未验证 提交 81dec05a 编写于 作者: J jakpiase 提交者: GitHub

Fix for failing CI(test_activation_mkldnn_op.py) (#34329)

* fixed CI failing

* removed unnecessary imports
上级 577fdde5
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from scipy.special import expit, erf
import paddle.fluid.core as core
from paddle.fluid.tests.unittests.op_test import OpTest, OpTestTool, convert_float_to_uint16
from paddle.fluid.tests.unittests.test_activation_op import TestActivation
from paddle.fluid.tests.unittests.test_gelu_op import gelu
@OpTestTool.skip_if_not_cpu_bf16()
class TestMKLDNNSigmoidBF16Op(TestActivation):
def config(self):
self.op_type = "sigmoid"
def op_forward(self, x):
return 1 / (1 + np.exp(-x))
def op_grad(self, dout, x):
return dout * self.op_forward(x) * (1 - self.op_forward(x))
def set_attrs(self):
self.attrs = {"use_mkldnn": True}
def init_data(self):
self.x = np.random.uniform(-1, 1, [2, 4, 3, 5]).astype(np.float32)
def setUp(self):
self.dtype = np.uint16
self.init_data()
self.config()
self.out = self.op_forward(self.x)
self.inputs = {'X': convert_float_to_uint16(self.x)}
self.outputs = {'Out': self.out}
self.set_attrs()
def calculate_grads(self):
self.dx = self.op_grad(self.out, self.x)
def test_check_output(self):
self.check_output_with_place(core.CPUPlace())
def test_check_grad(self):
self.calculate_grads()
self.check_grad_with_place(
core.CPUPlace(), ["X"],
"Out",
user_defined_grads=[self.dx],
user_defined_grad_outputs=[convert_float_to_uint16(self.out)])
class TestMKLDNNGeluErfBF16Op(TestMKLDNNSigmoidBF16Op):
def config(self):
self.op_type = "gelu"
def op_forward(self, x):
return gelu(x, False)
def op_grad(self, dout, x):
return (dout *
(0.5 + 0.5 * erf(x / np.sqrt(2)) +
(x / np.sqrt(2 * np.pi) * np.exp(-0.5 * np.power(x, 2)))))
class TestMKLDNNGeluErfDim2BF16Op(TestMKLDNNGeluErfBF16Op):
def init_data(self):
self.x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)
class TestMKLDNNGeluTanhBF16Op(TestMKLDNNSigmoidBF16Op):
def config(self):
self.op_type = "gelu"
def op_forward(self, x):
return gelu(x, True)
def op_grad(self, dout, x):
grad_part = np.tanh(
np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3)))
return dout * 0.5 * (1 + grad_part) * (1 + np.sqrt(2 / np.pi) *
(x + 0.134145 * np.power(x, 3)) *
(1 - grad_part))
def set_attrs(self):
self.attrs = {"use_mkldnn": True, "approximate": True}
class TestMKLDNNGeluTanhDim2BF16Op(TestMKLDNNGeluTanhBF16Op):
def init_data(self):
self.x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)
......@@ -79,90 +79,6 @@ class TestMKLDNNGeluDim2Approx(TestActivation):
self.attrs = {"use_mkldnn": True, "approximate": True}
#Use it as a base class for BF16 activation tests, just override necessary functions
class TestMKLDNNSigmoidBF16Op(TestActivation):
@OpTestTool.skip_if_not_cpu_bf16()
def config(self):
self.op_type = "sigmoid"
def op_forward(self, x):
return 1 / (1 + np.exp(-x))
def op_grad(self, dout, x):
return dout * self.op_forward(x) * (1 - self.op_forward(x))
def set_attrs(self):
self.attrs = {"use_mkldnn": True}
def init_data(self):
self.x = np.random.uniform(-1, 1, [2, 4, 3, 5]).astype(np.float32)
def setUp(self):
self.dtype = np.uint16
self.init_data()
self.config()
self.out = self.op_forward(self.x)
self.inputs = {'X': convert_float_to_uint16(self.x)}
self.outputs = {'Out': self.out}
self.set_attrs()
def calculate_grads(self):
self.dx = self.op_grad(self.out, self.x)
def test_check_output(self):
self.check_output_with_place(core.CPUPlace())
def test_check_grad(self):
self.calculate_grads()
self.check_grad_with_place(
core.CPUPlace(), ["X"],
"Out",
user_defined_grads=[self.dx],
user_defined_grad_outputs=[convert_float_to_uint16(self.out)])
class TestMKLDNNGeluErfBF16Op(TestMKLDNNSigmoidBF16Op):
def config(self):
self.op_type = "gelu"
def op_forward(self, x):
return gelu(x, False)
def op_grad(self, dout, x):
return (dout *
(0.5 + 0.5 * erf(x / np.sqrt(2)) +
(x / np.sqrt(2 * np.pi) * np.exp(-0.5 * np.power(x, 2)))))
class TestMKLDNNGeluErfDim2BF16Op(TestMKLDNNGeluErfBF16Op):
def init_data(self):
self.x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)
class TestMKLDNNGeluTanhBF16Op(TestMKLDNNSigmoidBF16Op):
def config(self):
self.op_type = "gelu"
def op_forward(self, x):
return gelu(x, True)
def op_grad(self, dout, x):
grad_part = np.tanh(
np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3)))
return dout * 0.5 * (1 + grad_part) * (1 + np.sqrt(2 / np.pi) *
(x + 0.134145 * np.power(x, 3)) *
(1 - grad_part))
def set_attrs(self):
self.attrs = {"use_mkldnn": True, "approximate": True}
class TestMKLDNNGeluTanhDim2BF16Op(TestMKLDNNGeluTanhBF16Op):
def init_data(self):
self.x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)
class TestMKLDNNTanhDim2(TestTanh):
def setUp(self):
super(TestMKLDNNTanhDim2, self).setUp()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册