未验证 提交 8401039f 编写于 作者: C Cao Ying 提交者: GitHub

Merge pull request #5084 from lcy-seso/crf

Add the LinearChainCrf operator.
......@@ -37,32 +37,32 @@ ExecutionContext::GetEigenDevice<platform::GPUPlace, Eigen::GpuDevice>() const {
std::string OperatorBase::Input(const std::string& name) const {
auto& ins = Inputs(name);
PADDLE_ENFORCE_LE(ins.size(), 1UL,
"Op %s input %s should contain only one variable", type_,
name);
"Operator %s's input %s should contain only one variable.",
type_, name);
return ins.empty() ? kEmptyVarName : ins[0];
}
const std::vector<std::string>& OperatorBase::Inputs(
const std::string& name) const {
auto it = inputs_.find(name);
PADDLE_ENFORCE(it != inputs_.end(), "Op %s do not have input %s", type_,
name);
PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
type_, name);
return it->second;
}
std::string OperatorBase::Output(const std::string& name) const {
auto& outs = Outputs(name);
PADDLE_ENFORCE_LE(outs.size(), 1UL,
"Op %s output %s should contain only one variable", type_,
name);
"Operator %s's output %s should contain only one variable.",
type_, name);
return outs.empty() ? kEmptyVarName : outs[0];
}
const std::vector<std::string>& OperatorBase::Outputs(
const std::string& name) const {
auto it = outputs_.find(name);
PADDLE_ENFORCE(it != outputs_.end(), "Op %s does not have output called %s",
type_, name);
PADDLE_ENFORCE(it != outputs_.end(),
"Operator %s does not have an output called %s.", type_, name);
return it->second;
}
......
......@@ -427,7 +427,8 @@ class OperatorWithKernel : public OperatorBase {
int tmp = static_cast<int>(ToDataType(t->type()));
VLOG(3) << "Input " << ipt_name << " with data_type " << tmp;
PADDLE_ENFORCE(tmp == data_type || data_type == -1,
"DataType of Paddle Op %s must be same.", Type());
"DataType of Paddle Op %s must be the same.",
Type());
data_type = tmp;
}
}
......
......@@ -118,10 +118,12 @@ class Tensor {
const platform::DeviceContext& ctx);
/**
* @brief Return the slice of the tensor.
* @brief Return a sub-tensor of the given tensor.
*
* @param[in] begin_idx The begin index of the slice.
* @param[in] end_idx The end index of the slice.
* @param[in] begin_idx The index of the start row(inclusive) to slice.
* The index number begins from 0.
* @param[in] end_idx The index of the end row(exclusive) to slice.
* The index number begins from 0.
*/
inline Tensor Slice(const int& begin_idx, const int& end_idx) const;
......
......@@ -112,9 +112,10 @@ inline void* Tensor::mutable_data(platform::Place place, std::type_index type) {
if (holder_ != nullptr) {
holder_->set_type(type);
}
PADDLE_ENFORCE_GT(numel(), 0,
"Tensor's numel must be larger than zero to call "
"Tensor::mutable_data. Call Tensor::set_dim first.");
PADDLE_ENFORCE_GT(
numel(), 0,
"When calling this method, the Tensor's numel must be larger than zero. "
"Please check Tensor::Resize has been called first.");
int64_t size = numel() * SizeOfType(type);
/* some versions of boost::variant don't have operator!= */
if (holder_ == nullptr || !(holder_->place() == place) ||
......@@ -229,10 +230,12 @@ inline void Tensor::CopyFromVector(const std::vector<T>& src,
inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const {
check_memory_size();
PADDLE_ENFORCE_GE(begin_idx, 0, "Slice begin index is less than zero.");
PADDLE_ENFORCE_LE(end_idx, dims_[0], "Slice end index is out of bound.");
PADDLE_ENFORCE_LT(begin_idx, end_idx,
"Begin index must be less than end index.");
PADDLE_ENFORCE_GE(begin_idx, 0,
"The start row index must be greater than 0.");
PADDLE_ENFORCE_LE(end_idx, dims_[0], "The end row index is out of bound.");
PADDLE_ENFORCE_LT(
begin_idx, end_idx,
"The start row index must be lesser than the end row index.");
if (dims_[0] == 1) {
return *this;
......
......@@ -101,8 +101,10 @@ void CRFLayer::backward(const UpdateCallback& callback) {
: real(1.0f);
instanceWeight *= coeff_;
if (output.grad) {
MatrixPtr grad = output.grad->subRowMatrix(starts[i], starts[i + 1]);
grad->add(*crfs_[i].getXGrad(), real(1.0f), instanceWeight);
}
if (needWGrad) {
weight_->getWGrad()->add(
*crfs_[i].getWGrad(), real(1.0f), instanceWeight);
......
......@@ -102,7 +102,6 @@ real LinearChainCRF::forward(real* x, int* s, int length) {
}
void LinearChainCRF::backward(real* x, int* s, int length, bool needWGrad) {
MatrixPtr matX = Matrix::create(x, length, numClasses_);
Matrix::resizeOrCreate(matGrad_, length, numClasses_);
Matrix::resizeOrCreate(beta_, length, numClasses_);
real* b = b_->getData();
......
......@@ -28,8 +28,9 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
auto x_dims = ctx->GetInputDim("X");
auto label_dims = ctx->GetInputDim("Label");
PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2.");
PADDLE_ENFORCE_EQ(label_dims.size(), 2, "Input(Label)'s rank should be 2.");
PADDLE_ENFORCE_EQ(x_dims.size(), 2UL, "Input(X)'s rank should be 2.");
PADDLE_ENFORCE_EQ(label_dims.size(), 2UL,
"Input(Label)'s rank should be 2.");
PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0],
"The 1st dimension of Input(X) and Input(Label) should "
"be equal.");
......@@ -38,8 +39,8 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
"If Attr(soft_label) == true, the 2nd dimension of "
"Input(X) and Input(Label) should be equal.");
} else {
PADDLE_ENFORCE_EQ(label_dims[1], 1,
"If Attr(soft_label) == false, the 2nd dimension of "
PADDLE_ENFORCE_EQ(label_dims[1], 1UL,
"If Attr(softLabel) == false, the 2nd dimension of "
"Input(Label) should be 1.");
}
......@@ -48,7 +49,8 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
}
protected:
// CrossEntropy's data type just determined by "X"
// Explicitly set that data type of the output of the cross_entropy operator
// is determined by its input "X".
framework::DataType IndicateDataType(
const framework::ExecutionContext& ctx) const override {
return framework::ToDataType(ctx.Input<Tensor>("X")->type());
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/linear_chain_crf_op.h"
namespace paddle {
namespace operators {
class LinearChainCRFOpMaker : public framework::OpProtoAndCheckerMaker {
public:
LinearChainCRFOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput(
"Emission",
"(LoDTensor, default: LoDTensor<float>). "
"The unscaled emission weight matrix for the linear chain CRF. "
"This input is a LoDTensor with shape [N x D] where N is the size of "
"the mini-batch and D is the total tag number.");
AddInput(
"Transition",
"(Tensor, default: Tensor<float>). A Tensor with shape [(D + 2) x D]. "
"The learnable parameter for the linear_chain_crf operator. "
"See more details in the operator's comments.");
AddInput(
"Label",
"(LoDTensor, default: LoDTensor<int>). The ground truth which is a 2-D "
"LoDTensor with shape [N x 1], where N is the total element number in "
"a mini-batch.");
AddOutput(
"Alpha",
"Tensor, default: Tensor<float>. The forward vectors for the entire "
"batch. A two dimensional tensor with shape [N x D], "
"denoted as \f$\alpha\f$. \f$\alpha$\f is a memo table used to "
"calculate the normalization factor in CRF. \f$\alpha[k, v]$\f stores "
"the unnormalized probabilites of all possible unfinished sequences of "
"tags that end at position \f$k$\f with tag \f$v$\f. For each \f$k$\f, "
"\f$\alpha[k, v]$\f is a vector of length \f$D$\f with a component for "
"each tag value \f$v$\f. This vector is called a forward vecotr and "
"will also be used in backward computations.")
.AsIntermediate();
AddOutput("EmissionExps",
"The exponentials of Input(Emission). This is an intermediate "
"computational result in forward computation, and will be reused "
"in backward computation.")
.AsIntermediate();
AddOutput("TransitionExps",
"The exponentials of Input(Transition). This is an intermediate "
"computational result in forward computation, and will be reused "
"in backward computation.")
.AsIntermediate();
AddOutput(
"LogLikelihood",
"(Tensor, default: Tensor<float>). The logarithm of the conditional "
"likelihood of each training sample in a mini-batch. This is a 2-D "
"tensor with shape [S x 1], where S is the sequence number in a "
"mini-batch. Note: S is equal to the sequence number in a mini-batch. "
"The output is no longer a LoDTensor.");
AddComment(R"DOC(
Conditional Random Field defines an undirected probabilistic graph with nodes
denoting random variables and edges denoting dependencies between these
variables. CRF learns the conditional probability \f$P(Y|X)\f$, where
\f$X = (x_1, x_2, ... , x_n)\f$ are structured inputs and
\f$Y = (y_1, y_2, ... , y_n)\f$ are labels for the inputs.
Linear chain CRF is a special case of CRF that is useful for sequence labeling
task. Sequence labeling tasks do not assume a lot of conditional
independences among inputs. The only constraint they impose is that the input
and output must be linear sequences. Thus, the graph of such a CRF is a simple
chain or a line, which results in the linear chain CRF.
This operator implements the Forward-Backward algorithm for the linear chain
CRF. Please see http://www.cs.columbia.edu/~mcollins/fb.pdf and
http://cseweb.ucsd.edu/~elkan/250Bwinter2012/loglinearCRFs.pdf for reference.
Equation:
- Denote Input(Emission) to this operator as \f$x\f$ here.
- The first D values of Input(Transition) to this operator are for starting
weights, denoted as \f$a\f$ here.
- The next D values of Input(Transition) of this operator are for ending
weights, denoted as \f$b\f$ here.
- The remaning values of Input(Transition) are for transition weights,
denoted as \f$w\f$ here.
- Denote Input(Label) as \f$s\f$ here.
The probability of a sequence \f$s\f$ of length \f$L\f$ is defined as:
\f$P(s) = (1/Z) exp(a_{s_1} + b_{s_L}
+ \sum_{l=1}^L x_{s_l}
+ \sum_{l=2}^L w_{s_{l-1},s_l})\f$
where \f$Z\f$ is a normalization value so that the sum of \f$P(s)\f$ over
all possible sequences is \f$1\f$, and \f$x\f$ is the emission feature weight
to the linear chain CRF.
Finaly, the linear chain CRF operator outputs the logarithm of the conditional
likelihood of each training sample in a mini-batch.
NOTE:
1. The feature function for a CRF is made up of the emission features and the
transition features. The emission feature weights are NOT computed in
this operator. They MUST be computed first before this operator is called.
2. Because this operator performs global normalization over all possible
sequences internally, it expects UNSCALED emission feature weights.
Please do not call this op with the emission feature being output of any
nonlinear activation.
3. The 2nd dimension of Input(Emission) MUST be equal to the tag number.
)DOC");
}
};
class LinearChainCRFOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Emission"),
"Input(Emission) should be not null.");
PADDLE_ENFORCE(ctx->HasInput("Transition"),
"Input(Transition) should be not null.");
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
PADDLE_ENFORCE(ctx->HasOutput("Alpha"),
"Output(Alpha) should be not null.");
PADDLE_ENFORCE(ctx->HasOutput("EmissionExps"),
"Output(EmissionExps) should be not null.");
PADDLE_ENFORCE(ctx->HasOutput("TransitionExps"),
"Output(TransitionExps) should be not null.");
PADDLE_ENFORCE(ctx->HasOutput("LogLikelihood"),
"Output(LogLikelihood) should be not null.");
auto emission_dims = ctx->GetInputDim("Emission");
PADDLE_ENFORCE_EQ(emission_dims.size(), 2UL,
"The Input(Emission) should be a 2-D tensor.");
PADDLE_ENFORCE(emission_dims[0], "An empty mini-batch is not allowed.");
auto transition_dims = ctx->GetInputDim("Transition");
PADDLE_ENFORCE_EQ(transition_dims.size(), 2UL,
"The Input(Transition) should be a 2-D tensor.");
PADDLE_ENFORCE_EQ(
transition_dims[0] - 2, transition_dims[1],
"An invalid dimension for the Input(Transition), which should "
"be a 2-D tensor with shape [(D + 2) x D].");
PADDLE_ENFORCE_EQ(
emission_dims[1], transition_dims[1],
"The 2nd dimension of the Input(Emission) and the Input(Transition) "
"should be equal to the tag number.");
auto label_dims = ctx->GetInputDim("Label");
PADDLE_ENFORCE(label_dims.size() == 2UL && label_dims[1] == 1UL,
"The Input(Label) should be a 2-D tensor with the 2nd "
"dimensions fixed to 1.");
PADDLE_ENFORCE_EQ(
emission_dims[0], label_dims[0],
"The height of Input(Emission) and the height of Input(Label) "
"should be the same.");
ctx->SetOutputDim("Alpha", emission_dims);
ctx->SetOutputDim("EmissionExps", emission_dims);
ctx->SetOutputDim("TransitionExps", transition_dims);
// TODO(caoying) This is tricky. The 1st dimension of Output(LogLikelihood)
// is the sequence number in a mini-batch. The dimension set here should be
// resized to its correct size in the function Compute. Fix this once we can
// get LoD information in the InferShape interface.
ctx->SetOutputDim("LogLikelihood", {emission_dims[0], 1});
}
protected:
// Explicitly set that the data type of output of the linear_chain_crf
// operator is determined by its input "Emission".
framework::DataType IndicateDataType(
const framework::ExecutionContext& ctx) const override {
return framework::ToDataType(ctx.Input<LoDTensor>("Emission")->type());
}
};
class LinearChainCRFGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("EmissionExps"),
"Input(EmissionExps) should be not null.");
PADDLE_ENFORCE(ctx->HasInput("TransitionExps"),
"Input(TransitionExps) should be not null.");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("LogLikelihood")),
"Input(LogLikelihood@GRAD) shoudl be not null.");
auto emission_exps_dims = ctx->GetInputDim("EmissionExps");
PADDLE_ENFORCE_EQ(emission_exps_dims.size(), 2UL,
"The Input(EmissionExps) should be a 2-D tensor.");
PADDLE_ENFORCE(emission_exps_dims[0],
"An empty mini-batch is not allowed.");
auto transition_exps_dims = ctx->GetInputDim("TransitionExps");
PADDLE_ENFORCE_EQ(transition_exps_dims.size(), 2UL,
"The Input(TransitionExps) should be a 2-D tensor.");
PADDLE_ENFORCE_EQ(
transition_exps_dims[0] - 2, transition_exps_dims[1],
"An invalid dimension for the Input(TransitionExps), which should "
"be a 2-D tensor with shape [(D + 2) x D].");
PADDLE_ENFORCE_EQ(
emission_exps_dims[1], transition_exps_dims[1],
"The 2nd dimension of the Input(EmissionExps) and the "
"Input(TransitionExps) should be equal to the tag number.");
auto label_dims = ctx->GetInputDim("Label");
PADDLE_ENFORCE(label_dims.size() == 2UL && label_dims[1] == 1UL,
"The Input(Label) should be a 2-D tensor with the 2nd "
"dimensions fixed to 1.");
PADDLE_ENFORCE_EQ(
emission_exps_dims[0], label_dims[0],
"The height of Input(EmissionExps) and the height of Input(Label) "
"should be the same.");
if (ctx->HasOutput(framework::GradVarName("Emission"))) {
ctx->SetOutputDim(framework::GradVarName("Emission"), emission_exps_dims);
}
if (ctx->HasOutput(framework::GradVarName("Transition"))) {
ctx->SetOutputDim(framework::GradVarName("Transition"),
transition_exps_dims);
}
}
protected:
// Explicitly set that the data type of output of the linear_chain_crf_grad
// operator is determined by its input: gradients of LogLikelihood.
framework::DataType IndicateDataType(
const framework::ExecutionContext& ctx) const override {
return framework::ToDataType(
ctx.Input<LoDTensor>(framework::GradVarName("LogLikelihood"))->type());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(linear_chain_crf, ops::LinearChainCRFOp, ops::LinearChainCRFOpMaker,
linear_chain_crf_grad, ops::LinearChainCRFGradOp);
REGISTER_OP_CPU_KERNEL(
linear_chain_crf,
ops::LinearChainCRFOpKernel<paddle::platform::CPUPlace, float>,
ops::LinearChainCRFOpKernel<paddle::platform::CPUPlace, double>);
REGISTER_OP_CPU_KERNEL(
linear_chain_crf_grad,
ops::LinearChainCRFGradOpKernel<paddle::platform::CPUPlace, float>,
ops::LinearChainCRFGradOpKernel<paddle::platform::CPUPlace, double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/linear_chain_crf_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
linear_chain_crf,
ops::LinearChainCRFOpKernel<paddle::platform::GPUPlace, float>,
ops::LinearChainCRFOpKernel<paddle::platform::GPUPlace, double>);
REGISTER_OP_GPU_KERNEL(
linear_chain_crf_grad,
ops::LinearChainCRFGradOpKernel<paddle::platform::GPUPlace, float>,
ops::LinearChainCRFGradOpKernel<paddle::platform::GPUPlace, double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
namespace paddle {
namespace operators {
template <typename T>
static inline T NormalizeL1(T* x, size_t len) {
T sum = 0.;
for (size_t i = 0; i < len; ++i) sum += x[i];
// (This comment is from the old LinearChainCRFLayer.)
// Right now, we just bet that sum won't be zero. If this really happens, we
// will figure out what should be done then.
PADDLE_ENFORCE(sum,
"The unnormalized probabilities of all possible unfinished "
"sequences must be greater than 0.");
T s = 1. / sum;
for (size_t i = 0; i < len; ++i) x[i] *= s;
return sum;
}
template <typename T>
struct ScalarMul {
explicit ScalarMul(const T& scalar) : scalar(scalar) {}
T operator()(const T& val) const { return val * scalar; }
T scalar;
};
using framework::LoDTensor;
using framework::LoD;
using framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
template <typename Place, typename T>
class LinearChainCRFOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
// TODO(caoying) The checks related to LoD information should be
// moved into InferShape once after the InferShape is refactored.
PADDLE_ENFORCE_EQ(ctx.Input<LoDTensor>("Emission")->NumLevels(), 1UL,
"The Input(Emission) should be a sequence.");
PADDLE_ENFORCE_EQ(ctx.Input<LoDTensor>("Label")->NumLevels(), 1UL,
"The Input(Label) should be a sequence.");
auto in_lod = ctx.Input<LoDTensor>("Label")->lod();
PADDLE_ENFORCE(in_lod.size(), "Input(Label) must be a sequence.");
const size_t level = 0;
const size_t seq_num = in_lod[level].size() - 1;
// These local variables hold the inputs and outputs, garanteeing them on
// CPU memory, to provide a consistent reference.
// TODO(caoying) Fix this by moving all these local variables into the
// class's data members once we can profile the whole training process.
LoDTensor* emission_weights = nullptr;
LoDTensor emission_weight_tensor;
Tensor* transition_weights = nullptr;
Tensor transition_weight_tensor;
LoDTensor* label = nullptr;
LoDTensor label_tensor;
Tensor* emission_exps = nullptr;
Tensor emission_exps_tensor;
Tensor* transition_exps = nullptr;
Tensor transition_exps_tensor;
Tensor* alpha = nullptr;
Tensor alpha_tensor;
Tensor* ll = nullptr;
Tensor ll_tensor;
if (platform::is_gpu_place(ctx.GetPlace())) {
emission_weights = &emission_weight_tensor;
transition_weights = &transition_weight_tensor;
label = &label_tensor;
CopyInputsToCpuMemory(
ctx.device_context(), *ctx.Input<LoDTensor>("Emission"),
*ctx.Input<Tensor>("Transition"), *ctx.Input<LoDTensor>("Label"),
emission_weights, transition_weights, label);
emission_exps = &emission_exps_tensor;
emission_exps->Resize(emission_weights->dims());
transition_exps = &transition_exps_tensor;
transition_exps->Resize(transition_weights->dims());
alpha = &alpha_tensor;
alpha->Resize(ctx.Output<Tensor>("Alpha")->dims());
ll = &ll_tensor;
} else {
emission_weights =
const_cast<LoDTensor*>(ctx.Input<LoDTensor>("Emission"));
transition_weights = const_cast<Tensor*>(ctx.Input<Tensor>("Transition"));
label = const_cast<LoDTensor*>(ctx.Input<LoDTensor>("Label"));
emission_exps = ctx.Output<Tensor>("EmissionExps");
transition_exps = ctx.Output<Tensor>("TransitionExps");
alpha = ctx.Output<Tensor>("Alpha");
ll = ctx.Output<Tensor>("LogLikelihood");
}
// Because the computation codes only runs on CPU, here the memory for all
// the outputs is FIXED to be allocated on the CPU memory.
emission_exps->mutable_data<T>(platform::CPUPlace());
transition_exps->mutable_data<T>(platform::CPUPlace());
alpha->mutable_data<T>(platform::CPUPlace());
// Resize the output tensor to its correct dimension.
ll->Resize({static_cast<int>(seq_num), 1});
ll->mutable_data<T>(platform::CPUPlace());
// Now, all the inputs and outputs should be on the CPU memory.
auto emission_dims = emission_weights->dims();
const size_t batch_size = emission_dims[0];
const size_t tag_num = emission_dims[1];
Tensor emission_row_max;
emission_row_max.mutable_data<T>(
framework::make_ddim({static_cast<int>(batch_size), 1}),
platform::CPUPlace());
auto place = ctx.GetEigenDevice<platform::CPUPlace>();
auto x = EigenMatrix<T>::From(*emission_weights);
auto x_row_max = EigenMatrix<T>::From(emission_row_max);
x_row_max.device(place) =
x.maximum(Eigen::DSizes<int, 1>(1))
.reshape(Eigen::DSizes<int, 2>(int(batch_size), 1));
auto x_exps = EigenMatrix<T>::From(*emission_exps);
x_exps.device(place) =
(x - x_row_max.broadcast(Eigen::DSizes<int, 2>(1, tag_num))).exp();
auto w = EigenMatrix<T>::From(*transition_weights);
auto w_exps = EigenMatrix<T>::From(*transition_exps);
w_exps.device(place) = w.exp();
T* log_likelihood = ll->data<T>();
for (size_t i = 0; i < seq_num; ++i) {
int start_pos = static_cast<int>(in_lod[level][i]);
int end_pos = static_cast<int>(in_lod[level][i + 1]);
if (end_pos == start_pos) {
// If an empty input sequence is given, pad 0 for its cost.
log_likelihood[i] = 0.;
continue;
}
const Tensor one_seq = emission_weights->Slice(start_pos, end_pos);
Tensor one_seq_row_max = emission_row_max.Slice(start_pos, end_pos);
Tensor one_seq_exps = emission_exps->Slice(start_pos, end_pos);
const Tensor one_seq_label = label->Slice(start_pos, end_pos);
Tensor one_seq_alpha = alpha->Slice(start_pos, end_pos);
log_likelihood[i] = ForwardOneSequence(
one_seq, one_seq_row_max, one_seq_exps, *transition_weights,
*transition_exps, one_seq_label, &one_seq_alpha);
}
if (platform::is_gpu_place(ctx.GetPlace())) {
CopyOutputsToGpuMemory(
ctx.device_context(), *emission_exps, *transition_exps, *alpha, *ll,
ctx.Output<Tensor>("EmissionExps"),
ctx.Output<Tensor>("TransitionExps"), ctx.Output<Tensor>("Alpha"),
ctx.Output<Tensor>("LogLikelihood"));
}
};
private:
void CopyInputsToCpuMemory(const platform::DeviceContext& ctx,
const LoDTensor& emission_weights_src,
const Tensor& transition_weights_src,
const LoDTensor& label_src,
LoDTensor* emission_weights_dst,
Tensor* transition_weights_dst,
LoDTensor* label_dst) const {
// Copy the inputs from GPU memory to CPU memory if this operators runs on
// GPU device.
auto copyLoDTensor = [](const platform::DeviceContext& ctx,
const LoDTensor& src, LoDTensor* dst) {
dst->mutable_data<T>(src.dims(), platform::CPUPlace());
dst->CopyFrom(src, platform::CPUPlace(), ctx);
};
copyLoDTensor(ctx, emission_weights_src, emission_weights_dst);
copyLoDTensor(ctx, label_src, label_dst);
transition_weights_dst->mutable_data<T>(transition_weights_src.dims(),
platform::CPUPlace());
transition_weights_dst->CopyFrom(transition_weights_src,
platform::CPUPlace(), ctx);
}
void CopyOutputsToGpuMemory(const platform::DeviceContext& ctx,
const Tensor& emission_exps_src,
const Tensor& transition_exps_src,
const Tensor& alpha_src, const Tensor& ll_src,
Tensor* emission_exps_dst,
Tensor* transition_exps_dst, Tensor* alpha_dst,
Tensor* ll_dst) const {
// Copy the forward results from CPU memory to GPU memory if this
// operators runs on GPU device.
auto copyTensor = [](const platform::DeviceContext& ctx, const Tensor& src,
Tensor* dst) {
dst->mutable_data<T>(platform::GPUPlace());
dst->CopyFrom(src, platform::GPUPlace(), ctx);
};
copyTensor(ctx, emission_exps_src, emission_exps_dst);
copyTensor(ctx, transition_exps_src, transition_exps_dst);
copyTensor(ctx, alpha_src, alpha_dst);
copyTensor(ctx, ll_src, ll_dst);
}
T ForwardOneSequence(const Tensor& emission, const Tensor& emission_row_max,
const Tensor& emission_exps, const Tensor& trans_weights,
const Tensor& trans_weight_exps, const Tensor& label,
Tensor* alpha) const {
const T* x = emission.data<T>();
const T* x_row_max = emission_row_max.data<T>();
const T* x_exps = emission_exps.data<T>();
const T* w = trans_weights.data<T>();
const T* w_exps = trans_weight_exps.data<T>();
T* alpha_value = alpha->data<T>();
auto x_dims = emission.dims();
const size_t seq_length = x_dims[0];
const size_t tag_num = x_dims[1];
// The 1st row of w are transition weights for start mask.
// The 2nd row of w are transition weights for end mask.
// Transition weights between other tags begin from the 3rd row of w.
const size_t state_trans_base_idx = 2;
for (size_t i = 0; i < tag_num; ++i) {
alpha_value[i] = w_exps[i] * x_exps[i];
}
T ll = -x_row_max[0] - std::log(NormalizeL1<T>(alpha_value, tag_num));
for (size_t k = 1; k < seq_length; ++k) {
for (size_t i = 0; i < tag_num; ++i) {
T sum = 0.;
for (size_t j = 0; j < tag_num; ++j) {
sum += alpha_value[(k - 1) * tag_num + j] * // (*)
w_exps[(j + state_trans_base_idx) * tag_num + i];
}
alpha_value[k * tag_num + i] = x_exps[k * tag_num + i] * sum;
}
// NormalizeL1 is to avoid underflow or overflow at (*).
ll -= x_row_max[k] +
std::log(NormalizeL1<T>(alpha_value + k * tag_num, tag_num));
}
T sum = 0.;
for (size_t i = 0; i < tag_num; ++i) {
sum += alpha_value[(seq_length - 1) * tag_num + i] * w_exps[tag_num + i];
}
ll -= std::log(sum);
// Now ll is equal to -log(Z).
const int* lbl = label.data<int>();
PADDLE_ENFORCE_LT(
*std::max_element(lbl, lbl + seq_length), tag_num,
"An invalid tag label that execesses the largest tag number.");
// Calculate the nominator part, which depends on the label sequence.
ll += w[lbl[0]] /*start transition*/ + x[lbl[0]] +
w[tag_num + lbl[seq_length - 1]] /*end transition*/;
for (size_t k = 1; k < seq_length; ++k) {
ll += x[k * tag_num + lbl[k]] +
w[(lbl[k - 1] + state_trans_base_idx) * tag_num + lbl[k]];
}
return -ll;
}
};
template <typename Place, typename T>
class LinearChainCRFGradOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
const size_t level = 0; // currently, only support sequence.
auto lod = ctx.Input<LoDTensor>("Label")->lod();
PADDLE_ENFORCE(lod.size(), "Input(Label) must be a sequence.");
// These local variables hold the inputs and outputs, garanteeing them on
// CPU memory, to provide a consistent reference.
// TODO(caoying) Fix this by moving all these local variables into the
// class's data members once we can profile the training process, or
// implementing a real GPU kernel for CRF.
Tensor* label = nullptr;
Tensor label_tensor;
Tensor* emission_exps = nullptr;
Tensor emission_exps_tensor;
Tensor* transition_exps = nullptr;
Tensor transition_exps_tensor;
Tensor* alpha = nullptr;
Tensor alpha_tensor;
Tensor ll_grad_tensor;
T* ll_grad = nullptr;
Tensor* emission_grad = nullptr;
Tensor emission_grad_tensor;
Tensor* transition_grad = nullptr;
Tensor transition_grad_tensor;
if (platform::is_gpu_place(ctx.GetPlace())) {
label = &label_tensor;
emission_exps = &emission_exps_tensor;
transition_exps = &transition_exps_tensor;
alpha = &alpha_tensor;
CopyInputsToCpuMemory(
ctx.device_context(), *ctx.Input<LoDTensor>("Label"),
*ctx.Input<Tensor>("EmissionExps"),
*ctx.Input<Tensor>("TransitionExps"), *ctx.Input<Tensor>("Alpha"),
*ctx.Input<Tensor>(framework::GradVarName("LogLikelihood")), label,
emission_exps, transition_exps, alpha, &ll_grad_tensor);
ll_grad = ll_grad_tensor.data<T>();
if (ctx.Output<Tensor>(framework::GradVarName("Emission"))) {
emission_grad = &emission_grad_tensor;
emission_grad->Resize(emission_exps->dims());
}
if (ctx.Output<Tensor>(framework::GradVarName("Transition"))) {
transition_grad = &transition_grad_tensor;
transition_grad->Resize(transition_exps->dims());
}
} else {
label = const_cast<LoDTensor*>(ctx.Input<LoDTensor>("Label"));
emission_exps = const_cast<Tensor*>(ctx.Input<Tensor>("EmissionExps"));
transition_exps =
const_cast<Tensor*>(ctx.Input<Tensor>("TransitionExps"));
alpha = const_cast<Tensor*>(ctx.Input<Tensor>("Alpha"));
ll_grad = const_cast<Tensor*>(
ctx.Input<Tensor>(framework::GradVarName("LogLikelihood")))
->data<T>();
emission_grad = ctx.Output<Tensor>(framework::GradVarName("Emission"));
transition_grad =
ctx.Output<Tensor>(framework::GradVarName("Transition"));
}
// TODO(caoying) Fix this constraint. When the Input(Emission) is from the
// data reader operator, it can have no gradients.
PADDLE_ENFORCE(emission_grad, "Output(Emission@Grad) should not be null.");
emission_grad->mutable_data<T>(platform::CPUPlace());
if (transition_grad) {
transition_grad->mutable_data<T>(platform::CPUPlace());
math::SetConstant<platform::CPUPlace, T>()(ctx.device_context(),
transition_grad, 0.);
}
// Now, all the inputs and outputs should be on the CPU memory.
auto emission_dims = emission_exps->dims();
// Beta is the memo table used in dynamic programming to calculate the
// backwark vectors. For a backward vector i (the i-th row of beta), it
// captures the unnormalized probabilities of partial sequences starting
// at position i.
Tensor beta;
beta.mutable_data<T>(emission_dims, platform::CPUPlace());
for (size_t i = 0; i < lod[level].size() - 1; ++i) {
int start_pos = static_cast<int>(lod[level][i]);
int end_pos = static_cast<int>(lod[level][i + 1]);
if (end_pos == start_pos) continue;
const Tensor one_seq_emission_exps =
emission_exps->Slice(start_pos, end_pos);
const Tensor one_seq_label = label->Slice(start_pos, end_pos);
const Tensor one_seq_alpha = alpha->Slice(start_pos, end_pos);
Tensor one_seq_beta = beta.Slice(start_pos, end_pos);
Tensor one_seq_emission_grad = emission_grad->Slice(start_pos, end_pos);
BackwardOneSequence(ctx.device_context(), ll_grad[i],
one_seq_emission_exps, *transition_exps,
one_seq_alpha, one_seq_label, &one_seq_beta,
transition_grad, &one_seq_emission_grad);
}
if (platform::is_gpu_place(ctx.GetPlace())) {
CopyOutputsToGpuMemory(
ctx.device_context(), emission_grad, transition_grad,
ctx.Output<Tensor>(framework::GradVarName("Emission")),
ctx.Output<Tensor>(framework::GradVarName("Transition")));
}
};
private:
void CopyInputsToCpuMemory(const platform::DeviceContext& ctx,
const LoDTensor& label_src,
const Tensor& emission_exps_src,
const Tensor& transition_exps_src,
const Tensor& alpha_src, const Tensor& ll_grad_src,
Tensor* label_dst, Tensor* emission_exps_dst,
Tensor* transition_exps_dst, Tensor* alpha_dst,
Tensor* ll_grad_dst) const {
// Copy the inputs from GPU memory to CPU memory when this operators runs on
// GPU device.
label_dst->mutable_data<T>(label_src.dims(), platform::CPUPlace());
label_dst->CopyFrom(label_src, platform::CPUPlace(), ctx);
auto copyTensor = [](const platform::DeviceContext& ctx, const Tensor& src,
Tensor* dst) {
dst->mutable_data<T>(src.dims(), platform::CPUPlace());
dst->CopyFrom(src, platform::CPUPlace(), ctx);
};
copyTensor(ctx, emission_exps_src, emission_exps_dst);
copyTensor(ctx, transition_exps_src, transition_exps_dst);
copyTensor(ctx, alpha_src, alpha_dst);
copyTensor(ctx, ll_grad_src, ll_grad_dst);
}
void CopyOutputsToGpuMemory(const platform::DeviceContext& ctx,
const Tensor* emission_grad_src,
const Tensor* transition_grad_src,
Tensor* emission_grad_dst,
Tensor* transition_grad_dst) const {
// Copy the backward results from CPU memory to GPU
// memory if this operators runs on GPU device.
auto copyTensor = [](const platform::DeviceContext& ctx, const Tensor* src,
Tensor* dst) {
if (src && dst) {
dst->mutable_data<T>(platform::GPUPlace());
dst->CopyFrom(*src, platform::GPUPlace(), ctx);
}
};
copyTensor(ctx, emission_grad_src, emission_grad_dst);
copyTensor(ctx, transition_grad_src, transition_grad_dst);
}
void BackwardOneSequence(const platform::DeviceContext& ctx, const T ll_grad,
const Tensor& emission_exps,
const Tensor& transition_exps, const Tensor& alpha,
const Tensor& label, Tensor* beta,
Tensor* transition_grad,
Tensor* emission_grad) const {
const T* w_exps = transition_exps.data<T>();
const T* x_exps = emission_exps.data<T>();
const int* label_value = label.data<int>();
T* beta_value = beta->data<T>();
auto x_dims = emission_exps.dims();
const size_t seq_length = x_dims[0];
const size_t tag_num = x_dims[1];
const size_t state_trans_base_idx = 2;
// Calculate the backward vectors: beta.
// First, calculate the initialition state.
for (size_t i = 0; i < tag_num; ++i) {
beta_value[(seq_length - 1) * tag_num + i] = w_exps[tag_num + i];
}
NormalizeL1<T>(beta_value + (seq_length - 1) * tag_num, tag_num);
for (int k = static_cast<int>(seq_length) - 2; k >= 0; --k) {
for (size_t i = 0; i < tag_num; ++i) {
T sum = 0.;
for (size_t j = 0; j < tag_num; ++j) {
sum += w_exps[(i + state_trans_base_idx) * tag_num + j] * // (**)
x_exps[(k + 1) * tag_num + j] *
beta_value[(k + 1) * tag_num + j];
}
beta_value[k * tag_num + i] = sum;
}
// NormalizeL1 is to avoid underflow or overflow at (**).
NormalizeL1<T>(beta_value + k * tag_num, tag_num);
}
auto x_grad_mat = EigenMatrix<T>::From(*emission_grad);
auto alpha_mat = EigenMatrix<T>::From(alpha);
auto beta_mat = EigenMatrix<T>::From(*beta);
auto* place = ctx.GetEigenDevice<platform::CPUPlace>();
auto prob = alpha_mat * beta_mat;
auto row_sum = prob.sum(Eigen::DSizes<int, 1>(1))
.reshape(Eigen::DSizes<int, 2>(seq_length, 1))
.broadcast(Eigen::DSizes<int, 2>(1, tag_num));
x_grad_mat.device(*place) =
(prob / row_sum).unaryExpr(ScalarMul<T>(ll_grad));
for (size_t k = 0; k < seq_length; ++k) {
x_grad_mat(k, label_value[k]) -= static_cast<T>(ll_grad);
}
if (transition_grad) {
T* trans_grad = transition_grad->data<T>();
for (size_t k = 0; k < tag_num; ++k) {
// Do not multiply by the output gradient here, because x_grad_mat has
// alrealy done this.
trans_grad[k] += x_grad_mat(/*from start state*/ 0, k);
trans_grad[tag_num + k] +=
x_grad_mat(/*to end state*/ seq_length - 1, k);
}
auto x_exps_mat = EigenMatrix<T>::From(emission_exps);
// TODO(caoying): Fix this to avoid using this local variable if we can
// profile the training process.
Tensor tmp;
tmp.mutable_data<T>(beta->dims(), platform::CPUPlace());
auto tmp_mat = EigenMatrix<T>::From(tmp);
auto prob = beta_mat * x_exps_mat;
auto row_sum = prob.sum(Eigen::DSizes<int, 1>(1))
.reshape(Eigen::DSizes<int, 2>(seq_length, 1))
.broadcast(Eigen::DSizes<int, 2>(1, tag_num));
tmp_mat.device(*place) = prob / row_sum;
for (size_t k = 1; k < seq_length; ++k) {
T sum = 0.;
for (size_t i = 0; i < tag_num; ++i) {
for (size_t j = 0; j < tag_num; ++j) {
sum += w_exps[(i + state_trans_base_idx) * tag_num + j] * // (**)
alpha_mat(k - 1, i) * tmp_mat(k, j);
}
}
sum = 1. / sum;
for (size_t i = 0; i < tag_num; ++i) {
for (size_t j = 0; j < tag_num; ++j) {
trans_grad[(i + state_trans_base_idx) * tag_num + j] +=
sum * w_exps[(i + state_trans_base_idx) * tag_num + j] *
alpha_mat(k - 1, i) * tmp_mat(k, j) * ll_grad;
}
}
trans_grad[(label_value[k - 1] + state_trans_base_idx) * tag_num +
label_value[k]] -= static_cast<T>(ll_grad);
}
}
}
};
} // namespace operators
} // namespace paddle
......@@ -32,9 +32,9 @@ class SoftmaxWithCrossEntropyOpMaker
AddInput("Label",
"(Tensor, default: Tensor<int>), The ground truth which is a 2-D "
"tensor. "
"If softLable is set to 0, Label is a Tensor<int> with shape [N x "
"1]. "
"If softLable is set to 1, Label is a Tensor<float/double> "
"If softLabel is set to false, Label is a Tensor<int> with shape "
"[N x 1]."
"If softLabel is set to true, Label is a Tensor<float/double> "
"with shape [N x K].");
AddOutput(
"Softmax",
......@@ -60,19 +60,23 @@ Because this operators performs a softmax on logits internally, it expects
unscaled logits. Please do not call this op with the output of softmax operator,
which will produce incorrect results.
This operators expects mutually exclusive hard labels, each sample in a batch
is in exactly one class with probabilities 1. Each sample in the batch with one
and only one label.
When the attribute softLabel is set false, this operators expects mutually
exclusive hard labels, each sample in a batch is in exactly one class with
probabilities 1. Each sample in the batch with one and only one label.
Equation:
1) hard label (one-hot label)
Loss_j = -\text{Logit}_{Label_j} + \log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right), j = 1, ..., K
Loss_j = \f$ -\text{Logit}_{Label_j} +
\log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right),
j = 1, ..., K $\f
2) soft label (a distribution over all classes)
Loss_j = -\sum_{i=0}^{K}\text{Label}_i\left(\text{Logit}_i-\log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right)\right), j = 1,...,K
Loss_j = \f$ -\sum_{i=0}^{K}\text{Label}_i\left(\text{Logit}_i -
\log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right)\right),
j = 1,...,K $\f
)DOC");
}
......
import unittest
import random
import numpy as np
from op_test import OpTest
class LinearChainCrfForward(object):
def __init__(self, seq_start_positions, emission_weights, emission_row_max,
emission_exps, transition_weights, transition_exps, labels):
self.tag_num = emission_weights.shape[1]
self.seq_num = len(seq_start_positions) - 1
self.seq_start_positions = seq_start_positions
self.labels = labels
self.x = emission_weights
self.x_row_max = emission_row_max
self.x_exps = emission_exps
# unnormalized logits of the transition weights for the start mark.
self.a = transition_weights[0, :]
self.a_exps = transition_exps[0, :]
# unnormalized logits of the transition weights for the end mark.
self.b = transition_weights[1, :]
self.b_exps = transition_exps[1, :]
# unnormalized logits of the transition weights for all the other tags.
self.w = transition_weights[2:, :]
self.w_exps = transition_exps[2:, :]
# The output of linear chain crf operator.
# alpha is a memo table in dynamic programming to caculate
# nomalization factor.
self.alpha = np.zeros(
(seq_start_positions[-1], self.tag_num), dtype="float64")
self.log_likelihood = np.zeros((self.seq_num, 1))
def _l1_norm(self, x):
s = np.sum(x)
x /= s
return s
def _forward_a_sequence(self, x, x_row_max, x_exps, label, alpha):
seq_len = x_row_max.shape[0]
log_likelihood = 0.
for i in range(self.tag_num):
alpha[0, i] = self.a_exps[i] * x_exps[0, i]
log_likelihood = -x_row_max[0] - np.log(self._l1_norm(alpha[0, :]))
# calculate the unnormalized logits of the normalization factor.
for k in range(1, seq_len):
for i in range(self.tag_num):
s = 0.
for j in range(self.tag_num):
s += alpha[k - 1, j] * self.w_exps[j, i]
alpha[k, i] = x_exps[k, i] * s
log_likelihood -= x_row_max[k] + np.log(self._l1_norm(alpha[k, :]))
s = 0.
for i in range(self.tag_num):
s += alpha[-1, i] * self.b_exps[i]
log_likelihood -= np.log(s)
# calculate the nominator part.
log_likelihood += (
self.a[label[0]] + x[0, label[0]] + self.b[label[-1]])
for k in range(1, seq_len):
log_likelihood += (x[k, label[k]] + self.w[label[k - 1], label[k]])
return -log_likelihood
def crf_forward_compute(self):
for i in range(self.seq_num):
start = self.seq_start_positions[i]
end = self.seq_start_positions[i + 1]
self.log_likelihood[i] = self._forward_a_sequence(
self.x[start:end, :], self.x_row_max[start:end, :],
self.x_exps[start:end, :], self.labels[start:end, :],
self.alpha[start:end, :])
return self.alpha, self.log_likelihood
class TestLinearChainCrfOp(OpTest):
def set_test_data(self):
# TODO(caoying) Fix the unittest by: add the boundary cases when
# sequence lengths are 1, 2, and 3.
SEQ_NUM = 3
TAG_NUM = 17
MAX_SEQ_LEN = 5
# the linear_chain_crf operator only supports sequence (LoD level = 1)
lod = [[0]]
for i in range(SEQ_NUM):
lod[-1].append(lod[-1][-1] + random.randint(1, MAX_SEQ_LEN))
emission = np.random.uniform(-1, 1,
[lod[-1][-1], TAG_NUM]).astype("float64")
emission_row_max = np.amax(emission, axis=1, keepdims=True)
emission_exps = np.exp(emission - emission_row_max)
transition = np.random.uniform(-0.5, 0.5,
[TAG_NUM + 2, TAG_NUM]).astype("float64")
transition_exps = np.exp(transition)
labels = np.random.randint(
low=0, high=TAG_NUM, size=(lod[-1][-1], 1), dtype="int32")
self.inputs = {
"Emission": (emission, lod),
"Transition": transition,
"Label": (labels, lod)
}
crf = LinearChainCrfForward(lod[0], emission, emission_row_max,
emission_exps, transition, transition_exps,
labels)
alpha, log_likelihood = crf.crf_forward_compute()
self.outputs = {
"Alpha": alpha,
"EmissionExps": emission_exps,
"TransitionExps": transition_exps,
"LogLikelihood": log_likelihood
}
def setUp(self):
self.op_type = "linear_chain_crf"
self.set_test_data()
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["Emission", "Transition"], "LogLikelihood")
def test_check_grad_ignore_transition(self):
self.check_grad(
["Emission"], "LogLikelihood", no_grad_set=set("Transition"))
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册