Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
8401039f
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8401039f
编写于
10月 31, 2017
作者:
C
Cao Ying
提交者:
GitHub
10月 31, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #5084 from lcy-seso/crf
Add the LinearChainCrf operator.
上级
d3b07a6e
ebd992ec
变更
12
展开全部
隐藏空白更改
内联
并排
Showing
12 changed file
with
1020 addition
and
35 deletion
+1020
-35
paddle/framework/operator.cc
paddle/framework/operator.cc
+8
-8
paddle/framework/operator.h
paddle/framework/operator.h
+2
-1
paddle/framework/tensor.h
paddle/framework/tensor.h
+5
-3
paddle/framework/tensor_impl.h
paddle/framework/tensor_impl.h
+10
-7
paddle/gserver/layers/CRFLayer.cpp
paddle/gserver/layers/CRFLayer.cpp
+4
-2
paddle/gserver/layers/LinearChainCRF.cpp
paddle/gserver/layers/LinearChainCRF.cpp
+0
-1
paddle/operators/cross_entropy_op.cc
paddle/operators/cross_entropy_op.cc
+7
-5
paddle/operators/linear_chain_crf_op.cc
paddle/operators/linear_chain_crf_op.cc
+261
-0
paddle/operators/linear_chain_crf_op.cu
paddle/operators/linear_chain_crf_op.cu
+26
-0
paddle/operators/linear_chain_crf_op.h
paddle/operators/linear_chain_crf_op.h
+543
-0
paddle/operators/softmax_with_cross_entropy_op.cc
paddle/operators/softmax_with_cross_entropy_op.cc
+12
-8
python/paddle/v2/framework/tests/test_linear_chain_crf_op.py
python/paddle/v2/framework/tests/test_linear_chain_crf_op.py
+142
-0
未找到文件。
paddle/framework/operator.cc
浏览文件 @
8401039f
...
...
@@ -37,32 +37,32 @@ ExecutionContext::GetEigenDevice<platform::GPUPlace, Eigen::GpuDevice>() const {
std
::
string
OperatorBase
::
Input
(
const
std
::
string
&
name
)
const
{
auto
&
ins
=
Inputs
(
name
);
PADDLE_ENFORCE_LE
(
ins
.
size
(),
1UL
,
"Op
%s input %s should contain only one variable"
,
type_
,
name
);
"Op
erator %s's input %s should contain only one variable."
,
type_
,
name
);
return
ins
.
empty
()
?
kEmptyVarName
:
ins
[
0
];
}
const
std
::
vector
<
std
::
string
>&
OperatorBase
::
Inputs
(
const
std
::
string
&
name
)
const
{
auto
it
=
inputs_
.
find
(
name
);
PADDLE_ENFORCE
(
it
!=
inputs_
.
end
(),
"Op
%s do not have input %s"
,
type_
,
name
);
PADDLE_ENFORCE
(
it
!=
inputs_
.
end
(),
"Op
erator %s does not have the input %s."
,
type_
,
name
);
return
it
->
second
;
}
std
::
string
OperatorBase
::
Output
(
const
std
::
string
&
name
)
const
{
auto
&
outs
=
Outputs
(
name
);
PADDLE_ENFORCE_LE
(
outs
.
size
(),
1UL
,
"Op
%s output %s should contain only one variable"
,
type_
,
name
);
"Op
erator %s's output %s should contain only one variable."
,
type_
,
name
);
return
outs
.
empty
()
?
kEmptyVarName
:
outs
[
0
];
}
const
std
::
vector
<
std
::
string
>&
OperatorBase
::
Outputs
(
const
std
::
string
&
name
)
const
{
auto
it
=
outputs_
.
find
(
name
);
PADDLE_ENFORCE
(
it
!=
outputs_
.
end
(),
"Op %s does not have output called %s"
,
type_
,
name
);
PADDLE_ENFORCE
(
it
!=
outputs_
.
end
(),
"Operator %s does not have an output called %s."
,
type_
,
name
);
return
it
->
second
;
}
...
...
paddle/framework/operator.h
浏览文件 @
8401039f
...
...
@@ -427,7 +427,8 @@ class OperatorWithKernel : public OperatorBase {
int
tmp
=
static_cast
<
int
>
(
ToDataType
(
t
->
type
()));
VLOG
(
3
)
<<
"Input "
<<
ipt_name
<<
" with data_type "
<<
tmp
;
PADDLE_ENFORCE
(
tmp
==
data_type
||
data_type
==
-
1
,
"DataType of Paddle Op %s must be same."
,
Type
());
"DataType of Paddle Op %s must be the same."
,
Type
());
data_type
=
tmp
;
}
}
...
...
paddle/framework/tensor.h
浏览文件 @
8401039f
...
...
@@ -118,10 +118,12 @@ class Tensor {
const
platform
::
DeviceContext
&
ctx
);
/**
* @brief
Return the slice of the
tensor.
* @brief
Return a sub-tensor of the given
tensor.
*
* @param[in] begin_idx The begin index of the slice.
* @param[in] end_idx The end index of the slice.
* @param[in] begin_idx The index of the start row(inclusive) to slice.
* The index number begins from 0.
* @param[in] end_idx The index of the end row(exclusive) to slice.
* The index number begins from 0.
*/
inline
Tensor
Slice
(
const
int
&
begin_idx
,
const
int
&
end_idx
)
const
;
...
...
paddle/framework/tensor_impl.h
浏览文件 @
8401039f
...
...
@@ -112,9 +112,10 @@ inline void* Tensor::mutable_data(platform::Place place, std::type_index type) {
if
(
holder_
!=
nullptr
)
{
holder_
->
set_type
(
type
);
}
PADDLE_ENFORCE_GT
(
numel
(),
0
,
"Tensor's numel must be larger than zero to call "
"Tensor::mutable_data. Call Tensor::set_dim first."
);
PADDLE_ENFORCE_GT
(
numel
(),
0
,
"When calling this method, the Tensor's numel must be larger than zero. "
"Please check Tensor::Resize has been called first."
);
int64_t
size
=
numel
()
*
SizeOfType
(
type
);
/* some versions of boost::variant don't have operator!= */
if
(
holder_
==
nullptr
||
!
(
holder_
->
place
()
==
place
)
||
...
...
@@ -229,10 +230,12 @@ inline void Tensor::CopyFromVector(const std::vector<T>& src,
inline
Tensor
Tensor
::
Slice
(
const
int
&
begin_idx
,
const
int
&
end_idx
)
const
{
check_memory_size
();
PADDLE_ENFORCE_GE
(
begin_idx
,
0
,
"Slice begin index is less than zero."
);
PADDLE_ENFORCE_LE
(
end_idx
,
dims_
[
0
],
"Slice end index is out of bound."
);
PADDLE_ENFORCE_LT
(
begin_idx
,
end_idx
,
"Begin index must be less than end index."
);
PADDLE_ENFORCE_GE
(
begin_idx
,
0
,
"The start row index must be greater than 0."
);
PADDLE_ENFORCE_LE
(
end_idx
,
dims_
[
0
],
"The end row index is out of bound."
);
PADDLE_ENFORCE_LT
(
begin_idx
,
end_idx
,
"The start row index must be lesser than the end row index."
);
if
(
dims_
[
0
]
==
1
)
{
return
*
this
;
...
...
paddle/gserver/layers/CRFLayer.cpp
浏览文件 @
8401039f
...
...
@@ -101,8 +101,10 @@ void CRFLayer::backward(const UpdateCallback& callback) {
:
real
(
1.0
f
);
instanceWeight
*=
coeff_
;
MatrixPtr
grad
=
output
.
grad
->
subRowMatrix
(
starts
[
i
],
starts
[
i
+
1
]);
grad
->
add
(
*
crfs_
[
i
].
getXGrad
(),
real
(
1.0
f
),
instanceWeight
);
if
(
output
.
grad
)
{
MatrixPtr
grad
=
output
.
grad
->
subRowMatrix
(
starts
[
i
],
starts
[
i
+
1
]);
grad
->
add
(
*
crfs_
[
i
].
getXGrad
(),
real
(
1.0
f
),
instanceWeight
);
}
if
(
needWGrad
)
{
weight_
->
getWGrad
()
->
add
(
*
crfs_
[
i
].
getWGrad
(),
real
(
1.0
f
),
instanceWeight
);
...
...
paddle/gserver/layers/LinearChainCRF.cpp
浏览文件 @
8401039f
...
...
@@ -102,7 +102,6 @@ real LinearChainCRF::forward(real* x, int* s, int length) {
}
void
LinearChainCRF
::
backward
(
real
*
x
,
int
*
s
,
int
length
,
bool
needWGrad
)
{
MatrixPtr
matX
=
Matrix
::
create
(
x
,
length
,
numClasses_
);
Matrix
::
resizeOrCreate
(
matGrad_
,
length
,
numClasses_
);
Matrix
::
resizeOrCreate
(
beta_
,
length
,
numClasses_
);
real
*
b
=
b_
->
getData
();
...
...
paddle/operators/cross_entropy_op.cc
浏览文件 @
8401039f
...
...
@@ -28,8 +28,9 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
,
"Input(X)'s rank should be 2."
);
PADDLE_ENFORCE_EQ
(
label_dims
.
size
(),
2
,
"Input(Label)'s rank should be 2."
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2UL
,
"Input(X)'s rank should be 2."
);
PADDLE_ENFORCE_EQ
(
label_dims
.
size
(),
2UL
,
"Input(Label)'s rank should be 2."
);
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
label_dims
[
0
],
"The 1st dimension of Input(X) and Input(Label) should "
"be equal."
);
...
...
@@ -38,8 +39,8 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
"If Attr(soft_label) == true, the 2nd dimension of "
"Input(X) and Input(Label) should be equal."
);
}
else
{
PADDLE_ENFORCE_EQ
(
label_dims
[
1
],
1
,
"If Attr(soft
_l
abel) == false, the 2nd dimension of "
PADDLE_ENFORCE_EQ
(
label_dims
[
1
],
1
UL
,
"If Attr(soft
L
abel) == false, the 2nd dimension of "
"Input(Label) should be 1."
);
}
...
...
@@ -48,7 +49,8 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
}
protected:
// CrossEntropy's data type just determined by "X"
// Explicitly set that data type of the output of the cross_entropy operator
// is determined by its input "X".
framework
::
DataType
IndicateDataType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
());
...
...
paddle/operators/linear_chain_crf_op.cc
0 → 100644
浏览文件 @
8401039f
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/linear_chain_crf_op.h"
namespace
paddle
{
namespace
operators
{
class
LinearChainCRFOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
LinearChainCRFOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Emission"
,
"(LoDTensor, default: LoDTensor<float>). "
"The unscaled emission weight matrix for the linear chain CRF. "
"This input is a LoDTensor with shape [N x D] where N is the size of "
"the mini-batch and D is the total tag number."
);
AddInput
(
"Transition"
,
"(Tensor, default: Tensor<float>). A Tensor with shape [(D + 2) x D]. "
"The learnable parameter for the linear_chain_crf operator. "
"See more details in the operator's comments."
);
AddInput
(
"Label"
,
"(LoDTensor, default: LoDTensor<int>). The ground truth which is a 2-D "
"LoDTensor with shape [N x 1], where N is the total element number in "
"a mini-batch."
);
AddOutput
(
"Alpha"
,
"Tensor, default: Tensor<float>. The forward vectors for the entire "
"batch. A two dimensional tensor with shape [N x D], "
"denoted as
\f
$
\a
lpha
\f
$.
\f
$
\a
lpha$
\f
is a memo table used to "
"calculate the normalization factor in CRF.
\f
$
\a
lpha[k, v]$
\f
stores "
"the unnormalized probabilites of all possible unfinished sequences of "
"tags that end at position
\f
$k$
\f
with tag
\f
$v$
\f
. For each
\f
$k$
\f
, "
"
\f
$
\a
lpha[k, v]$
\f
is a vector of length
\f
$D$
\f
with a component for "
"each tag value
\f
$v$
\f
. This vector is called a forward vecotr and "
"will also be used in backward computations."
)
.
AsIntermediate
();
AddOutput
(
"EmissionExps"
,
"The exponentials of Input(Emission). This is an intermediate "
"computational result in forward computation, and will be reused "
"in backward computation."
)
.
AsIntermediate
();
AddOutput
(
"TransitionExps"
,
"The exponentials of Input(Transition). This is an intermediate "
"computational result in forward computation, and will be reused "
"in backward computation."
)
.
AsIntermediate
();
AddOutput
(
"LogLikelihood"
,
"(Tensor, default: Tensor<float>). The logarithm of the conditional "
"likelihood of each training sample in a mini-batch. This is a 2-D "
"tensor with shape [S x 1], where S is the sequence number in a "
"mini-batch. Note: S is equal to the sequence number in a mini-batch. "
"The output is no longer a LoDTensor."
);
AddComment
(
R"DOC(
Conditional Random Field defines an undirected probabilistic graph with nodes
denoting random variables and edges denoting dependencies between these
variables. CRF learns the conditional probability \f$P(Y|X)\f$, where
\f$X = (x_1, x_2, ... , x_n)\f$ are structured inputs and
\f$Y = (y_1, y_2, ... , y_n)\f$ are labels for the inputs.
Linear chain CRF is a special case of CRF that is useful for sequence labeling
task. Sequence labeling tasks do not assume a lot of conditional
independences among inputs. The only constraint they impose is that the input
and output must be linear sequences. Thus, the graph of such a CRF is a simple
chain or a line, which results in the linear chain CRF.
This operator implements the Forward-Backward algorithm for the linear chain
CRF. Please see http://www.cs.columbia.edu/~mcollins/fb.pdf and
http://cseweb.ucsd.edu/~elkan/250Bwinter2012/loglinearCRFs.pdf for reference.
Equation:
- Denote Input(Emission) to this operator as \f$x\f$ here.
- The first D values of Input(Transition) to this operator are for starting
weights, denoted as \f$a\f$ here.
- The next D values of Input(Transition) of this operator are for ending
weights, denoted as \f$b\f$ here.
- The remaning values of Input(Transition) are for transition weights,
denoted as \f$w\f$ here.
- Denote Input(Label) as \f$s\f$ here.
The probability of a sequence \f$s\f$ of length \f$L\f$ is defined as:
\f$P(s) = (1/Z) exp(a_{s_1} + b_{s_L}
+ \sum_{l=1}^L x_{s_l}
+ \sum_{l=2}^L w_{s_{l-1},s_l})\f$
where \f$Z\f$ is a normalization value so that the sum of \f$P(s)\f$ over
all possible sequences is \f$1\f$, and \f$x\f$ is the emission feature weight
to the linear chain CRF.
Finaly, the linear chain CRF operator outputs the logarithm of the conditional
likelihood of each training sample in a mini-batch.
NOTE:
1. The feature function for a CRF is made up of the emission features and the
transition features. The emission feature weights are NOT computed in
this operator. They MUST be computed first before this operator is called.
2. Because this operator performs global normalization over all possible
sequences internally, it expects UNSCALED emission feature weights.
Please do not call this op with the emission feature being output of any
nonlinear activation.
3. The 2nd dimension of Input(Emission) MUST be equal to the tag number.
)DOC"
);
}
};
class
LinearChainCRFOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Emission"
),
"Input(Emission) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Transition"
),
"Input(Transition) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
"Input(Label) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Alpha"
),
"Output(Alpha) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"EmissionExps"
),
"Output(EmissionExps) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"TransitionExps"
),
"Output(TransitionExps) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"LogLikelihood"
),
"Output(LogLikelihood) should be not null."
);
auto
emission_dims
=
ctx
->
GetInputDim
(
"Emission"
);
PADDLE_ENFORCE_EQ
(
emission_dims
.
size
(),
2UL
,
"The Input(Emission) should be a 2-D tensor."
);
PADDLE_ENFORCE
(
emission_dims
[
0
],
"An empty mini-batch is not allowed."
);
auto
transition_dims
=
ctx
->
GetInputDim
(
"Transition"
);
PADDLE_ENFORCE_EQ
(
transition_dims
.
size
(),
2UL
,
"The Input(Transition) should be a 2-D tensor."
);
PADDLE_ENFORCE_EQ
(
transition_dims
[
0
]
-
2
,
transition_dims
[
1
],
"An invalid dimension for the Input(Transition), which should "
"be a 2-D tensor with shape [(D + 2) x D]."
);
PADDLE_ENFORCE_EQ
(
emission_dims
[
1
],
transition_dims
[
1
],
"The 2nd dimension of the Input(Emission) and the Input(Transition) "
"should be equal to the tag number."
);
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
PADDLE_ENFORCE
(
label_dims
.
size
()
==
2UL
&&
label_dims
[
1
]
==
1UL
,
"The Input(Label) should be a 2-D tensor with the 2nd "
"dimensions fixed to 1."
);
PADDLE_ENFORCE_EQ
(
emission_dims
[
0
],
label_dims
[
0
],
"The height of Input(Emission) and the height of Input(Label) "
"should be the same."
);
ctx
->
SetOutputDim
(
"Alpha"
,
emission_dims
);
ctx
->
SetOutputDim
(
"EmissionExps"
,
emission_dims
);
ctx
->
SetOutputDim
(
"TransitionExps"
,
transition_dims
);
// TODO(caoying) This is tricky. The 1st dimension of Output(LogLikelihood)
// is the sequence number in a mini-batch. The dimension set here should be
// resized to its correct size in the function Compute. Fix this once we can
// get LoD information in the InferShape interface.
ctx
->
SetOutputDim
(
"LogLikelihood"
,
{
emission_dims
[
0
],
1
});
}
protected:
// Explicitly set that the data type of output of the linear_chain_crf
// operator is determined by its input "Emission".
framework
::
DataType
IndicateDataType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
ToDataType
(
ctx
.
Input
<
LoDTensor
>
(
"Emission"
)
->
type
());
}
};
class
LinearChainCRFGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"EmissionExps"
),
"Input(EmissionExps) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"TransitionExps"
),
"Input(TransitionExps) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"LogLikelihood"
)),
"Input(LogLikelihood@GRAD) shoudl be not null."
);
auto
emission_exps_dims
=
ctx
->
GetInputDim
(
"EmissionExps"
);
PADDLE_ENFORCE_EQ
(
emission_exps_dims
.
size
(),
2UL
,
"The Input(EmissionExps) should be a 2-D tensor."
);
PADDLE_ENFORCE
(
emission_exps_dims
[
0
],
"An empty mini-batch is not allowed."
);
auto
transition_exps_dims
=
ctx
->
GetInputDim
(
"TransitionExps"
);
PADDLE_ENFORCE_EQ
(
transition_exps_dims
.
size
(),
2UL
,
"The Input(TransitionExps) should be a 2-D tensor."
);
PADDLE_ENFORCE_EQ
(
transition_exps_dims
[
0
]
-
2
,
transition_exps_dims
[
1
],
"An invalid dimension for the Input(TransitionExps), which should "
"be a 2-D tensor with shape [(D + 2) x D]."
);
PADDLE_ENFORCE_EQ
(
emission_exps_dims
[
1
],
transition_exps_dims
[
1
],
"The 2nd dimension of the Input(EmissionExps) and the "
"Input(TransitionExps) should be equal to the tag number."
);
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
PADDLE_ENFORCE
(
label_dims
.
size
()
==
2UL
&&
label_dims
[
1
]
==
1UL
,
"The Input(Label) should be a 2-D tensor with the 2nd "
"dimensions fixed to 1."
);
PADDLE_ENFORCE_EQ
(
emission_exps_dims
[
0
],
label_dims
[
0
],
"The height of Input(EmissionExps) and the height of Input(Label) "
"should be the same."
);
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Emission"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Emission"
),
emission_exps_dims
);
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Transition"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Transition"
),
transition_exps_dims
);
}
}
protected:
// Explicitly set that the data type of output of the linear_chain_crf_grad
// operator is determined by its input: gradients of LogLikelihood.
framework
::
DataType
IndicateDataType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
ToDataType
(
ctx
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"LogLikelihood"
))
->
type
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
linear_chain_crf
,
ops
::
LinearChainCRFOp
,
ops
::
LinearChainCRFOpMaker
,
linear_chain_crf_grad
,
ops
::
LinearChainCRFGradOp
);
REGISTER_OP_CPU_KERNEL
(
linear_chain_crf
,
ops
::
LinearChainCRFOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
LinearChainCRFOpKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
linear_chain_crf_grad
,
ops
::
LinearChainCRFGradOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
LinearChainCRFGradOpKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
paddle/operators/linear_chain_crf_op.cu
0 → 100644
浏览文件 @
8401039f
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/linear_chain_crf_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
linear_chain_crf
,
ops
::
LinearChainCRFOpKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
LinearChainCRFOpKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
REGISTER_OP_GPU_KERNEL
(
linear_chain_crf_grad
,
ops
::
LinearChainCRFGradOpKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
LinearChainCRFGradOpKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
paddle/operators/linear_chain_crf_op.h
0 → 100644
浏览文件 @
8401039f
此差异已折叠。
点击以展开。
paddle/operators/softmax_with_cross_entropy_op.cc
浏览文件 @
8401039f
...
...
@@ -32,9 +32,9 @@ class SoftmaxWithCrossEntropyOpMaker
AddInput
(
"Label"
,
"(Tensor, default: Tensor<int>), The ground truth which is a 2-D "
"tensor. "
"If softLab
le is set to 0, Label is a Tensor<int> with shape [N x
"
"
1].
"
"If softLab
le is set to 1
, Label is a Tensor<float/double> "
"If softLab
el is set to false, Label is a Tensor<int> with shape
"
"
[N x 1].
"
"If softLab
el is set to true
, Label is a Tensor<float/double> "
"with shape [N x K]."
);
AddOutput
(
"Softmax"
,
...
...
@@ -60,19 +60,23 @@ Because this operators performs a softmax on logits internally, it expects
unscaled logits. Please do not call this op with the output of softmax operator,
which will produce incorrect results.
This operators expects mutually exclusive hard labels, each sample in a batch
is in exactly one class with probabilities 1. Each sample in the batch with one
and only one label.
When the attribute softLabel is set false, this operators expects mutually
exclusive hard labels, each sample in a batch is in exactly one class with
probabilities 1. Each sample in the batch with one
and only one label.
Equation:
1) hard label (one-hot label)
Loss_j = -\text{Logit}_{Label_j} + \log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right), j = 1, ..., K
Loss_j = \f$ -\text{Logit}_{Label_j} +
\log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right),
j = 1, ..., K $\f
2) soft label (a distribution over all classes)
Loss_j = -\sum_{i=0}^{K}\text{Label}_i\left(\text{Logit}_i-\log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right)\right), j = 1,...,K
Loss_j = \f$ -\sum_{i=0}^{K}\text{Label}_i\left(\text{Logit}_i -
\log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right)\right),
j = 1,...,K $\f
)DOC"
);
}
...
...
python/paddle/v2/framework/tests/test_linear_chain_crf_op.py
0 → 100644
浏览文件 @
8401039f
import
unittest
import
random
import
numpy
as
np
from
op_test
import
OpTest
class
LinearChainCrfForward
(
object
):
def
__init__
(
self
,
seq_start_positions
,
emission_weights
,
emission_row_max
,
emission_exps
,
transition_weights
,
transition_exps
,
labels
):
self
.
tag_num
=
emission_weights
.
shape
[
1
]
self
.
seq_num
=
len
(
seq_start_positions
)
-
1
self
.
seq_start_positions
=
seq_start_positions
self
.
labels
=
labels
self
.
x
=
emission_weights
self
.
x_row_max
=
emission_row_max
self
.
x_exps
=
emission_exps
# unnormalized logits of the transition weights for the start mark.
self
.
a
=
transition_weights
[
0
,
:]
self
.
a_exps
=
transition_exps
[
0
,
:]
# unnormalized logits of the transition weights for the end mark.
self
.
b
=
transition_weights
[
1
,
:]
self
.
b_exps
=
transition_exps
[
1
,
:]
# unnormalized logits of the transition weights for all the other tags.
self
.
w
=
transition_weights
[
2
:,
:]
self
.
w_exps
=
transition_exps
[
2
:,
:]
# The output of linear chain crf operator.
# alpha is a memo table in dynamic programming to caculate
# nomalization factor.
self
.
alpha
=
np
.
zeros
(
(
seq_start_positions
[
-
1
],
self
.
tag_num
),
dtype
=
"float64"
)
self
.
log_likelihood
=
np
.
zeros
((
self
.
seq_num
,
1
))
def
_l1_norm
(
self
,
x
):
s
=
np
.
sum
(
x
)
x
/=
s
return
s
def
_forward_a_sequence
(
self
,
x
,
x_row_max
,
x_exps
,
label
,
alpha
):
seq_len
=
x_row_max
.
shape
[
0
]
log_likelihood
=
0.
for
i
in
range
(
self
.
tag_num
):
alpha
[
0
,
i
]
=
self
.
a_exps
[
i
]
*
x_exps
[
0
,
i
]
log_likelihood
=
-
x_row_max
[
0
]
-
np
.
log
(
self
.
_l1_norm
(
alpha
[
0
,
:]))
# calculate the unnormalized logits of the normalization factor.
for
k
in
range
(
1
,
seq_len
):
for
i
in
range
(
self
.
tag_num
):
s
=
0.
for
j
in
range
(
self
.
tag_num
):
s
+=
alpha
[
k
-
1
,
j
]
*
self
.
w_exps
[
j
,
i
]
alpha
[
k
,
i
]
=
x_exps
[
k
,
i
]
*
s
log_likelihood
-=
x_row_max
[
k
]
+
np
.
log
(
self
.
_l1_norm
(
alpha
[
k
,
:]))
s
=
0.
for
i
in
range
(
self
.
tag_num
):
s
+=
alpha
[
-
1
,
i
]
*
self
.
b_exps
[
i
]
log_likelihood
-=
np
.
log
(
s
)
# calculate the nominator part.
log_likelihood
+=
(
self
.
a
[
label
[
0
]]
+
x
[
0
,
label
[
0
]]
+
self
.
b
[
label
[
-
1
]])
for
k
in
range
(
1
,
seq_len
):
log_likelihood
+=
(
x
[
k
,
label
[
k
]]
+
self
.
w
[
label
[
k
-
1
],
label
[
k
]])
return
-
log_likelihood
def
crf_forward_compute
(
self
):
for
i
in
range
(
self
.
seq_num
):
start
=
self
.
seq_start_positions
[
i
]
end
=
self
.
seq_start_positions
[
i
+
1
]
self
.
log_likelihood
[
i
]
=
self
.
_forward_a_sequence
(
self
.
x
[
start
:
end
,
:],
self
.
x_row_max
[
start
:
end
,
:],
self
.
x_exps
[
start
:
end
,
:],
self
.
labels
[
start
:
end
,
:],
self
.
alpha
[
start
:
end
,
:])
return
self
.
alpha
,
self
.
log_likelihood
class
TestLinearChainCrfOp
(
OpTest
):
def
set_test_data
(
self
):
# TODO(caoying) Fix the unittest by: add the boundary cases when
# sequence lengths are 1, 2, and 3.
SEQ_NUM
=
3
TAG_NUM
=
17
MAX_SEQ_LEN
=
5
# the linear_chain_crf operator only supports sequence (LoD level = 1)
lod
=
[[
0
]]
for
i
in
range
(
SEQ_NUM
):
lod
[
-
1
].
append
(
lod
[
-
1
][
-
1
]
+
random
.
randint
(
1
,
MAX_SEQ_LEN
))
emission
=
np
.
random
.
uniform
(
-
1
,
1
,
[
lod
[
-
1
][
-
1
],
TAG_NUM
]).
astype
(
"float64"
)
emission_row_max
=
np
.
amax
(
emission
,
axis
=
1
,
keepdims
=
True
)
emission_exps
=
np
.
exp
(
emission
-
emission_row_max
)
transition
=
np
.
random
.
uniform
(
-
0.5
,
0.5
,
[
TAG_NUM
+
2
,
TAG_NUM
]).
astype
(
"float64"
)
transition_exps
=
np
.
exp
(
transition
)
labels
=
np
.
random
.
randint
(
low
=
0
,
high
=
TAG_NUM
,
size
=
(
lod
[
-
1
][
-
1
],
1
),
dtype
=
"int32"
)
self
.
inputs
=
{
"Emission"
:
(
emission
,
lod
),
"Transition"
:
transition
,
"Label"
:
(
labels
,
lod
)
}
crf
=
LinearChainCrfForward
(
lod
[
0
],
emission
,
emission_row_max
,
emission_exps
,
transition
,
transition_exps
,
labels
)
alpha
,
log_likelihood
=
crf
.
crf_forward_compute
()
self
.
outputs
=
{
"Alpha"
:
alpha
,
"EmissionExps"
:
emission_exps
,
"TransitionExps"
:
transition_exps
,
"LogLikelihood"
:
log_likelihood
}
def
setUp
(
self
):
self
.
op_type
=
"linear_chain_crf"
self
.
set_test_data
()
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"Emission"
,
"Transition"
],
"LogLikelihood"
)
def
test_check_grad_ignore_transition
(
self
):
self
.
check_grad
(
[
"Emission"
],
"LogLikelihood"
,
no_grad_set
=
set
(
"Transition"
))
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录