Users employ API in Python to describe their own network, however, the network construction actually happens in C++. so Protobuf is introduced to send the message between Python and C++.
The Interaction between Python and C++ can be simplified as two steps:
1. C++ tells Python how many Ops there are, and what parameter do users need to offer to initialize a new Op. Python then builds API for each Op at compile time.
2. Users invoke APIs built by Python and provide necessary parameters. These parameters will be sent to C++ fo finish Op construction task.
### Message form C++ to Python
We define a Protobuf message class `OpProto` to hold message needed in the first step. What should an `OpProto` contain? This question is equivalent to “What message do we need to offer, to build a Python API which is legal and user oriented and can use to describe a whole Op.”
Following message are necessary:
1. Op's name, and its simple comment.
2. Input and output variable number; each variable's name, type, and comment.
3. Op's attributes; each attribute includes name, type, comment, **default value** and **value range**.
To hold message needed in the above second step, we define Protobuf message class `OpDesc`. It is used to hold user-specified parameters in Op describing.
```proto
message OpDesc {
required string type = 1;
repeated string inputs = 2;
repeated string outputs = 3;
map<string, AttrValue> attrs = 4;
};
```
## OpProto Register
Every Op has its own `OpProto`. For using convenience, we need to register them and record all their messages. For each `Op` class, we define a corresponding `OpMaker` class, in whose constructor we implement the `OpProto`'s building process. `OpMaker`'s constructor will be invoked by another function `OpRegistry::RegisterOp()`.
AddAttr("scale", "scale of cosine op", float).Default(1.0).LargerThan(0.0);
AddType("cos");
AddComment("This is cos op");
}
}
REGISTER_OP(CosineOp, CosineOpProtoMaker, cos);
```
In `REGISTER_OP(CosineOp, CosineOpProtoMaker, cos)`, we register not only `CosineOp` but also `CosineOpProto`. As fields of `CosineOpProto`, the default value and value range of `scale` are also registered here.
## Python API
Python APIs are divided into two types, high-level API and low-level API.
### High-Level API
High-level API is called by users directly, so it should keep its style consistent with existing V2 APIs.
Here is a sample about how a define a fc layer:
```python
hd = fc_layer(input=data, size=56, with_bias=True, activation="sigmoid");
```
`hd` is the output of `fc_layer` and it's a `variable`. It can be further sent into other layers as input.
The definition of `fc_layer()`:
```python
def fc_layer(input, size, with_bias, activation):
attr_map = {"size":size}
check_attrs(attr_map)
w = make_variable('w')
if with_bias:
b = make_variable('b')
else:
b = None
fc_output = make_variable('fc_output');
fc_op(input, w, b, fc_output, attr_map)
act_output = make_variable('sigmod_output');
if activation == "sigmod":
sigmod_op(fc_output, act_output);
elif:
# ...
return act_output;
```
### Low Leval API
In above sample, `fc_op` and `sigmod_op` are low-level API. They build `OpDesc` and invoke corresponding C++ code.
Users employ API in Python to describe their own network, however, the network construction actually happens in C++. so Protobuf is introduced to send the message between Python and C++.
The Interaction between Python and C++ can be simplified as two steps:
1. C++ tells Python how many Ops there are, and what parameter do users need to offer to initialize a new Op. Python then builds API for each Op at compile time.
2. Users invoke APIs built by Python and provide necessary parameters. These parameters will be sent to C++ fo finish Op construction task.
### Message form C++ to Python
We define a Protobuf message class `OpProto` to hold message needed in the first step. What should an `OpProto` contain? This question is equivalent to “What message do we need to offer, to build a Python API which is legal and user oriented and can use to describe a whole Op.”
Following message are necessary:
1. Op's name, and its simple comment.
2. Input and output variable number; each variable's name, type, and comment.
3. Op's attributes; each attribute includes name, type, comment, **default value** and **value range**.
To hold message needed in the above second step, we define Protobuf message class `OpDesc`. It is used to hold user-specified parameters in Op describing.
```proto
message OpDesc {
required string type = 1;
repeated string inputs = 2;
repeated string outputs = 3;
map<string, AttrValue> attrs = 4;
};
```
## OpProto Register
Every Op has its own `OpProto`. For using convenience, we need to register them and record all their messages. For each `Op` class, we define a corresponding `OpMaker` class, in whose constructor we implement the `OpProto`'s building process. `OpMaker`'s constructor will be invoked by another function `OpRegistry::RegisterOp()`.
AddAttr("scale", "scale of cosine op", float).Default(1.0).LargerThan(0.0);
AddType("cos");
AddComment("This is cos op");
}
}
REGISTER_OP(CosineOp, CosineOpProtoMaker, cos);
```
In `REGISTER_OP(CosineOp, CosineOpProtoMaker, cos)`, we register not only `CosineOp` but also `CosineOpProto`. As fields of `CosineOpProto`, the default value and value range of `scale` are also registered here.
## Python API
Python APIs are divided into two types, high-level API and low-level API.
### High-Level API
High-level API is called by users directly, so it should keep its style consistent with existing V2 APIs.
Here is a sample about how a define a fc layer:
```python
hd = fc_layer(input=data, size=56, with_bias=True, activation="sigmoid");
```
`hd` is the output of `fc_layer` and it's a `variable`. It can be further sent into other layers as input.
The definition of `fc_layer()`:
```python
def fc_layer(input, size, with_bias, activation):
attr_map = {"size":size}
check_attrs(attr_map)
w = make_variable('w')
if with_bias:
b = make_variable('b')
else:
b = None
fc_output = make_variable('fc_output');
fc_op(input, w, b, fc_output, attr_map)
act_output = make_variable('sigmod_output');
if activation == "sigmod":
sigmod_op(fc_output, act_output);
elif:
# ...
return act_output;
```
### Low Leval API
In above sample, `fc_op` and `sigmod_op` are low-level API. They build `OpDesc` and invoke corresponding C++ code.