提交 8269a2ba 编写于 作者: T Travis CI

Deploy to GitHub Pages: f3c9789c

上级 64a14b0b
## Interaction between C++ and Python
Users employ API in Python to describe their own network, however, the network construction actually happens in C++. so Protobuf is introduced to send the message between Python and C++.
The Interaction between Python and C++ can be simplified as two steps:
1. C++ tells Python how many Ops there are, and what parameter do users need to offer to initialize a new Op. Python then builds API for each Op at compile time.
2. Users invoke APIs built by Python and provide necessary parameters. These parameters will be sent to C++ fo finish Op construction task.
### Message form C++ to Python
We define a Protobuf message class `OpProto` to hold message needed in the first step. What should an `OpProto` contain? This question is equivalent to “What message do we need to offer, to build a Python API which is legal and user oriented and can use to describe a whole Op.”
Following message are necessary:
1. Op's name, and its simple comment.
2. Input and output variable number; each variable's name, type, and comment.
3. Op's attributes; each attribute includes name, type, comment, **default value** and **value range**.
So `OpProto` can be defined as follows:
```proto
enum AttrType {
INT = 1;
FLOAT = 2;
STRING = 3;
INTS = 4;
FLOATS = 5;
STRINGS = 6;
};
message AttrValue {
AttrType type = 1;
optional int iv = 2;
optional float fv = 3;
optional string sv = 4;
repeated int ivs = 5;
repeated float fvs = 6;
repeated string svs = 7;
};
message AttrProto {
required string name = 1;
required string comment = 2;
required AttrType type = 3;
};
message VarProto {
required string name = 1;
required string comment = 2;
};
message OpProto {
repeated VarProto inputs = 1;
repeated VarProto outputs = 2;
repeated AttrProto attrs = 3;
required string type = 4;
required string comment = 5;
};
```
To generate Python code automatically:
```python
def create_python_ops_creatation_functions():
op_protos = paddle.framework.OpRegistry.get_all_op_proto()
for type_name in op_protos:
op_proto = op_protos[type_name]
def __impl__(**kwargs): # User must use key word args in Paddle API
inputs = [kwargs.get(ipt.name, "") for ipt in op_proto.inputs]
outputs = [kwargs.get(opt.name, "") for opt in op_proto.outputs]
attrs = [cast_to_op_attr(attr, kwargs.get(attr.name, None)) for attr in op_proto.attrs]
opdesc = (input, outputs, type_name, attrs)
return paddle.framework.OpRegistry.CreateOp(opdesc)
__impl__.__doc__ = create_doc_string(op_proto)
globals()[type_name] = __impl__
create_python_ops_creatation_functions()
```
### Message from Python to C++
To hold message needed in the above second step, we define Protobuf message class `OpDesc`. It is used to hold user-specified parameters in Op describing.
```proto
message OpDesc {
required string type = 1;
repeated string inputs = 2;
repeated string outputs = 3;
map<string, AttrValue> attrs = 4;
};
```
## OpProto Register
Every Op has its own `OpProto`. For using convenience, we need to register them and record all their messages. For each `Op` class, we define a corresponding `OpMaker` class, in whose constructor we implement the `OpProto`'s building process. `OpMaker`'s constructor will be invoked by another function `OpRegistry::RegisterOp()`.
```cpp
class OpProtoMaker {
public:
OpProtoMaker(OpProto* proto): proto_(proto) {}
protected:
OpProto* proto_;
void AddInput(const std::string& name, const std::string& desc) {...}
void AddAttr(const std::string& name, const std::string& desc, TypeId type) {...}
void AddComment(const std::string& comment) { ... }
};
class OpRegistry {
public:
using OpCreator = std::function<OperatorBase* (OpDesc& desc)>;
template <typename OpType, typename OpMaker>
static void RegisterOp(const std::string& name) {
gCreators_[name] = [](const OpDesc& desc) {
return new OpType(desc);
};
OpProto& opProto = gProtos_[name];
OpMaker()(&opProto);
}
static map<string, OpCreator> gCreators_;
static map<string, OpProto> gProtos_;
};
template <typename OpType, typename OpMaker>
class OpRegister {
public:
OpRegister(std::string type) {
OpRegistry::RegisterOp<OpType, OpMaker>(type);
}
};
#define REGISTER_OP(op_class, op_maker_class, type_name) \
class op_class##Register { \
private: \
const static OpRegister<#op_class, #op_maker_class> reg; \
}; \
const Register op_class##Register::reg(#type_name);
class CosineOp {
// ...
}
struct CosineOpProtoMaker : public OpProtoMaker {
CosineOpProtoMaker(OpProto* proto) : OpProtoMaker(proto) {
AddInput("input", "input of cosine op");
AddAttr("scale", "scale of cosine op", float).Default(1.0).LargerThan(0.0);
AddType("cos");
AddComment("This is cos op");
}
}
REGISTER_OP(CosineOp, CosineOpProtoMaker, cos);
```
In `REGISTER_OP(CosineOp, CosineOpProtoMaker, cos)`, we register not only `CosineOp` but also `CosineOpProto`. As fields of `CosineOpProto`, the default value and value range of `scale` are also registered here.
## Python API
Python APIs are divided into two types, high-level API and low-level API.
### High-Level API
High-level API is called by users directly, so it should keep its style consistent with existing V2 APIs.
Here is a sample about how a define a fc layer:
```python
hd = fc_layer(input=data, size=56, with_bias=True, activation="sigmoid");
```
`hd` is the output of `fc_layer` and it's a `variable`. It can be further sent into other layers as input.
The definition of `fc_layer()`:
```python
def fc_layer(input, size, with_bias, activation):
attr_map = {"size":size}
check_attrs(attr_map)
w = make_variable('w')
if with_bias:
b = make_variable('b')
else:
b = None
fc_output = make_variable('fc_output');
fc_op(input, w, b, fc_output, attr_map)
act_output = make_variable('sigmod_output');
if activation == "sigmod":
sigmod_op(fc_output, act_output);
elif:
# ...
return act_output;
```
### Low Leval API
In above sample, `fc_op` and `sigmod_op` are low-level API. They build `OpDesc` and invoke corresponding C++ code.
*TODO*
此差异已折叠。
因为 它太大了无法显示 source diff 。你可以改为 查看blob
## Interaction between C++ and Python
Users employ API in Python to describe their own network, however, the network construction actually happens in C++. so Protobuf is introduced to send the message between Python and C++.
The Interaction between Python and C++ can be simplified as two steps:
1. C++ tells Python how many Ops there are, and what parameter do users need to offer to initialize a new Op. Python then builds API for each Op at compile time.
2. Users invoke APIs built by Python and provide necessary parameters. These parameters will be sent to C++ fo finish Op construction task.
### Message form C++ to Python
We define a Protobuf message class `OpProto` to hold message needed in the first step. What should an `OpProto` contain? This question is equivalent to “What message do we need to offer, to build a Python API which is legal and user oriented and can use to describe a whole Op.”
Following message are necessary:
1. Op's name, and its simple comment.
2. Input and output variable number; each variable's name, type, and comment.
3. Op's attributes; each attribute includes name, type, comment, **default value** and **value range**.
So `OpProto` can be defined as follows:
```proto
enum AttrType {
INT = 1;
FLOAT = 2;
STRING = 3;
INTS = 4;
FLOATS = 5;
STRINGS = 6;
};
message AttrValue {
AttrType type = 1;
optional int iv = 2;
optional float fv = 3;
optional string sv = 4;
repeated int ivs = 5;
repeated float fvs = 6;
repeated string svs = 7;
};
message AttrProto {
required string name = 1;
required string comment = 2;
required AttrType type = 3;
};
message VarProto {
required string name = 1;
required string comment = 2;
};
message OpProto {
repeated VarProto inputs = 1;
repeated VarProto outputs = 2;
repeated AttrProto attrs = 3;
required string type = 4;
required string comment = 5;
};
```
To generate Python code automatically:
```python
def create_python_ops_creatation_functions():
op_protos = paddle.framework.OpRegistry.get_all_op_proto()
for type_name in op_protos:
op_proto = op_protos[type_name]
def __impl__(**kwargs): # User must use key word args in Paddle API
inputs = [kwargs.get(ipt.name, "") for ipt in op_proto.inputs]
outputs = [kwargs.get(opt.name, "") for opt in op_proto.outputs]
attrs = [cast_to_op_attr(attr, kwargs.get(attr.name, None)) for attr in op_proto.attrs]
opdesc = (input, outputs, type_name, attrs)
return paddle.framework.OpRegistry.CreateOp(opdesc)
__impl__.__doc__ = create_doc_string(op_proto)
globals()[type_name] = __impl__
create_python_ops_creatation_functions()
```
### Message from Python to C++
To hold message needed in the above second step, we define Protobuf message class `OpDesc`. It is used to hold user-specified parameters in Op describing.
```proto
message OpDesc {
required string type = 1;
repeated string inputs = 2;
repeated string outputs = 3;
map<string, AttrValue> attrs = 4;
};
```
## OpProto Register
Every Op has its own `OpProto`. For using convenience, we need to register them and record all their messages. For each `Op` class, we define a corresponding `OpMaker` class, in whose constructor we implement the `OpProto`'s building process. `OpMaker`'s constructor will be invoked by another function `OpRegistry::RegisterOp()`.
```cpp
class OpProtoMaker {
public:
OpProtoMaker(OpProto* proto): proto_(proto) {}
protected:
OpProto* proto_;
void AddInput(const std::string& name, const std::string& desc) {...}
void AddAttr(const std::string& name, const std::string& desc, TypeId type) {...}
void AddComment(const std::string& comment) { ... }
};
class OpRegistry {
public:
using OpCreator = std::function<OperatorBase* (OpDesc& desc)>;
template <typename OpType, typename OpMaker>
static void RegisterOp(const std::string& name) {
gCreators_[name] = [](const OpDesc& desc) {
return new OpType(desc);
};
OpProto& opProto = gProtos_[name];
OpMaker()(&opProto);
}
static map<string, OpCreator> gCreators_;
static map<string, OpProto> gProtos_;
};
template <typename OpType, typename OpMaker>
class OpRegister {
public:
OpRegister(std::string type) {
OpRegistry::RegisterOp<OpType, OpMaker>(type);
}
};
#define REGISTER_OP(op_class, op_maker_class, type_name) \
class op_class##Register { \
private: \
const static OpRegister<#op_class, #op_maker_class> reg; \
}; \
const Register op_class##Register::reg(#type_name);
class CosineOp {
// ...
}
struct CosineOpProtoMaker : public OpProtoMaker {
CosineOpProtoMaker(OpProto* proto) : OpProtoMaker(proto) {
AddInput("input", "input of cosine op");
AddAttr("scale", "scale of cosine op", float).Default(1.0).LargerThan(0.0);
AddType("cos");
AddComment("This is cos op");
}
}
REGISTER_OP(CosineOp, CosineOpProtoMaker, cos);
```
In `REGISTER_OP(CosineOp, CosineOpProtoMaker, cos)`, we register not only `CosineOp` but also `CosineOpProto`. As fields of `CosineOpProto`, the default value and value range of `scale` are also registered here.
## Python API
Python APIs are divided into two types, high-level API and low-level API.
### High-Level API
High-level API is called by users directly, so it should keep its style consistent with existing V2 APIs.
Here is a sample about how a define a fc layer:
```python
hd = fc_layer(input=data, size=56, with_bias=True, activation="sigmoid");
```
`hd` is the output of `fc_layer` and it's a `variable`. It can be further sent into other layers as input.
The definition of `fc_layer()`:
```python
def fc_layer(input, size, with_bias, activation):
attr_map = {"size":size}
check_attrs(attr_map)
w = make_variable('w')
if with_bias:
b = make_variable('b')
else:
b = None
fc_output = make_variable('fc_output');
fc_op(input, w, b, fc_output, attr_map)
act_output = make_variable('sigmod_output');
if activation == "sigmod":
sigmod_op(fc_output, act_output);
elif:
# ...
return act_output;
```
### Low Leval API
In above sample, `fc_op` and `sigmod_op` are low-level API. They build `OpDesc` and invoke corresponding C++ code.
*TODO*
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册