提交 7b823530 编写于 作者: C chengduoZH

fix conv3d/conv3d_trans/slice/mean_iou doc

上级 0329ee74
...@@ -95,23 +95,26 @@ of that dimension. If the value passed to start or end is larger than ...@@ -95,23 +95,26 @@ of that dimension. If the value passed to start or end is larger than
the n (the number of elements in this dimension), it represents n. the n (the number of elements in this dimension), it represents n.
For slicing to the end of a dimension with unknown size, it is recommended For slicing to the end of a dimension with unknown size, it is recommended
to pass in INT_MAX. If axes are omitted, they are set to [0, ..., ndim-1]. to pass in INT_MAX. If axes are omitted, they are set to [0, ..., ndim-1].
Following examples will explain how slice works:
Example 1:
Given: .. code-block:: text
data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
axes = [0, 1] Cast1:
starts = [1, 0] Given:
ends = [2, 3] data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
Then: axes = [0, 1]
result = [ [5, 6, 7], ] starts = [1, 0]
ends = [2, 3]
Example 2: Then:
Given: result = [ [5, 6, 7], ]
data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
starts = [0, 1] Cast2:
ends = [-1, 1000] Given:
Then: data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
result = [ [2, 3, 4], ] starts = [0, 1]
ends = [-1, 1000]
Then:
result = [ [2, 3, 4], ]
)DOC"); )DOC");
} }
}; };
......
...@@ -1326,10 +1326,8 @@ def conv2d(input, ...@@ -1326,10 +1326,8 @@ def conv2d(input,
Examples: Examples:
.. code-block:: python .. code-block:: python
data = fluid.layers.data( data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
name='data', shape=[3, 32, 32], dtype='float32') conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
conv2d = fluid.layers.conv2d(
input=data, num_filters=2, filter_size=3, act="relu")
""" """
num_channels = input.shape[1] num_channels = input.shape[1]
...@@ -1431,8 +1429,7 @@ def conv3d(input, ...@@ -1431,8 +1429,7 @@ def conv3d(input,
* :math:`\\ast`: Convolution operation. * :math:`\\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D tensor with shape [M, 1]. * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
* :math:`\\sigma`: Activation function. * :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
different.
Example: Example:
...@@ -1494,10 +1491,8 @@ def conv3d(input, ...@@ -1494,10 +1491,8 @@ def conv3d(input,
Examples: Examples:
.. code-block:: python .. code-block:: python
data = fluid.layers.data( data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
name='data', shape=[3, 12, 32, 32], dtype='float32') conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
conv2d = fluid.layers.conv3d(
input=data, num_filters=2, filter_size=3, act="relu")
""" """
l_type = 'conv3d' l_type = 'conv3d'
...@@ -2105,32 +2100,36 @@ def conv2d_transpose(input, ...@@ -2105,32 +2100,36 @@ def conv2d_transpose(input,
represent height and width, respectively. The details of convolution transpose represent height and width, respectively. The details of convolution transpose
layer, please refer to the following explanation and references layer, please refer to the following explanation and references
`therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_. `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
If bias attribution and activation type are provided, bias is added to
the output of the convolution, and the corresponding activation function
is applied to the final result.
For each input :math:`X`, the equation is: For each input :math:`X`, the equation is:
.. math:: .. math::
Out = W \\ast X Out = \sigma (W \\ast X + b)
In the above equation: Where:
* :math:`X`: Input value, a tensor with NCHW format. * :math:`X`: Input value, a tensor with NCHW format.
* :math:`W`: Filter value, a tensor with MCHW format. * :math:`W`: Filter value, a tensor with MCHW format.
* :math:`\\ast` : Convolution transpose operation. * :math:`\\ast`: Convolution operation.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
different. * :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example: Example:
- Input: - Input:
Input shape: $(N, C_{in}, H_{in}, W_{in})$ Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
Filter shape: $(C_{in}, C_{out}, H_f, W_f)$ Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
- Output: - Output:
Output shape: $(N, C_{out}, H_{out}, W_{out})$ Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
Where Where
...@@ -2184,10 +2183,8 @@ def conv2d_transpose(input, ...@@ -2184,10 +2183,8 @@ def conv2d_transpose(input,
Examples: Examples:
.. code-block:: python .. code-block:: python
data = fluid.layers.data( data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
name='data', shape=[3, 32, 32], dtype='float32') conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
conv2d_transpose = fluid.layers.conv2d_transpose(
input=data, num_filters=2, filter_size=3)
""" """
helper = LayerHelper("conv2d_transpose", **locals()) helper = LayerHelper("conv2d_transpose", **locals())
if not isinstance(input, Variable): if not isinstance(input, Variable):
...@@ -2267,32 +2264,36 @@ def conv3d_transpose(input, ...@@ -2267,32 +2264,36 @@ def conv3d_transpose(input,
two elements. These two elements represent height and width, respectively. two elements. These two elements represent height and width, respectively.
The details of convolution transpose layer, please refer to the following The details of convolution transpose layer, please refer to the following
explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_. explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
If bias attribution and activation type are provided, bias is added to
the output of the convolution, and the corresponding activation function
is applied to the final result.
For each input :math:`X`, the equation is: For each input :math:`X`, the equation is:
.. math:: .. math::
Out = W \\ast X Out = \sigma (W \\ast X + b)
In the above equation: In the above equation:
* :math:`X`: Input value, a tensor with NCDHW format. * :math:`X`: Input value, a tensor with NCDHW format.
* :math:`W`: Filter value, a tensor with MCDHW format. * :math:`W`: Filter value, a tensor with MCDHW format.
* :math:`\\ast` : Convolution transpose operation. * :math:`\\ast`: Convolution operation.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
different. * :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example: Example:
- Input: - Input:
Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$ Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
Filter shape: $(C_{in}, C_{out}, D_f, H_f, W_f)$ Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
- Output: - Output:
Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$ Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
Where Where
...@@ -2347,10 +2348,8 @@ def conv3d_transpose(input, ...@@ -2347,10 +2348,8 @@ def conv3d_transpose(input,
Examples: Examples:
.. code-block:: python .. code-block:: python
data = fluid.layers.data( data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
name='data', shape=[3, 12, 32, 32], dtype='float32') conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
conv2d_transpose = fluid.layers.conv3d_transpose(
input=data, num_filters=2, filter_size=3)
""" """
l_type = "conv3d_transpose" l_type = "conv3d_transpose"
helper = LayerHelper(l_type, **locals()) helper = LayerHelper(l_type, **locals())
...@@ -4680,8 +4679,8 @@ def mean_iou(input, label, num_classes): ...@@ -4680,8 +4679,8 @@ def mean_iou(input, label, num_classes):
IOU is defined as follows: IOU is defined as follows:
.. math:: .. math::
IOU = true_positive / (true_positive + false_positive + false_negative). IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
The predictions are accumulated in a confusion matrix and mean-IOU The predictions are accumulated in a confusion matrix and mean-IOU
is then calculated from it. is then calculated from it.
...@@ -4689,8 +4688,9 @@ def mean_iou(input, label, num_classes): ...@@ -4689,8 +4688,9 @@ def mean_iou(input, label, num_classes):
Args: Args:
input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64. input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
label (Variable): A Tensor of ground truth labels with type int32 or int64. label (Variable): A Tensor of ground truth labels with type int32 or int64.
Its shape should be the same as input. Its shape should be the same as input.
num_classes (int): The possible number of labels.
Returns: Returns:
mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1]. mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册