Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
8368e55b
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8368e55b
编写于
12月 04, 2017
作者:
S
sweetsky0901
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
modify some doc
上级
531e7b6f
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
38 addition
and
32 deletion
+38
-32
paddle/operators/spp_op.cc
paddle/operators/spp_op.cc
+2
-2
paddle/operators/spp_op.h
paddle/operators/spp_op.h
+24
-23
python/paddle/v2/fluid/tests/test_spp_op.py
python/paddle/v2/fluid/tests/test_spp_op.py
+12
-7
未找到文件。
paddle/operators/spp_op.cc
浏览文件 @
8368e55b
...
@@ -29,7 +29,7 @@ class SppOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -29,7 +29,7 @@ class SppOpMaker : public framework::OpProtoAndCheckerMaker {
"(Tensor) The output tensor of spp operator."
"(Tensor) The output tensor of spp operator."
"N * M."
"N * M."
"M = C * H * W"
);
"M = C * H * W"
);
AddAttr
<
int
>
(
"pyramid_height"
,
"int"
);
AddAttr
<
int
>
(
"pyramid_height"
,
"int"
,
"multi level pooling"
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
"Does spatial pyramid pooling on the input image by taking the max,
"Does spatial pyramid pooling on the input image by taking the max,
etc. within regions so that the result vector of different sized
etc. within regions so that the result vector of different sized
...
@@ -39,7 +39,7 @@ class SppOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -39,7 +39,7 @@ class SppOpMaker : public framework::OpProtoAndCheckerMaker {
Where
Where
$$
$$
H_{out} = N \\
H_{out} = N \\
W_{out} = ((
std::pow(4, pyramid_height) - 1) / (4 - 1))
* C_{in}
W_{out} = ((
(4^pyramid_height) - 1) / (4 - 1))$
* C_{in}
$$
$$
)DOC"
);
)DOC"
);
}
}
...
...
paddle/operators/spp_op.h
浏览文件 @
8368e55b
...
@@ -34,27 +34,27 @@ class SppKernel : public framework::OpKernel<T> {
...
@@ -34,27 +34,27 @@ class SppKernel : public framework::OpKernel<T> {
size_t
output_offset
=
0
;
size_t
output_offset
=
0
;
for
(
int
p
=
0
;
p
<
pyramid_height
;
++
p
)
{
for
(
int
p
=
0
;
p
<
pyramid_height
;
++
p
)
{
int
bins
=
std
::
pow
(
2
,
p
);
int
bins
=
std
::
pow
(
2
,
p
);
int
ksize_h
=
std
::
ceil
(
input_h
/
static_cast
<
double
>
(
bins
));
int
k
ernel_
size_h
=
std
::
ceil
(
input_h
/
static_cast
<
double
>
(
bins
));
int
ksize_w
=
std
::
ceil
(
input_w
/
static_cast
<
double
>
(
bins
));
int
k
ernel_
size_w
=
std
::
ceil
(
input_w
/
static_cast
<
double
>
(
bins
));
int
padding_h
=
(
ksize_h
*
bins
-
input_h
+
1
)
/
2
;
int
padding_h
=
(
k
ernel_
size_h
*
bins
-
input_h
+
1
)
/
2
;
int
padding_w
=
(
ksize_w
*
bins
-
input_w
+
1
)
/
2
;
int
padding_w
=
(
k
ernel_
size_w
*
bins
-
input_w
+
1
)
/
2
;
std
::
vector
<
int
>
k
size
({
ksize_h
,
k
size_w
});
std
::
vector
<
int
>
k
ernel_size
({
kernel_size_h
,
kernel_
size_w
});
std
::
vector
<
int
>
strides
({
k
size_h
,
k
size_w
});
std
::
vector
<
int
>
strides
({
k
ernel_size_h
,
kernel_
size_w
});
std
::
vector
<
int
>
paddings
({
padding_h
,
padding_w
});
std
::
vector
<
int
>
paddings
({
padding_h
,
padding_w
});
// pooling output shape
// pooling output shape
framework
::
Tensor
out_level
;
framework
::
Tensor
out_level
;
std
::
vector
<
int64_t
>
output_shape_vec
({
in_x
->
dims
()[
0
],
in_x
->
dims
()[
1
]});
std
::
vector
<
int64_t
>
output_shape_vec
({
in_x
->
dims
()[
0
],
in_x
->
dims
()[
1
]});
output_shape_vec
.
push_back
(
(
input_h
-
ksize_h
+
2
*
padding_h
)
/
ksize_h
+
output_shape_vec
.
push_back
(
1
);
(
input_h
-
kernel_size_h
+
2
*
padding_h
)
/
kernel_size_h
+
1
);
output_shape_vec
.
push_back
(
(
input_w
-
ksize_w
+
2
*
padding_w
)
/
ksize_w
+
output_shape_vec
.
push_back
(
1
);
(
input_w
-
kernel_size_w
+
2
*
padding_w
)
/
kernel_size_w
+
1
);
framework
::
DDim
output_shape
(
framework
::
make_ddim
(
output_shape_vec
));
framework
::
DDim
output_shape
(
framework
::
make_ddim
(
output_shape_vec
));
out_level
.
mutable_data
<
T
>
(
output_shape
,
context
.
GetPlace
());
out_level
.
mutable_data
<
T
>
(
output_shape
,
context
.
GetPlace
());
// pooling
// pooling
math
::
Pool2dFunctor
<
Place
,
math
::
MaxPool
<
T
>
,
T
>
pool_forward
;
math
::
Pool2dFunctor
<
Place
,
math
::
MaxPool
<
T
>
,
T
>
pool_forward
;
math
::
MaxPool
<
T
>
max_process
;
math
::
MaxPool
<
T
>
max_process
;
pool_forward
(
context
.
device_context
(),
*
in_x
,
k
size
,
strides
,
padding
s
,
pool_forward
(
context
.
device_context
(),
*
in_x
,
k
ernel_size
,
stride
s
,
max_process
,
&
out_level
);
paddings
,
max_process
,
&
out_level
);
// flatten pooling output shape
// flatten pooling output shape
framework
::
Tensor
out_flatten_level
;
framework
::
Tensor
out_flatten_level
;
int
output_flatten_w
=
in_x
->
dims
()[
1
]
*
bins
*
bins
;
int
output_flatten_w
=
in_x
->
dims
()[
1
]
*
bins
*
bins
;
...
@@ -96,12 +96,12 @@ class SppGradKernel : public framework::OpKernel<T> {
...
@@ -96,12 +96,12 @@ class SppGradKernel : public framework::OpKernel<T> {
size_t
out_offset
=
0
;
size_t
out_offset
=
0
;
for
(
int
p
=
0
;
p
<
pyramid_height
;
++
p
)
{
for
(
int
p
=
0
;
p
<
pyramid_height
;
++
p
)
{
int
bins
=
std
::
pow
(
2
,
p
);
int
bins
=
std
::
pow
(
2
,
p
);
int
ksize_h
=
std
::
ceil
(
input_h
/
static_cast
<
double
>
(
bins
));
int
k
ernel_
size_h
=
std
::
ceil
(
input_h
/
static_cast
<
double
>
(
bins
));
int
ksize_w
=
std
::
ceil
(
input_w
/
static_cast
<
double
>
(
bins
));
int
k
ernel_
size_w
=
std
::
ceil
(
input_w
/
static_cast
<
double
>
(
bins
));
int
padding_h
=
(
ksize_h
*
bins
-
input_h
+
1
)
/
2
;
int
padding_h
=
(
k
ernel_
size_h
*
bins
-
input_h
+
1
)
/
2
;
int
padding_w
=
(
ksize_w
*
bins
-
input_w
+
1
)
/
2
;
int
padding_w
=
(
k
ernel_
size_w
*
bins
-
input_w
+
1
)
/
2
;
std
::
vector
<
int
>
k
size
({
ksize_h
,
k
size_w
});
std
::
vector
<
int
>
k
ernel_size
({
kernel_size_h
,
kernel_
size_w
});
std
::
vector
<
int
>
strides
({
k
size_h
,
k
size_w
});
std
::
vector
<
int
>
strides
({
k
ernel_size_h
,
kernel_
size_w
});
std
::
vector
<
int
>
paddings
({
padding_h
,
padding_w
});
std
::
vector
<
int
>
paddings
({
padding_h
,
padding_w
});
// split out and outgrad ... to flatten
// split out and outgrad ... to flatten
framework
::
Tensor
out_flatten_level
;
framework
::
Tensor
out_flatten_level
;
...
@@ -129,10 +129,10 @@ class SppGradKernel : public framework::OpKernel<T> {
...
@@ -129,10 +129,10 @@ class SppGradKernel : public framework::OpKernel<T> {
framework
::
Tensor
out_level
;
framework
::
Tensor
out_level
;
framework
::
Tensor
outgrad_level
;
framework
::
Tensor
outgrad_level
;
std
::
vector
<
int64_t
>
out_shape_vec
({
in_x
->
dims
()[
0
],
in_x
->
dims
()[
1
]});
std
::
vector
<
int64_t
>
out_shape_vec
({
in_x
->
dims
()[
0
],
in_x
->
dims
()[
1
]});
out_shape_vec
.
push_back
(
(
input_h
-
ksize_h
+
2
*
padding_h
)
/
ksize_h
+
out_shape_vec
.
push_back
(
1
);
(
input_h
-
kernel_size_h
+
2
*
padding_h
)
/
kernel_size_h
+
1
);
out_shape_vec
.
push_back
(
(
input_w
-
ksize_w
+
2
*
padding_w
)
/
ksize_w
+
out_shape_vec
.
push_back
(
1
);
(
input_w
-
kernel_size_w
+
2
*
padding_w
)
/
kernel_size_w
+
1
);
framework
::
DDim
out_shape
(
framework
::
make_ddim
(
out_shape_vec
));
framework
::
DDim
out_shape
(
framework
::
make_ddim
(
out_shape_vec
));
out_level
.
ShareDataWith
(
out_flatten_level
);
out_level
.
ShareDataWith
(
out_flatten_level
);
out_level
.
Resize
(
out_shape
);
out_level
.
Resize
(
out_shape
);
...
@@ -141,7 +141,8 @@ class SppGradKernel : public framework::OpKernel<T> {
...
@@ -141,7 +141,8 @@ class SppGradKernel : public framework::OpKernel<T> {
// pooling backward
// pooling backward
math
::
MaxPool2dGradFunctor
<
Place
,
T
>
pool2d_backward
;
math
::
MaxPool2dGradFunctor
<
Place
,
T
>
pool2d_backward
;
pool2d_backward
(
context
.
device_context
(),
*
in_x
,
*&
out_level
,
pool2d_backward
(
context
.
device_context
(),
*
in_x
,
*&
out_level
,
*&
outgrad_level
,
ksize
,
strides
,
paddings
,
in_x_grad
);
*&
outgrad_level
,
kernel_size
,
strides
,
paddings
,
in_x_grad
);
}
}
}
}
};
};
...
...
python/paddle/v2/fluid/tests/test_spp_op.py
浏览文件 @
8368e55b
...
@@ -13,14 +13,19 @@ class TestSppOp(OpTest):
...
@@ -13,14 +13,19 @@ class TestSppOp(OpTest):
out_level_flatten
=
[]
out_level_flatten
=
[]
for
i
in
xrange
(
self
.
pyramid_height
):
for
i
in
xrange
(
self
.
pyramid_height
):
bins
=
np
.
power
(
2
,
i
)
bins
=
np
.
power
(
2
,
i
)
ksize
=
[
0
,
0
]
k
ernel_
size
=
[
0
,
0
]
padding
=
[
0
,
0
]
padding
=
[
0
,
0
]
ksize
[
0
]
=
np
.
ceil
(
hsize
/
bins
.
astype
(
"double"
)).
astype
(
"int32"
)
kernel_size
[
0
]
=
np
.
ceil
(
hsize
/
padding
[
0
]
=
((
ksize
[
0
]
*
bins
-
hsize
+
1
)
/
2
).
astype
(
"int32"
)
bins
.
astype
(
"double"
)).
astype
(
"int32"
)
padding
[
0
]
=
(
ksize
[
1
]
=
np
.
ceil
(
wsize
/
bins
.
astype
(
"double"
)).
astype
(
"int32"
)
(
kernel_size
[
0
]
*
bins
-
hsize
+
1
)
/
2
).
astype
(
"int32"
)
padding
[
1
]
=
((
ksize
[
1
]
*
bins
-
wsize
+
1
)
/
2
).
astype
(
"int32"
)
out_level
=
max_pool2D_forward_naive
(
input
,
ksize
,
ksize
,
padding
)
kernel_size
[
1
]
=
np
.
ceil
(
wsize
/
bins
.
astype
(
"double"
)).
astype
(
"int32"
)
padding
[
1
]
=
(
(
kernel_size
[
1
]
*
bins
-
wsize
+
1
)
/
2
).
astype
(
"int32"
)
out_level
=
max_pool2D_forward_naive
(
input
,
kernel_size
,
kernel_size
,
padding
)
out_level_flatten
.
append
(
out_level_flatten
.
append
(
out_level
.
reshape
(
nsize
,
bins
*
bins
*
csize
))
out_level
.
reshape
(
nsize
,
bins
*
bins
*
csize
))
if
i
==
0
:
if
i
==
0
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录