提交 835ea12c 编写于 作者: G guofei 提交者: Huihuang Zheng

Control flow API: while_loop (#21276)

Add basic while_loop
上级 4f81d1bd
......@@ -33,7 +33,8 @@ __all__ = [
'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than',
'less_equal', 'greater_than', 'greater_equal', 'equal', 'not_equal',
'array_read', 'array_length', 'cond', 'IfElse', 'DynamicRNN', 'StaticRNN',
'reorder_lod_tensor_by_rank', 'Print', 'is_empty', 'case', 'switch_case'
'reorder_lod_tensor_by_rank', 'Print', 'is_empty', 'case', 'switch_case',
'while_loop'
]
......@@ -918,6 +919,93 @@ class While(object):
"is_test": self.is_test})
def while_loop(cond, body, loop_vars, name=None):
"""
while_loop is one of the control flows. Repeats while_loop `body` until `cond` returns False.
Args:
cond(Callable): A callable returning a boolean tensor controlling whether to continue looping.
body(Callable): A callable returning a tuple or list of tensors of the same arity (length and structure)
and types as ``loops_vars`` .
loop_vars(list|tuple): A list or tuple of tensors that is passed to both ``cond`` and ``body`` .
name(str, optional): Normally there is no need for users to set this property. For more information, please
refer to :ref:`api_guide_Name`. Default is None.
Returns:
A list or tuple of tensors which returned by ``body`` .
Returen type:
list(Variable)|tuple(Variable).
Raises:
TypeError: If the type of ``cond`` is not callable.
TypeError: If the type of ``body`` is not callable.
TypeError: If the type of ``loop_vars`` is not list or tuple.
TypeError: If the type of ``cond`` returns is not Variable.
TypeError: If the type of ``cond`` returns is not a boolean variable.
TypeError: If the shape of ``cond`` returns is not equals 1.
ValueError: If the ``var_loops`` is empty.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle.fluid.layers as layers
def cond(i):
return layers.less_than(i, ten)
def body(i):
return layers.increment(x=i, value=1, in_place=True)
main_program = fluid.default_main_program()
startup_program = fluid.default_startup_program()
with fluid.program_guard(main_program, startup_program):
i = layers.fill_constant(shape=[1], dtype='int64', value=0) # loop counter
ten = layers.fill_constant(shape=[1], dtype='int64', value=10) # loop length
out = layers.while_loop(cond, body, [i])
exe = fluid.Executor(fluid.CPUPlace())
res = exe.run(main_program, feed={}, fetch_list=out)
print(res) # [array([10])]
"""
helper = LayerHelper('while_loop', **locals())
if not callable(cond):
raise TypeError("cond in while_loop should be callable")
if not callable(body):
raise TypeError("body in while_loop should be callable")
if not isinstance(loop_vars, (list, tuple)):
raise TypeError("loop_vars in while_loop should be a list or tuple")
if len(loop_vars) == 0:
raise ValueError("loop_vars in while_loop should not be empty")
pre_cond = cond(*loop_vars)
if not isinstance(pre_cond, Variable):
raise TypeError("cond in while_loop should return a variable")
if pre_cond.dtype != core.VarDesc.VarType.BOOL:
raise TypeError("cond in while_loop should return a boolean variable")
if reduce(lambda a, b: a * b, pre_cond.shape, 1) != 1:
raise TypeError(
"the shape of the variable returned by cond should be [],"
"but given shape as {0}.".format(list(pre_cond.shape)))
while_loop_block = While(pre_cond)
with while_loop_block.block():
output_vars = body(*loop_vars)
if len(loop_vars) == 1:
assign(output_vars, loop_vars[0])
now_cond = cond(output_vars)
else:
for i in range(len(output_vars)):
assign(output_vars[i], loop_vars[i])
now_cond = cond(*output_vars)
assign(now_cond, pre_cond)
return loop_vars
def lod_rank_table(x, level=0):
"""
LoD Rank Table Operator. Given an input variable **x** and a level number
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.layers as layers
import paddle.fluid.framework as framework
from paddle.fluid.executor import Executor
from paddle.fluid.framework import Program, program_guard
class TestApiWhileLoop(unittest.TestCase):
def test_var_tuple(self):
def cond(i):
return layers.less_than(i, ten)
def body(i):
return layers.elementwise_add(x=i, y=one)
main_program = Program()
startup_program = Program()
with program_guard(main_program, startup_program):
i = layers.fill_constant(shape=[1], dtype='int64', value=0)
one = layers.fill_constant(shape=[1], dtype='int64', value=1)
ten = layers.fill_constant(shape=[1], dtype='int64', value=10)
out = layers.while_loop(cond, body, (i, ))
place = fluid.CPUPlace()
exe = fluid.Executor(place)
res = exe.run(main_program, fetch_list=out)
self.assertTrue(
np.allclose(np.asarray(res[0]), np.full((1), 10, np.int64)))
def test_var_list(self):
def cond(i, mem):
return layers.less_than(i, ten)
def body(i, mem):
mem = layers.elementwise_add(x=mem, y=one)
i = layers.increment(i)
return [i, mem]
main_program = Program()
startup_program = Program()
with program_guard(main_program, startup_program):
i = layers.zeros(shape=[1], dtype='int64')
ten = layers.fill_constant(shape=[1], dtype='int64', value=10)
mem = layers.data(name="mem", shape=[10], dtype='float32')
one = layers.fill_constant(shape=[10], dtype='float32', value=1)
out = layers.while_loop(cond, body, [i, mem])
data = np.random.rand(10).astype('float32')
data_one = np.ones(10).astype('float32')
place = fluid.CPUPlace()
exe = fluid.Executor(place)
res = exe.run(main_program, feed={'mem': data}, fetch_list=out)
for i in range(10):
data = np.add(data, data_one)
self.assertTrue(np.allclose(np.asarray(res[1]), data))
class TestApiWhileLoop_Nested(unittest.TestCase):
def test_nested_net(self):
def external_cond(i, j, init, sums):
return layers.less_than(i, loop_len1)
def external_body(i, j, init, sums):
def internal_cond(j, init, sums):
return layers.less_than(j, loop_len2)
def internal_body(j, init, sums):
init = layers.elementwise_add(x=init, y=ones)
sums = layers.elementwise_add(x=init, y=sums)
j = layers.increment(j)
return [j, init, sums]
result = layers.while_loop(internal_cond, internal_body,
[j, init, sums])
j = result[0]
init = result[1]
sums = result[2]
sums = layers.elementwise_add(x=init, y=sums)
i = layers.increment(i)
return [i, j, init, sums]
main_program = Program()
startup_program = Program()
with program_guard(main_program, startup_program):
i = layers.zeros(shape=[1], dtype='int64')
j = layers.zeros(shape=[1], dtype='int64')
init = layers.data(name="init", shape=[3, 3], dtype='float32')
sums = layers.data(name="sums", shape=[3, 3], dtype='float32')
loop_len1 = layers.fill_constant(shape=[1], dtype='int64', value=2)
loop_len2 = layers.fill_constant(shape=[1], dtype='int64', value=3)
ones = layers.fill_constant(shape=[3, 3], dtype='float32', value=1)
res = layers.while_loop(external_cond, external_body,
[i, j, init, sums])
data = np.random.rand(3, 3).astype('float32')
data_sums = np.zeros([3, 3]).astype('float32')
place = fluid.CPUPlace()
exe = fluid.Executor(place)
ret = exe.run(main_program,
feed={'init': data,
'sums': data_sums},
fetch_list=res)
for i in range(3):
data = np.add(data, 1)
data_sums = np.add(data, data_sums)
for j in range(2):
data_sums = np.add(data, data_sums)
self.assertTrue(np.allclose(np.asarray(ret[3]), data_sums))
class TestApiWhileLoop_Error(unittest.TestCase):
def test_error(self):
def cond_returns_constant(i):
return 1
def cond_returns_not_bool_tensor(i):
return layers.increment(i)
def cond_returns_bool_tensor(i):
return layers.less_than(i, ten)
def cond_returns_2d_tensor(i):
return layers.less_than(i, ten_2d)
def body(i):
return layers.increment(i)
main_program = Program()
startup_program = Program()
with program_guard(main_program, startup_program):
data = layers.fill_constant(shape=[1], dtype='int64', value=1)
data_1d = layers.fill_constant(shape=[1], dtype='int64', value=1)
data_2d = layers.fill_constant(shape=[2, 2], dtype='int64', value=1)
ten = layers.fill_constant(shape=[1], dtype='int64', value=10)
ten_2d = layers.fill_constant(shape=[2, 2], dtype='int64', value=10)
# The type of `cond` in Op(while_loop) must be callable
def type_error_cond():
out = layers.while_loop(data, body, [data_1d])
self.assertRaises(TypeError, type_error_cond)
# The type of `body` in Op(while_loop) must be callable
def type_error_body():
out = layers.while_loop(cond_returns_bool_tensor, data,
[data_1d])
self.assertRaises(TypeError, type_error_body)
# The type of `loop_vars` in Op(while_loop) must be list or tuple
def type_error_loop_vars():
out = layers.while_loop(cond_returns_bool_tensor, body, data_1d)
self.assertRaises(TypeError, type_error_loop_vars)
# The value of `loop_vars` is empty
def value_error_loop_vars():
out = layers.while_loop(cond_returns_bool_tensor, body, [])
self.assertRaises(ValueError, value_error_loop_vars)
# The type of `cond` returns in Op(while_loop) must be Variable
def type_error_cond_returns_not_variable():
out = layers.while_loop(cond_returns_constant, body, [data_1d])
self.assertRaises(TypeError, type_error_cond_returns_not_variable)
# The type of `cond` returns in Op(while_loop) must be a bollean variable
def type_error_cond_returns_not_boolean():
out = layers.while_loop(cond_returns_not_bool_tensor, body,
[data_1d])
self.assertRaises(TypeError, type_error_cond_returns_not_boolean)
# The shape of `cond` returns in Op(while_loop) must be 1
def type_error_shape_cond_returns_2d():
out = layers.while_loop(cond_returns_2d_tensor, body, [data_2d])
self.assertRaises(TypeError, type_error_shape_cond_returns_2d)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册