Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
798e2e7e
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
798e2e7e
编写于
6月 10, 2022
作者:
光明和真理
提交者:
GitHub
6月 10, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU] add mlu kernel for clip (#43229)
上级
9ad05afd
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
280 addition
and
0 deletion
+280
-0
paddle/fluid/operators/clip_op_mlu.cc
paddle/fluid/operators/clip_op_mlu.cc
+115
-0
paddle/fluid/operators/mlu/mlu_baseop.cc
paddle/fluid/operators/mlu/mlu_baseop.cc
+19
-0
paddle/fluid/operators/mlu/mlu_baseop.h
paddle/fluid/operators/mlu/mlu_baseop.h
+10
-0
python/paddle/fluid/tests/unittests/mlu/test_clip_op_mlu.py
python/paddle/fluid/tests/unittests/mlu/test_clip_op_mlu.py
+136
-0
未找到文件。
paddle/fluid/operators/clip_op_mlu.cc
0 → 100644
浏览文件 @
798e2e7e
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
ClipMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
min
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"min"
));
auto
max
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"max"
));
if
(
ctx
.
HasInput
(
"Min"
))
{
Tensor
min_cpu
;
auto
*
min_tensor
=
ctx
.
Input
<
Tensor
>
(
"Min"
);
auto
*
min_data
=
min_tensor
->
data
<
T
>
();
if
(
platform
::
is_mlu_place
(
min_tensor
->
place
()))
{
paddle
::
framework
::
TensorCopySync
(
*
min_tensor
,
platform
::
CPUPlace
(),
&
min_cpu
);
min_data
=
min_cpu
.
data
<
T
>
();
}
min
=
min_data
[
0
];
}
if
(
ctx
.
HasInput
(
"Max"
))
{
Tensor
max_cpu
;
auto
*
max_tensor
=
ctx
.
Input
<
Tensor
>
(
"Max"
);
auto
*
max_data
=
max_tensor
->
data
<
T
>
();
if
(
platform
::
is_mlu_place
(
max_tensor
->
place
()))
{
paddle
::
framework
::
TensorCopySync
(
*
max_tensor
,
platform
::
CPUPlace
(),
&
max_cpu
);
max_data
=
max_cpu
.
data
<
T
>
();
}
max
=
max_data
[
0
];
}
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
MLUCnnlTensorDesc
x_desc
(
*
x
);
MLUCnnlTensorDesc
out_desc
(
*
out
);
MLUCnnl
::
Clip
(
ctx
,
x_desc
.
get
(),
GetBasePtr
(
x
),
static_cast
<
const
void
*>
(
&
min
),
static_cast
<
const
void
*>
(
&
max
),
GetBasePtr
(
out
));
}
};
template
<
typename
T
>
class
ClipGradMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
min_tensor
=
ctx
.
HasInput
(
"Min"
)
?
ctx
.
Input
<
Tensor
>
(
"Min"
)
:
nullptr
;
auto
*
max_tensor
=
ctx
.
HasInput
(
"Max"
)
?
ctx
.
Input
<
Tensor
>
(
"Max"
)
:
nullptr
;
auto
min_val
=
ctx
.
Attr
<
float
>
(
"min"
);
if
(
min_tensor
)
{
Tensor
min_data
;
framework
::
TensorCopy
(
*
min_tensor
,
platform
::
CPUPlace
(),
ctx
.
template
device_context
<
platform
::
DeviceContext
>(),
&
min_data
);
ctx
.
template
device_context
<
paddle
::
platform
::
MLUDeviceContext
>().
Wait
();
min_val
=
static_cast
<
float
>
(
min_data
.
data
<
T
>
()[
0
]);
}
auto
max_val
=
ctx
.
Attr
<
float
>
(
"max"
);
if
(
max_tensor
)
{
Tensor
max_data
;
framework
::
TensorCopy
(
*
max_tensor
,
platform
::
CPUPlace
(),
ctx
.
template
device_context
<
platform
::
DeviceContext
>(),
&
max_data
);
ctx
.
template
device_context
<
paddle
::
platform
::
MLUDeviceContext
>().
Wait
();
max_val
=
static_cast
<
float
>
(
max_data
.
data
<
T
>
()[
0
]);
}
MLUCnnlTensorDesc
x_desc
(
*
x
);
MLUCnnlTensorDesc
dx_desc
(
*
dx
);
MLUCnnlTensorDesc
dout_desc
(
*
dout
);
MLUCnnl
::
HardtanhBackward
(
ctx
,
x_desc
.
get
(),
GetBasePtr
(
x
),
dout_desc
.
get
(),
GetBasePtr
(
dout
),
max_val
,
min_val
,
dx_desc
.
get
(),
GetBasePtr
(
dx
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_MLU_KERNEL
(
clip
,
ops
::
ClipMLUKernel
<
float
>
,
ops
::
ClipMLUKernel
<
plat
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
clip_grad
,
ops
::
ClipGradMLUKernel
<
float
>
,
ops
::
ClipGradMLUKernel
<
plat
::
float16
>
);
paddle/fluid/operators/mlu/mlu_baseop.cc
浏览文件 @
798e2e7e
...
...
@@ -1942,6 +1942,25 @@ MLUCnnlTrigonDesc::~MLUCnnlTrigonDesc() {
cast_type
,
output_desc
,
output
));
}
/*static*/
void
MLUCnnl
::
Clip
(
const
ExecutionContext
&
ctx
,
const
cnnlTensorDescriptor_t
x_desc
,
const
void
*
x
,
const
void
*
min
,
const
void
*
max
,
void
*
y
)
{
cnnlHandle_t
handle
=
GetHandleFromCTX
(
ctx
);
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlClip
(
handle
,
x_desc
,
x
,
min
,
max
,
y
));
}
/*static*/
void
MLUCnnl
::
HardtanhBackward
(
const
ExecutionContext
&
ctx
,
const
cnnlTensorDescriptor_t
x_desc
,
const
void
*
x
,
const
cnnlTensorDescriptor_t
diff_y_desc
,
const
void
*
diff_y
,
const
float
max_val
,
const
float
min_val
,
const
cnnlTensorDescriptor_t
diff_x_desc
,
void
*
diff_x
)
{
cnnlHandle_t
handle
=
GetHandleFromCTX
(
ctx
);
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlHardtanhBackward
(
handle
,
x_desc
,
x
,
diff_y_desc
,
diff_y
,
max_val
,
min_val
,
diff_x_desc
,
diff_x
));
}
/* static */
void
MLUCnnl
::
PoolingBackward
(
const
ExecutionContext
&
ctx
,
const
cnnlPoolingDescriptor_t
pooling_desc
,
const
void
*
alpha
,
const
cnnlTensorDescriptor_t
y_desc
,
const
void
*
y
,
...
...
paddle/fluid/operators/mlu/mlu_baseop.h
浏览文件 @
798e2e7e
...
...
@@ -439,6 +439,16 @@ class MLUCnnl {
const
cnnlTensorDescriptor_t
input_desc
,
const
void
*
input
,
const
cnnlTensorDescriptor_t
output_desc
,
void
*
output
);
static
void
Clip
(
const
ExecutionContext
&
ctx
,
const
cnnlTensorDescriptor_t
input_desc
,
const
void
*
input
,
const
void
*
min
,
const
void
*
max
,
void
*
y
);
static
void
HardtanhBackward
(
const
ExecutionContext
&
ctx
,
const
cnnlTensorDescriptor_t
x_desc
,
const
void
*
x
,
const
cnnlTensorDescriptor_t
diff_y_desc
,
const
void
*
diff_y
,
const
float
max_val
,
const
float
min_val
,
const
cnnlTensorDescriptor_t
diff_x_desc
,
void
*
diff_x
);
static
void
Div
(
const
ExecutionContext
&
ctx
,
cnnlComputationPreference_t
prefer
,
const
cnnlTensorDescriptor_t
in0_desc
,
const
void
*
in0
,
...
...
python/paddle/fluid/tests/unittests/mlu/test_clip_op_mlu.py
0 → 100644
浏览文件 @
798e2e7e
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
from
op_test
import
OpTest
from
paddle.fluid.framework
import
_test_eager_guard
paddle
.
enable_static
()
class
TestClipOp
(
OpTest
):
def
setUp
(
self
):
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
max_relative_error
=
0.006
self
.
python_api
=
paddle
.
clip
self
.
inputs
=
{}
self
.
initTestCase
()
self
.
op_type
=
"clip"
self
.
attrs
=
{}
self
.
attrs
[
'min'
]
=
self
.
min
self
.
attrs
[
'max'
]
=
self
.
max
if
'Min'
in
self
.
inputs
:
min_v
=
self
.
inputs
[
'Min'
]
else
:
min_v
=
self
.
attrs
[
'min'
]
if
'Max'
in
self
.
inputs
:
max_v
=
self
.
inputs
[
'Max'
]
else
:
max_v
=
self
.
attrs
[
'max'
]
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
input
[
np
.
abs
(
input
-
min_v
)
<
self
.
max_relative_error
]
=
0.5
input
[
np
.
abs
(
input
-
max_v
)
<
self
.
max_relative_error
]
=
0.5
self
.
inputs
[
'X'
]
=
input
self
.
outputs
=
{
'Out'
:
np
.
clip
(
self
.
inputs
[
'X'
],
min_v
,
max_v
)}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
)
def
initTestCase
(
self
):
self
.
dtype
=
np
.
float32
self
.
shape
=
(
4
,
10
,
10
)
self
.
max
=
0.8
self
.
min
=
0.3
self
.
inputs
[
'Max'
]
=
np
.
array
([
0.8
]).
astype
(
self
.
dtype
)
self
.
inputs
[
'Min'
]
=
np
.
array
([
0.1
]).
astype
(
self
.
dtype
)
class
TestCase1
(
TestClipOp
):
def
initTestCase
(
self
):
self
.
dtype
=
np
.
float32
self
.
shape
=
(
8
,
16
,
8
)
self
.
max
=
0.7
self
.
min
=
0.0
class
TestCase2
(
TestClipOp
):
def
initTestCase
(
self
):
self
.
dtype
=
np
.
float32
self
.
shape
=
(
8
,
16
)
self
.
max
=
1.0
self
.
min
=
0.0
class
TestCase3
(
TestClipOp
):
def
initTestCase
(
self
):
self
.
dtype
=
np
.
float32
self
.
shape
=
(
4
,
8
,
16
)
self
.
max
=
0.7
self
.
min
=
0.2
class
TestCase4
(
TestClipOp
):
def
initTestCase
(
self
):
self
.
dtype
=
np
.
float32
self
.
shape
=
(
4
,
8
,
8
)
self
.
max
=
0.7
self
.
min
=
0.2
self
.
inputs
[
'Max'
]
=
np
.
array
([
0.8
]).
astype
(
self
.
dtype
)
self
.
inputs
[
'Min'
]
=
np
.
array
([
0.3
]).
astype
(
self
.
dtype
)
class
TestCase5
(
TestClipOp
):
def
initTestCase
(
self
):
self
.
dtype
=
np
.
float32
self
.
shape
=
(
4
,
8
,
16
)
self
.
max
=
0.5
self
.
min
=
0.5
class
TestCase6
(
TestClipOp
):
def
initTestCase
(
self
):
self
.
dtype
=
np
.
float16
self
.
shape
=
(
4
,
8
,
8
)
self
.
max
=
0.7
self
.
min
=
0.2
self
.
inputs
[
'Max'
]
=
np
.
array
([
0.8
]).
astype
(
self
.
dtype
)
self
.
inputs
[
'Min'
]
=
np
.
array
([
0.3
]).
astype
(
self
.
dtype
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录