,
useGpu
);
real
beta1
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
beta2
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
beta1_power
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
beta2_power
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
epsilon
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
beta1
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
beta2
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
beta1_power
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
beta2_power
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
epsilon
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
learningRate
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
EXPRESSION_PERFORMANCE
(
AdamParameterOptimizer
(
bufs1
,
beta1
,
beta2
,
beta1_power
,
beta2_power
,
epsilon
,
learningRate
));
EXPRESSION_PERFORMANCE
(
AdamParameterOptimizer
(
bufs1
,
beta1
,
beta2
,
beta1_power
,
beta2_power
,
epsilon
,
learningRate
));
BaseMatrix
&
value
=
*
bufs2
[
PARAMETER_VALUE
];
BaseMatrix
&
grad
=
*
bufs2
[
PARAMETER_GRADIENT
];
BaseMatrix
&
mom
=
*
bufs2
[
PARAMETER_MOMENTUM
];
BaseMatrix
&
v
=
*
bufs2
[
PARAMETER_SECOND_MOMENTUM
];
EXPRESSION_PERFORMANCE
(
adamApply
(
value
,
grad
,
mom
,
v
,
beta1
,
beta2
,
beta1_power
,
beta2_power
,
epsilon
,
learningRate
));
EXPRESSION_PERFORMANCE
(
adamApply
(
value
,
grad
,
mom
,
v
,
beta1
,
beta2
,
beta1_power
,
beta2_power
,
epsilon
,
learningRate
));
CHECK_VECTORPTR
(
bufs1
[
PARAMETER_VALUE
],
bufs2
[
PARAMETER_VALUE
]);
CHECK_VECTORPTR
(
bufs1
[
PARAMETER_MOMENTUM
],
bufs2
[
PARAMETER_MOMENTUM
]);
...
...
@@ -327,9 +389,7 @@ void testAdam(size_t size, bool useGpu) {
bufs2
[
PARAMETER_SECOND_MOMENTUM
]);
}
TEST
(
Training
,
Adam
)
{
testCase
(
testAdam
);
}
TEST
(
Training
,
Adam
)
{
testCase
(
testAdam
);
}
void
testAdamax
(
size_t
size
,
bool
useGpu
)
{
VectorPtr
bufs1
[
NUM_PARAMETER_TYPES
];
...
...
@@ -344,16 +404,16 @@ void testAdamax(size_t size, bool useGpu) {
real
alpha
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
int64_t
step
=
2
;
EXPRESSION_PERFORMANCE
(
AdamaxParameterOptimizer
(
bufs1
,
beta1
,
beta2
,
step
,
alpha
));
EXPRESSION_PERFORMANCE
(
AdamaxParameterOptimizer
(
bufs1
,
beta1
,
beta2
,
step
,
alpha
));
BaseMatrix
&
value
=
*
bufs2
[
PARAMETER_VALUE
];
BaseMatrix
&
grad
=
*
bufs2
[
PARAMETER_GRADIENT
];
BaseMatrix
&
mom
=
*
bufs2
[
PARAMETER_MOMENTUM
];
BaseMatrix
&
u
=
*
bufs2
[
PARAMETER_WEIGHTED_INFINITY_NORM
];
EXPRESSION_PERFORMANCE
(
adamaxApply
(
value
,
grad
,
mom
,
u
,
beta1
,
beta2
,
step
,
alpha
));
EXPRESSION_PERFORMANCE
(
adamaxApply
(
value
,
grad
,
mom
,
u
,
beta1
,
beta2
,
step
,
alpha
));
CHECK_VECTORPTR
(
bufs1
[
PARAMETER_VALUE
],
bufs2
[
PARAMETER_VALUE
]);
CHECK_VECTORPTR
(
bufs1
[
PARAMETER_MOMENTUM
],
bufs2
[
PARAMETER_MOMENTUM
]);
...
...
@@ -376,33 +436,29 @@ void testSparseMomentum(size_t size, bool useGpu) {
INIT_VECTOR
(
bufs1
,
bufs2
,
PARAMETER_MOMENTUM_UT
,
size
,
useGpu
);
INIT_VECTOR
(
bufs1
,
bufs2
,
PARAMETER_MOMENTUM_VT
,
size
,
useGpu
);
real
alpha
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
beta
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
gamma
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
tau
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
alpha
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
beta
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
gamma
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
tau
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
real
learningRate
=
(
real
)
rand
()
/
(
real
)
RAND_MAX
;
// NOLINT
EXPRESSION_PERFORMANCE
(
SparseMomentumParameterOptimizer
(
bufs1
,
alpha
,
beta
,
gamma
,
tau
,
learningRate
));
EXPRESSION_PERFORMANCE
(
SparseMomentumParameterOptimizer
(
bufs1
,
alpha
,
beta
,
gamma
,
tau
,
learningRate
));
BaseMatrix
&
value
=
*
bufs2
[
PARAMETER_VALUE
];
BaseMatrix
&
grad
=
*
bufs2
[
PARAMETER_GRADIENT
];
BaseMatrix
&
momU
=
*
bufs2
[
PARAMETER_MOMENTUM_UT
];
BaseMatrix
&
momV
=
*
bufs2
[
PARAMETER_MOMENTUM_VT
];
EXPRESSION_PERFORMANCE
(
sparseMomentumApply
(
value
,
grad
,
momU
,
momV
,
alpha
,
beta
,
gamma
,
tau
,
learningRate
));
EXPRESSION_PERFORMANCE
(
sparseMomentumApply
(
value
,
grad
,
momU
,
momV
,
alpha
,
beta
,
gamma
,
tau
,
learningRate
));
CHECK_VECTORPTR
(
bufs1
[
PARAMETER_VALUE
],
bufs2
[
PARAMETER_VALUE
]);
CHECK_VECTORPTR
(
bufs1
[
PARAMETER_MOMENTUM_UT
],
bufs2
[
PARAMETER_MOMENTUM_UT
]);
CHECK_VECTORPTR
(
bufs1
[
PARAMETER_MOMENTUM_VT
],
bufs2
[
PARAMETER_MOMENTUM_VT
]);
CHECK_VECTORPTR
(
bufs1
[
PARAMETER_MOMENTUM_UT
],
bufs2
[
PARAMETER_MOMENTUM_UT
]);
CHECK_VECTORPTR
(
bufs1
[
PARAMETER_MOMENTUM_VT
],
bufs2
[
PARAMETER_MOMENTUM_VT
]);
}
TEST
(
Training
,
SparseMomentum
)
{
testCase
(
testSparseMomentum
);
}
TEST
(
Training
,
SparseMomentum
)
{
testCase
(
testSparseMomentum
);
}
int
main
(
int
argc
,
char
**
argv
)
{
testing
::
InitGoogleTest
(
&
argc
,
argv
);
...
...
@@ -411,4 +467,3 @@ int main(int argc, char** argv) {
hl_init
(
FLAGS_gpu_id
);
return
RUN_ALL_TESTS
();
}
paddle/math/tests/test_lazyAssign.cu
浏览文件 @
84a0574a
...
...
@@ -16,6 +16,7 @@ limitations under the License. */
#include "paddle/math/Matrix.h"
#include "paddle/math/TensorAssign.h"
#include "TensorCheck.h"
#include "PerfUtils.h"
using
namespace
paddle
;
// NOLINT
using
namespace
std
;
// NOLINT
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录