Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
78b5c103
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
78b5c103
编写于
7月 21, 2022
作者:
zhouweiwei2014
提交者:
GitHub
7月 21, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Sparse] Add sparse addmm kernel (dense+coo*dense->dense,dense+csr*dense->dense) (#44451)
上级
a0bccd9e
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
725 addition
and
2 deletion
+725
-2
paddle/phi/api/yaml/sparse_api.yaml
paddle/phi/api/yaml/sparse_api.yaml
+11
-0
paddle/phi/api/yaml/sparse_bw_api.yaml
paddle/phi/api/yaml/sparse_bw_api.yaml
+10
-0
paddle/phi/kernels/sparse/addmm_grad_kernel.h
paddle/phi/kernels/sparse/addmm_grad_kernel.h
+77
-0
paddle/phi/kernels/sparse/addmm_kernel.h
paddle/phi/kernels/sparse/addmm_kernel.h
+65
-0
paddle/phi/kernels/sparse/cpu/addmm_grad_kernel.cc
paddle/phi/kernels/sparse/cpu/addmm_grad_kernel.cc
+72
-0
paddle/phi/kernels/sparse/cpu/addmm_kernel.cc
paddle/phi/kernels/sparse/cpu/addmm_kernel.cc
+67
-0
paddle/phi/kernels/sparse/cpu/matmul_grad_kernel.cc
paddle/phi/kernels/sparse/cpu/matmul_grad_kernel.cc
+2
-2
paddle/phi/kernels/sparse/gpu/addmm_grad_kernel.cu
paddle/phi/kernels/sparse/gpu/addmm_grad_kernel.cu
+96
-0
paddle/phi/kernels/sparse/gpu/addmm_kernel.cu
paddle/phi/kernels/sparse/gpu/addmm_kernel.cu
+146
-0
python/paddle/fluid/tests/unittests/test_sparse_addmm_op.py
python/paddle/fluid/tests/unittests/test_sparse_addmm_op.py
+95
-0
python/paddle/incubate/sparse/__init__.py
python/paddle/incubate/sparse/__init__.py
+3
-0
python/paddle/incubate/sparse/multiary.py
python/paddle/incubate/sparse/multiary.py
+81
-0
未找到文件。
paddle/phi/api/yaml/sparse_api.yaml
浏览文件 @
78b5c103
...
...
@@ -266,6 +266,17 @@
layout
:
x
backward
:
values_grad
-
api
:
addmm
args
:
(Tensor input, Tensor x, Tensor y, float alpha=1.0, float beta=1.0)
output
:
Tensor(out)
kernel
:
func
:
addmm_csr_dense {dense, sparse_csr, dense -> dense},
addmm_csr_csr {sparse_csr, sparse_csr, sparse_csr -> sparse_csr},
addmm_coo_dense {dense, sparse_coo, dense -> dense},
addmm_coo_coo {sparse_coo, sparse_coo, sparse_coo -> sparse_coo}
layout
:
x
backward
:
addmm_grad
-
api
:
coalesce
args
:
(Tensor x)
output
:
Tensor(out)
...
...
paddle/phi/api/yaml/sparse_bw_api.yaml
浏览文件 @
78b5c103
...
...
@@ -30,6 +30,16 @@
func
:
add_coo_coo_grad{sparse_coo, sparse_coo, sparse_coo -> sparse_coo, sparse_coo},
add_csr_csr_grad{sparse_csr, sparse_csr, sparse_csr -> sparse_csr, sparse_csr}
-
backward_api
:
addmm_grad
forward
:
addmm(Tensor input, Tensor x, Tensor y, float alpha=1.0, float beta=1.0) -> Tensor(out)
args
:
(Tensor input, Tensor x, Tensor y, Tensor out_grad, float alpha=1.0, float beta=1.0)
output
:
Tensor(input_grad), Tensor(x_grad), Tensor(y_grad)
kernel
:
func
:
addmm_csr_dense_grad {dense, sparse_csr, dense, dense -> dense, sparse_csr, dense},
addmm_csr_csr_grad {sparse_csr, sparse_csr, sparse_csr, sparse_csr -> sparse_csr, sparse_csr, sparse_csr},
addmm_coo_dense_grad {dense, sparse_coo, dense, dense -> dense, sparse_coo, dense},
addmm_coo_coo_grad {sparse_coo, sparse_coo, sparse_coo, sparse_coo -> sparse_coo, sparse_coo, sparse_coo}
-
backward_api
:
asin_grad
forward
:
asin(Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad)
...
...
paddle/phi/kernels/sparse/addmm_grad_kernel.h
0 → 100644
浏览文件 @
78b5c103
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
namespace
phi
{
namespace
sparse
{
// TODO(zhouwei25): implement Backward of " COO + COO @ COO -> COO"
template
<
typename
T
,
typename
Context
>
void
AddmmCooCooGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
input
,
const
SparseCooTensor
&
x
,
const
SparseCooTensor
&
y
,
const
SparseCooTensor
&
dout
,
float
alpha
,
float
beta
,
SparseCooTensor
*
dinput
,
SparseCooTensor
*
dx
,
SparseCooTensor
*
dy
);
// Backward of "DENSE + COO @ DENSE -> DENSE"
template
<
typename
T
,
typename
Context
>
void
AddmmCooDenseGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
input
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
dout
,
float
alpha
,
float
beta
,
DenseTensor
*
dinput
,
SparseCooTensor
*
dx
,
DenseTensor
*
dy
);
// TODO(zhouwei25): implement Backward of " CSR + CSR @ CSR -> CSR"
template
<
typename
T
,
typename
Context
>
void
AddmmCsrCsrGradKernel
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
input
,
const
SparseCsrTensor
&
x
,
const
SparseCsrTensor
&
y
,
const
SparseCsrTensor
&
dout
,
float
alpha
,
float
beta
,
SparseCsrTensor
*
dinput
,
SparseCsrTensor
*
dx
,
SparseCsrTensor
*
dy
);
/* Backward of "DENSE + CSR @ DENSE -> DENSE" */
template
<
typename
T
,
typename
Context
>
void
AddmmCsrDenseGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
input
,
const
SparseCsrTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
dout
,
float
alpha
,
float
beta
,
DenseTensor
*
dinput
,
SparseCsrTensor
*
dx
,
DenseTensor
*
dy
);
}
// namespace sparse
}
// namespace phi
paddle/phi/kernels/sparse/addmm_kernel.h
0 → 100644
浏览文件 @
78b5c103
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
namespace
phi
{
namespace
sparse
{
// TODO(zhouwei25): implement " COO + COO @ COO -> COO"
template
<
typename
T
,
typename
Context
>
void
AddmmCooCooKernel
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
input
,
const
SparseCooTensor
&
x
,
const
SparseCooTensor
&
y
,
float
alpha
,
float
beta
,
SparseCooTensor
*
out
);
/* DENSE + COO @ DENSE -> DENSE */
template
<
typename
T
,
typename
Context
>
void
AddmmCooDenseKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
input
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
y
,
float
alpha
,
float
beta
,
DenseTensor
*
out
);
// TODO(zhouwei25): implement " CSR + CSR @ CSR -> CSR"
template
<
typename
T
,
typename
Context
>
void
AddmmCsrCsrKernel
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
input
,
const
SparseCsrTensor
&
x
,
const
SparseCsrTensor
&
y
,
float
alpha
,
float
beta
,
SparseCsrTensor
*
out
);
/* DENSE + CSR @ DENSE -> DENSE */
template
<
typename
T
,
typename
Context
>
void
AddmmCsrDenseKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
input
,
const
SparseCsrTensor
&
x
,
const
DenseTensor
&
y
,
float
alpha
,
float
beta
,
DenseTensor
*
out
);
}
// namespace sparse
}
// namespace phi
paddle/phi/kernels/sparse/cpu/addmm_grad_kernel.cc
0 → 100644
浏览文件 @
78b5c103
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/sparse/addmm_grad_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
namespace
sparse
{
template
<
typename
T
,
typename
Context
>
void
AddmmCooDenseGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
input
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
dout
,
float
alpha
,
float
beta
,
DenseTensor
*
dinput
,
SparseCooTensor
*
dx
,
DenseTensor
*
dy
)
{
PADDLE_THROW
(
phi
::
errors
::
Unimplemented
(
"Not support CPU backward kernel of 'sparse.addmm' now."
));
}
template
<
typename
T
,
typename
Context
>
void
AddmmCsrDenseGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
input
,
const
SparseCsrTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
dout
,
float
alpha
,
float
beta
,
DenseTensor
*
dinput
,
SparseCsrTensor
*
dx
,
DenseTensor
*
dy
)
{
PADDLE_THROW
(
phi
::
errors
::
Unimplemented
(
"Not support CPU backward kernel of 'sparse.addmm' now."
));
}
}
// namespace sparse
}
// namespace phi
PD_REGISTER_KERNEL
(
addmm_coo_dense_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
AddmmCooDenseGradKernel
,
float
,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
}
PD_REGISTER_KERNEL
(
addmm_csr_dense_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
AddmmCsrDenseGradKernel
,
float
,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_CSR
);
}
paddle/phi/kernels/sparse/cpu/addmm_kernel.cc
0 → 100644
浏览文件 @
78b5c103
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/sparse/addmm_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
namespace
sparse
{
/* DENSE + COO @ DENSE -> DENSE */
template
<
typename
T
,
typename
Context
>
void
AddmmCooDenseKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
input
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
y
,
float
alpha
,
float
beta
,
DenseTensor
*
out
)
{
PADDLE_THROW
(
phi
::
errors
::
Unimplemented
(
"Not support CPU kernel of 'sparse.addmm' now."
));
}
/* DENSE + CSR @ DENSE -> DENSE */
template
<
typename
T
,
typename
Context
>
void
AddmmCsrDenseKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
input
,
const
SparseCsrTensor
&
x
,
const
DenseTensor
&
y
,
float
alpha
,
float
beta
,
DenseTensor
*
out
)
{
PADDLE_THROW
(
phi
::
errors
::
Unimplemented
(
"Not support CPU kernel of 'sparse.addmm' now."
));
}
}
// namespace sparse
}
// namespace phi
PD_REGISTER_KERNEL
(
addmm_coo_dense
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
AddmmCooDenseKernel
,
float
,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
}
PD_REGISTER_KERNEL
(
addmm_csr_dense
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
AddmmCsrDenseKernel
,
float
,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_CSR
);
}
paddle/phi/kernels/sparse/cpu/matmul_grad_kernel.cc
浏览文件 @
78b5c103
...
...
@@ -29,7 +29,7 @@ void MatmulCsrDenseGradKernel(const Context& dev_ctx,
SparseCsrTensor
*
dx
,
DenseTensor
*
dy
)
{
PADDLE_THROW
(
phi
::
errors
::
Unimplemented
(
"Not support CPU backward kernel of
Sparse Matmul
now."
));
"Not support CPU backward kernel of
'sparse.matmul'
now."
));
}
// TODO(zhouwei25): implement CPU kernel of " DENSE @ DENSE * CSR_MASK -> CSR"
...
...
@@ -41,7 +41,7 @@ void MaskedMatmulCsrGradKernel(const Context& dev_ctx,
DenseTensor
*
dx
,
DenseTensor
*
dy
)
{
PADDLE_THROW
(
phi
::
errors
::
Unimplemented
(
"Not support CPU backward kernel of
Matmul Mask As Sparse
now."
));
"Not support CPU backward kernel of
'sparse.masked_matmul'
now."
));
}
}
// namespace sparse
...
...
paddle/phi/kernels/sparse/gpu/addmm_grad_kernel.cu
0 → 100644
浏览文件 @
78b5c103
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/sparse/addmm_grad_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/sparse/matmul_grad_kernel.h"
namespace
phi
{
namespace
sparse
{
template
<
typename
T
,
typename
Context
>
void
AddmmCooDenseGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
input
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
dout
,
float
alpha
,
float
beta
,
DenseTensor
*
dinput
,
SparseCooTensor
*
dx
,
DenseTensor
*
dy
)
{
auto
blas
=
funcs
::
GetBlas
<
Context
,
T
>
(
dev_ctx
);
if
(
dinput
)
{
dinput
->
Resize
(
input
.
dims
());
dev_ctx
.
template
Alloc
<
T
>(
dinput
);
blas
.
VCOPY
(
input
.
numel
(),
dout
.
data
<
T
>
(),
dinput
->
data
<
T
>
());
blas
.
SCAL
(
input
.
numel
(),
beta
,
dinput
->
data
<
T
>
());
}
DenseTensor
dout_scale
=
phi
::
EmptyLike
<
T
,
Context
>
(
dev_ctx
,
dout
);
blas
.
VCOPY
(
dout
.
numel
(),
dout
.
data
<
T
>
(),
dout_scale
.
data
<
T
>
());
blas
.
SCAL
(
dout
.
numel
(),
alpha
,
dout_scale
.
data
<
T
>
());
MatmulCooDenseGradKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
y
,
dout_scale
,
dx
,
dy
);
}
// Backward of "DENSE + CSR @ DENSE -> DENSE"
template
<
typename
T
,
typename
Context
>
void
AddmmCsrDenseGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
input
,
const
SparseCsrTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
dout
,
float
alpha
,
float
beta
,
DenseTensor
*
dinput
,
SparseCsrTensor
*
dx
,
DenseTensor
*
dy
)
{
auto
blas
=
funcs
::
GetBlas
<
Context
,
T
>
(
dev_ctx
);
if
(
dinput
)
{
dinput
->
Resize
(
input
.
dims
());
dev_ctx
.
template
Alloc
<
T
>(
dinput
);
blas
.
VCOPY
(
input
.
numel
(),
dout
.
data
<
T
>
(),
dinput
->
data
<
T
>
());
blas
.
SCAL
(
input
.
numel
(),
beta
,
dinput
->
data
<
T
>
());
}
DenseTensor
dout_scale
=
phi
::
EmptyLike
<
T
,
Context
>
(
dev_ctx
,
dout
);
blas
.
VCOPY
(
dout
.
numel
(),
dout
.
data
<
T
>
(),
dout_scale
.
data
<
T
>
());
blas
.
SCAL
(
dout
.
numel
(),
alpha
,
dout_scale
.
data
<
T
>
());
MatmulCsrDenseGradKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
y
,
dout_scale
,
dx
,
dy
);
}
}
// namespace sparse
}
// namespace phi
PD_REGISTER_KERNEL
(
addmm_coo_dense_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
AddmmCooDenseGradKernel
,
float
,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
}
PD_REGISTER_KERNEL
(
addmm_csr_dense_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
AddmmCsrDenseGradKernel
,
float
,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_CSR
);
}
paddle/phi/kernels/sparse/gpu/addmm_kernel.cu
0 → 100644
浏览文件 @
78b5c103
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/sparse/addmm_kernel.h"
#include <vector>
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/ddim.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/kernels/funcs/sparse/sparse_blas.h"
namespace
phi
{
namespace
sparse
{
template
<
typename
T
,
typename
Context
,
typename
TensorType
>
void
AddmmKernelImpl
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
input
,
const
TensorType
&
x
,
const
DenseTensor
&
y
,
float
alpha
,
float
beta
,
DenseTensor
*
out
)
{
#if CUDA_VERSION >= 11000
std
::
vector
<
int64_t
>
input_dim
=
phi
::
vectorize
(
input
.
dims
());
std
::
vector
<
int64_t
>
x_dim
=
phi
::
vectorize
(
x
.
dims
());
std
::
vector
<
int64_t
>
y_dim
=
phi
::
vectorize
(
y
.
dims
());
auto
rank
=
input_dim
.
size
();
PADDLE_ENFORCE_GE
(
rank
,
2
,
phi
::
errors
::
InvalidArgument
(
"the dims size of input must be greater than or eaqual to 2."
));
PADDLE_ENFORCE_EQ
(
x_dim
.
size
(),
rank
,
phi
::
errors
::
PreconditionNotMet
(
"The dims size of Input(input) and Input(x) must be eaqual."
));
PADDLE_ENFORCE_GE
(
y_dim
.
size
(),
rank
,
phi
::
errors
::
InvalidArgument
(
"the dims size of Input(input) and Input(y) must be eaqual."
));
for
(
size_t
i
=
0
;
i
<
rank
-
2
;
++
i
)
{
PADDLE_ENFORCE_EQ
(
input_dim
[
i
],
x_dim
[
i
],
phi
::
errors
::
InvalidArgument
(
"input.dim[%d] and x.dim[%d] must be eaqul."
,
i
,
i
));
PADDLE_ENFORCE_EQ
(
input_dim
[
i
],
y_dim
[
i
],
phi
::
errors
::
InvalidArgument
(
"input.dim[%d] and y.dim[%d] must be eaqul."
,
i
,
i
));
}
PADDLE_ENFORCE_GE
(
input_dim
[
rank
-
2
],
x_dim
[
rank
-
2
],
phi
::
errors
::
PreconditionNotMet
(
"The shape of Input(input) and Input(x) is not suitable for matmul "
"opetation, input_dim[-2] must be eaqual to x_dim[-2]."
));
PADDLE_ENFORCE_GE
(
input_dim
[
rank
-
1
],
y_dim
[
rank
-
1
],
phi
::
errors
::
PreconditionNotMet
(
"The shape of Input(input) and Input(y) is not suitable for matmul "
"opetation, input_dim[-1] must be eaqual to y_dim[-1]."
));
PADDLE_ENFORCE_GE
(
x_dim
[
rank
-
1
],
y_dim
[
rank
-
2
],
phi
::
errors
::
PreconditionNotMet
(
"The shape of Input(x) and Input(y) is not suitable for matmul "
"opetation, x_dim[-1] must be eaqual to y_dim[-2]."
));
phi
::
Copy
(
dev_ctx
,
input
,
dev_ctx
.
GetPlace
(),
false
,
out
);
auto
sparse_blas
=
phi
::
funcs
::
sparse
::
GetSparseBlas
<
Context
,
T
>
(
dev_ctx
);
sparse_blas
.
SPMM
(
false
,
false
,
static_cast
<
T
>
(
alpha
),
x
,
y
,
static_cast
<
T
>
(
beta
),
out
);
#else
PADDLE_THROW
(
phi
::
errors
::
Unimplemented
(
"forward of 'sparse.addmm' use cusparseSpMM, "
"which is supported from CUDA 11.0"
));
#endif
}
template
<
typename
T
,
typename
Context
>
void
AddmmCooDenseKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
input
,
const
SparseCooTensor
&
x
,
const
DenseTensor
&
y
,
float
alpha
,
float
beta
,
DenseTensor
*
out
)
{
AddmmKernelImpl
<
T
>
(
dev_ctx
,
input
,
x
,
y
,
alpha
,
beta
,
out
);
}
template
<
typename
T
,
typename
Context
>
void
AddmmCsrDenseKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
input
,
const
SparseCsrTensor
&
x
,
const
DenseTensor
&
y
,
float
alpha
,
float
beta
,
DenseTensor
*
out
)
{
AddmmKernelImpl
<
T
>
(
dev_ctx
,
input
,
x
,
y
,
alpha
,
beta
,
out
);
}
}
// namespace sparse
}
// namespace phi
PD_REGISTER_KERNEL
(
addmm_coo_dense
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
AddmmCooDenseKernel
,
float
,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_COO
);
}
PD_REGISTER_KERNEL
(
addmm_csr_dense
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
AddmmCsrDenseKernel
,
float
,
double
)
{
kernel
->
InputAt
(
0
).
SetDataLayout
(
phi
::
DataLayout
::
SPARSE_CSR
);
}
python/paddle/fluid/tests/unittests/test_sparse_addmm_op.py
0 → 100644
浏览文件 @
78b5c103
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
numpy
as
np
import
scipy
import
scipy.sparse
as
sp
import
unittest
import
os
import
re
paddle
.
set_default_dtype
(
'float64'
)
def
get_cuda_version
():
result
=
os
.
popen
(
"nvcc --version"
).
read
()
regex
=
r
'release (\S+),'
match
=
re
.
search
(
regex
,
result
)
if
match
:
num
=
str
(
match
.
group
(
1
))
integer
,
decimal
=
num
.
split
(
'.'
)
return
int
(
integer
)
*
1000
+
int
(
float
(
decimal
)
*
10
)
else
:
return
-
1
class
TestAddmm
(
unittest
.
TestCase
):
# input: dense, x: sparse, y: dense, out: dense
def
check_result
(
self
,
input_shape
,
x_shape
,
y_shape
,
format
):
if
len
(
x_shape
)
==
3
:
mask
=
paddle
.
randint
(
0
,
2
,
[
x_shape
[
-
2
],
x_shape
[
-
1
]])
else
:
mask
=
paddle
.
randint
(
0
,
2
,
x_shape
)
origin_input
=
paddle
.
rand
(
input_shape
)
origin_x
=
paddle
.
rand
(
x_shape
)
*
mask
origin_y
=
paddle
.
rand
(
y_shape
)
dense_input
=
origin_input
.
detach
()
dense_input
.
stop_gradient
=
False
dense_x
=
origin_x
.
detach
()
dense_x
.
stop_gradient
=
False
dense_y
=
origin_y
.
detach
()
dense_y
.
stop_gradient
=
False
dense_out
=
2.
*
paddle
.
matmul
(
dense_x
,
dense_y
)
+
3.
*
dense_input
sp_input
=
dense_input
.
detach
()
sp_input
.
stop_gradient
=
False
if
format
==
"coo"
:
sp_x
=
origin_x
.
detach
().
to_sparse_coo
(
len
(
x_shape
))
else
:
sp_x
=
origin_x
.
detach
().
to_sparse_csr
()
sp_x
.
stop_gradient
=
False
sp_y
=
origin_y
.
detach
()
sp_y
.
stop_gradient
=
False
sp_out
=
paddle
.
incubate
.
sparse
.
addmm
(
sp_input
,
sp_x
,
sp_y
,
3.0
,
2.0
)
self
.
assertTrue
(
np
.
allclose
(
sp_out
.
numpy
(),
dense_out
.
numpy
()))
if
get_cuda_version
()
>=
11030
:
dense_out
.
backward
()
sp_out
.
backward
()
self
.
assertTrue
(
np
.
allclose
(
sp_input
.
grad
.
numpy
(),
dense_input
.
grad
.
numpy
()))
self
.
assertTrue
(
np
.
allclose
(
sp_x
.
grad
.
to_dense
().
numpy
(),
(
dense_x
.
grad
*
mask
).
numpy
()))
self
.
assertTrue
(
np
.
allclose
(
sp_y
.
grad
.
numpy
(),
dense_y
.
grad
.
numpy
()))
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_cuda
()
or
get_cuda_version
()
<
11000
,
"only support cuda>=11.0"
)
def
test_addmm_2d
(
self
):
self
.
check_result
([
16
,
10
],
[
16
,
12
],
[
12
,
10
],
'coo'
)
self
.
check_result
([
16
,
10
],
[
16
,
12
],
[
12
,
10
],
'csr'
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_cuda
()
or
get_cuda_version
()
<
11070
,
"only support cuda>=11.7"
)
def
test_addmm_3d
(
self
):
self
.
check_result
([
8
,
16
,
10
],
[
8
,
16
,
12
],
[
8
,
12
,
10
],
'coo'
)
self
.
check_result
([
8
,
16
,
10
],
[
8
,
16
,
12
],
[
8
,
12
,
10
],
'csr'
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/incubate/sparse/__init__.py
浏览文件 @
78b5c103
...
...
@@ -40,6 +40,8 @@ from .binary import divide
from
.binary
import
multiply
from
.binary
import
subtract
from
.multiary
import
addmm
from
.
import
nn
__all__
=
[
...
...
@@ -63,6 +65,7 @@ __all__ = [
'mv'
,
'matmul'
,
'masked_matmul'
,
'addmm'
,
'add'
,
'subtract'
,
'multiply'
,
...
...
python/paddle/incubate/sparse/multiary.py
0 → 100644
浏览文件 @
78b5c103
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle
import
_C_ops
from
paddle.fluid.framework
import
dygraph_only
__all__
=
[]
@
dygraph_only
def
addmm
(
input
,
x
,
y
,
beta
=
1.0
,
alpha
=
1.0
,
name
=
None
):
"""
Note:
This API is only supported from ``CUDA 11.0`` .
Applies matrix multiplication for `x` and `y` , `input` is added to
the final result. The equation is:
.. math::
Out = alpha * x * y + beta * input
The supported input/output Tensor layout are as follows:
Note:
input[SparseCsrTensor] + x[SparseCsrTensor] @ y[SparseCsrTensor] -> out[SparseCsrTensor]
input[DenseTensor] + x[SparseCsrTensor] @ y[DenseTensor] -> out[DenseTensor]
input[SparseCooTensor] + x[SparseCooTensor] @ y[SparseCooTensor] -> out[SparseCooTensor]
input[DenseTensor] + x[SparseCooTensor] @ y[DenseTensor] -> out[DenseTensor]
It supports backward propagation.
Dimensions `input` , `x` , `y` must be same and >= 2D. Automatic broadcasting of Tensor is not supported.
Args:
input (Tensor): The input tensor. Shape is [*, M, N]. The data type can be float32 or float64.
x (Tensor): The input tensor. Shape is [*, M, K]. The data type can be float32 or float64.
y (Tensor): The input tensor. Shape is [*, K, N]. The data type can be float32 or float64.
beta (float, optional): Coefficient of `input` . Default: 1.0
alpha (float, optional): Coefficient of `x * y` . Default: 1.0
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: Its layout is determined by that of `x` and `y` . dtype and shape is the same with `input`
Examples:
.. code-block:: python
import paddle
# dense + csr @ dense -> dense
input = paddle.rand([3, 2])
crows = [0, 1, 2, 3]
cols = [1, 2, 0]
values = [1., 2., 3.]
x = paddle.incubate.sparse.sparse_csr_tensor(crows, cols, values, [3, 3])
y = paddle.rand([3, 2])
out = paddle.incubate.sparse.addmm(input, x, y, 3.0, 2.0)
# dense + coo @ dense -> dense
input = paddle.rand([3, 2])
indices = [[0, 1, 2], [1, 2, 0]]
values = [1., 2., 3.]
x = paddle.incubate.sparse.sparse_coo_tensor(indices, values, [3, 3])
y = paddle.rand([3, 2])
out = paddle.incubate.sparse.addmm(input, x, y, 3.0, 2.0)
"""
return
_C_ops
.
final_state_sparse_addmm
(
input
,
x
,
y
,
alpha
,
beta
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录